第一篇:国内外复合材料自动化成型设备的发展趋势
国内外复合材料自动化成型设备的发展趋势
目前,飞机复材构件的自动化成型工艺主要包括纤维缠绕、纤维带铺放和纤维丝铺放3种类型。其中,纤维缠绕技术是最早开发并广泛使用的加工技术,亦是最成熟的生产技术。所谓纤维缠绕成型工艺,就是将浸过树脂的连续纤维,按照一定规律缠绕到芯模上并层叠至所需的厚度,然后在加热或常温条件下固化、脱模,获得一定形状制品的工艺方法。自动铺带技术采用有隔离衬纸的单向预浸带,在铺带头中完成预定形状的切割、定位,加热后按照一定设计方向在压辊作用下,直接铺叠到曲率半径较大且变化较缓的模具表面。铺带机多采用龙门式结构,其核心部件是铺带头,须完成超声切割、夹紧、衬纸剥离和张力控制等功能。铺丝技术综合了自动铺带和纤维缠绕技术的优点,由铺丝头将数根预浸纱在压辊下集束成为一条由多根预浸纱组成的宽度可变的预浸带后铺放在芯模表面,经过加热软化后压实定型。铺丝技术适用于曲率半径较小的曲面产品表面制备,铺设时没有皱褶,无须作剪裁或其他处理。铺丝可以代替铺带,相对于铺带,它的成本较高、效率也低一些,但复杂的曲面表面必须用铺丝工艺完成。
在航空制造业,纤维缠绕技术主要用于雷达罩、发动机机匣、燃料储箱、飞机副油箱和过滤器等零部件的成型,现代大型喷气客机(如波音747等)上众多的高压气瓶都是用玻璃纤维复合材料缠绕成型的,它们为飞机提供了不可缺少的气动控制动力源。
纤维带铺放技术制造的飞机复材构件典型的有飞机机翼蒙皮、垂/平尾蒙皮、翼肋、方向舵和升降舵等。F-22战斗机机翼和波音777飞机机翼、水平和垂直安定面蒙皮、C-17运输机的水平安定面蒙皮、全球鹰RQ-4B大展弦比机翼、787机翼、A330和A340水平安定面蒙皮、A340尾翼蒙皮以及A380的安定面蒙皮和中央翼盒等,均采用铺带工艺成型。
铺丝技术的典型应用包括S形进气道、中机身翼身融合体蒙皮直至带窗口的曲面等。首先应用自动铺放技术的是波音直升机公司,它研制了V-22倾转旋翼飞机的整体后机身。在第4代战斗机的典型应用包括S形进气道和机身,F35的中机身翼身融合体蒙皮。在商用飞机方面有Premier I和霍克商务机的机身部件、大型客机波音747及波音767客机的发动机进气道整流罩试验件和波音787机身则全部采用复合材料自动铺丝技术分段整体制造等,自动铺放技术的应用大大简化了制造工艺,带来了航空制造技术的变革。
一、纤维缠绕成型设备的发展现状
20世纪40年代中期,国际上正式提出了纤维缠绕技术的概念。60年代初期,出现第一代机械式纤维缠绕机,其控制系统是由皮带、齿轮、滑轮和链条等组成的机械系统。1973年Entec公司开发了第一台微处理器控制的纤维缠绕机。1976年第一个商业化标准的缠绕机型号McClean Anderson 60型投放市场。80~90年代,更多的计算机技术投入到缠绕机的开发当中,新一代微机控制纤维缠绕机开始研制。英国的Pultrex有限公司采用通用数控系统成功开发了四轴联动纤维数控缠绕机。当时,每台缠绕机的硬件部分都必须包括计算机和运动控制卡,机床的速度控制得到了极大改善,计算机控制系统能够更精确地跟踪机床的位置和速度并对其进行实时控制。与此同时,很多公司开始探索用计算机设计缠绕模式,即纤维缠绕CAD技术开始出现。用计算机辅助设计缠绕模式,大大简化了缠绕模式的设计,从而减少了产品的开发和工艺设计周期。同时,为了提高生产效率,人产设计开发了多转轴缠绕机,即1台缠绕机同时缠绕多个部件或1台缠绕机上装有多个出纱装置同时缠绕一个部件。
进入21世纪,缠绕机的功能更加完善,各种类型的缠绕机广泛应用于航空航天、军工和民用工业等领域。纤维缠绕设备的开发速度明显加快,同时提高劳动生产率已被置于首要地位,多主轴、多运动轴联动缠绕机逐渐成为标准。为了解决异型件的缠绕成型,研制出了计算机控制的六轴联动纤维缠绕机,解决了基本异型件的缠绕成型问题,结束了用手糊、半手糊方式生产常用管道配件弯管和三通管的历史。更多运动轴缠绕机的引入使得缠绕形状更为复杂的产品成为可能,目前国际上已有七轴甚至多达十一轴的计算机控制纤维缠绕机。但由于高性能和大型的缠绕机可用于航空航天等军工部门,国外对我国一直限制出口。对于中小型缠绕机虽然通过一些渠道可以出口,但价格昂贵,如可缠绕1.6m、长度6m压力容器的四轴联动卧式数控缠绕机价格要在40万欧元以上。国外知名的缠绕机制造商主要有美国的ENTEC公司、McClean Anderson公司和德国的BSD公司等。
中型五轴控制四轴联动数控缠绕机
除硬件外,目前国外的纤维缠绕CAD/CAM软件也已经发展到很高的水平。CAD/CAM软件不仅具有完善的回转体纤维缠绕轨迹设计功能,还具有异型件纤维缠绕轨迹设计功能。对于各种常见异型件,已经开发出完善的CAD/CAM软件进行芯模设计、线型规划以及后置处理,可以根据具体的数控系统生成相应的控制代码。如比利时MATERIAL公司的CADWIND和英国Crescent Consultants Ltd的CADFIL,其中CADWIND历时12年研制成功,该CAD/CAM系统受到用户的广泛欢迎,经多年实践,开发了多个版本,其最高版本价格约为4万欧元。
我国对纤维缠绕工艺的研究开始于1958年,其出发点是为两弹一星国防建设服务。60年代初我国开始了纤维缠绕技术的研究。随着微机和自动化技术的发展,目前国内大部分纤维缠绕设备实现了微机控制,中低档的两轴、三轴微机控制纤维缠绕机制造技术和缠绕工艺已经基本成熟,并在管道、储罐以及各种压力容器的缠绕成型方面发挥了重要作用。但在中高档缠绕成型技术领域由于受到进口限制,发展水平相对落后。哈尔滨工业大学从80年代开始从事纤维缠绕技术方向的研究,具体研究工作是结合用于制备火箭发动机、卫星和导弹上复合材料缠绕构件的高性能数控缠绕机的研制进行的。所研制的数控环形气瓶缠绕机、卧式数控缠绕机和车载气瓶立式数控缠绕机等设备已在多家企业和科研单位获得应用。为航天系统某单位研制的中型卧式五坐标控制四坐标联动数控缠绕机的最大缠绕直径可达1.65m,最大缠绕长度达8m已经用于多种型号的研制生产。2000年,哈尔滨工业大学成功研制出了六轴微机控制缠绕机,并对叶片、弯管和三通等非回转体异型工件的缠绕成型进行了研究。研究成果标志着我国在纤维缠绕工艺、控制软件和硬件等方面取得了巨大的进步。
缠绕理论方面1965年我国完全掌握了缠绕规律和缠绕速比计算方法,实现了螺旋缠绕排线机械化。1971年起开始研究异型件缠绕,提出了异型件截面的相当圆假设原理,解决了异型件截面纤维缠绕的近似计算问题。1987年提出了网格结构纤维缠绕计算原理,这项新技术的实现,不仅解决了某卫星的关键技术,而且标志着我国纤维缠绕技术进入了一个新的发展阶段。1996~1998年,一类新的非测地线拟测地线路径算法被提出,它主要用于回转体的纤维缠绕稳定轨迹设计。哈尔滨工业大学结合缠绕设备的研制,所开发的缠绕软件Windsoft也愈趋完善,通过不断改进,现已经推出了第3个版本,逐渐成为一套比较成熟的纤维缠绕CAD/CAM软件。
二、动铺带机的发展状况
受采用复合材料生产F16战斗机的机翼部件应用的牵引,美国Vought公司在20世纪60年代开发了世界上第一台自动铺带机。后来这一技术逐渐在其他种类飞机(如运输机、轰炸机和商用飞机机翼等)部件上获得应用。为此,生产铺带机的专业设备制造商投入了大量的人力物力研制相关的技术。铺带机属于技术含量比较高的专用设备,世界上只有为数不多的几家公司掌握核心技术。目前,铺带机功能日趋完善,自动铺带工艺也越来越成熟。自动铺带机的主体结构与桥架式龙门数控机床相类似,一般有约10个运动控制轴,其中有4~6个集中在核心部件铺带头上,铺带头的主要构成包括预浸带装夹系统、衬纸回收系统、缺陷检测系统、预浸带输送导向系统、预浸带超声切割系统、预浸带加热系统和柔性压实系统等。铺带机能进行0、90和45方向标准角度和铺放,铺带宽度最大可达300mm、生产效率可达1000kg/周,是手工铺叠的数十倍。目前,能制造自动铺带机的专业厂商主要有美国Cincinnati Machine公司、CityMachine ToolDie公司、ITW Workholding公司、Ingersoll公司和欧洲的M.Torres公司、FOREST-LINE和BSD公司等。它们所生产的设备价格昂贵,一般中等规格的一台铺带机也要500万欧元以上。
铺带头 目前世界领先的复合材料专用设计/制造软件有CATIA CPD(CATIA Composite Design)模块和VISTAGY公司开发的FiberSIM软件。前者与CATIA系统完全集成,后者亦能完全集成到CATIA、Pro/E、UG等CAD软件中。复合材料专用设计/制造软件可提供高效的复合材料数字化设计/制造工具,进行复合材料构件的结构设计、铺层设计、铺层展开和制造数据准备等工作。
我国开始研究纤维铺放技术领域是近几年的事情,2004年南京航空航天大学与中国一航材料研究院联合研发了一台小型铺带机,并进行了基于AutoCAD的初级CAD/CAM软件的开发。目前已着手研制中型自动铺带工程样机。北京航空制造工程研究所在引进铺带头关键技术的基础上研制了一台中型铺带机,在自主研发方面迈出了可喜的一步。国内某飞机制造公司2008年引进了一台西班牙M.Torres公司生产的铺带机,并进行了一些机翼整体壁板铺放工艺流程方面的试验。成飞等几家单位也有引进国外先进铺放设备的意愿。
三、自动铺丝机的国内外发展状况
最早开始研制纤维铺放技术的有Boeing公司、Cincinnati Milacron公司和Hercules公司等,20世纪80年代开始设备设计、工艺与材料研制等诸项工作。20世纪80年代初,Boeing公司的机械工程师Quentin Wood提出了AVSD铺放头(Automated Variable Strained Dispensing Head)设想,解决了纤维束压实、切断和重送的问题,1985年Hercules公司研制出了第一台原理样机。1989年Cincinnati Milacron公司设计出其第一台纤维铺放系统并于1990年投入使用。1995年Ingersoll公司也研制出其第一台铺放机。随着自动铺放技术的不断发展,控制系统从模拟控制升级到全数字控制。20世纪90年代还开发了专用的CAD/CAM软件与硬件配套,使其功能日臻完善。设备制造商和飞机部件制造商也不断开发出自动铺放新技术,包括双向铺放头技术、丝束重定向控制技术、张力控制技术、预浸丝束整形技术、Fiber Steer技术、柔性压辊技术、热塑性自动铺放技术、超声固接成型技术和CAD/CAM软件技术等。目前铺丝机的单丝剪切、夹紧和重送等动作均可在计算机协调控制下完成,所使用的纤维束主要是由12K预浸长纤维组成,标准宽度有3.2mm、6.4mm、12.7mm三种。铺丝宽度调节靠裁剪纤维束的根数完成,由32根纤维丝集束组成的丝束宽度可达300mm。铺丝张力约为1~3N,铺放精度可达到0.005mm。目前国际上主要的铺丝机生产商有美国Cincinnati machine、Ingersoll公司,欧洲的Automated Dyna Micro、M.Torres等。
在铺丝成型结构设计和分析方面,堪萨斯大学开发了复合材料分析与设计系统(Steered Composite Analysis and Design System,SCADS),该系统集复合材料结构设计和分析于一体,将手工铺放和自动铺放有机结合,可根据复合材料零件实际工况优化纤维铺放路径。SCADS的开发侧重于2个方面,一方面侧重于轨迹规划,并在被铺放曲面上仿真纤维路径;另一方面是纤维路径与现有的复合材料分析软件的整合。SCADS系统中的纤维铺放分析环境(FPA)具有在丝束级别上分析纤维性能的能力,包括纤维方向和曲面曲率分析,丝束缝隙和重叠的分析,以及对有限元网格节点的自动几何解析。
国内对纤维铺丝技术的研究开展时间不长,起步基点较低,还没有定型产品设备在生产中得到应用。南京航空航天大学在总装航空支撑项目和国家863项目资助下,完成了国内第一台八丝束纤维铺放原理样机,开发了基于CATIA的自动铺放的CAD/CAM软件原型,进行了纤维铺放及装备的初步技术储备。武汉理工大学与北京航天工艺研究所和西安复合材料研究所等单位合作开展自动铺放研究,对圆锥体进行了铺放机理的研究并进行了计算机仿真。从原理上设计了一台纤维铺放机,能够实现四路丝束铺放,每路丝束可单独控制丝束切断或丝束重新输送。哈尔滨工业大学开发了纤维铺放轨迹规划设计与仿真软件,深入研究了基于机械手臂末端运动轨迹和基于机械手臂末端施压方向的2种机床后置处理算法,提出了新的铺放轨迹规划方法和优化方法,实现了铺放软件的前期规划、设计工作。完成了七自由度四丝束纤维铺丝机的设计及调试工作,并进行了铺放试验。在铺放过程中,设备及数控系统工作稳定、可靠,运动位置准确,具有工程实用价值。
四、未来复合材料成型设备的发展展望
我国大飞机工程已经启动,复合材料规划用量初期要达到15%~25%,后期随着材料与设计制造技术的成熟将逐步扩大,最终的上限可能接近甚至超过现有波音787飞机的复合材料用量水平。在实现这一目标的过程中,复合材料成型设备及工艺很有可能会是一个技术瓶颈,成为制约大飞机研制的关键一环,应予以高度重视。目前,国家已经把大型自动铺丝机和铺带机列入了数控重大专项重点研制设备,而数控重大专项属于国家中长期规划的十六个重大专项之一。可见,复合材料自动化成型设备的研制已引起有关方面的高度重视。在大飞机上大量应用复合材料是我国航空业实现跨越式发展的迫切需求,面对铺放设备的进口管制瓶颈,应当加大对具有自主知识产权的铺放设备研制的支持力度,同时开展自动铺放CAD/CAM软件和铺放工艺技术的研究,为复合材料在大型飞机上的大规模应用奠定基础。
第二篇:国内外变电站自动化技术发展现状及发展趋势
国内外变电站自动化技术发展现状及发展趋势
作者:
指导老师:
摘要:根据有关工作调研、设计实践,对国内外变电站综合自动化的现状和发展 进行了总结和分析, 并对当前应用变电站综合自动化技术提出了若干建议。关键词:变电站综合自动化 结构 性能
Abstract: According to the status and development of related research, design practice , both at home and abroad substation integrated automation Summarized and analyzed, and the current integrated substation automation technology made several recommendations.Keywords:substation integrated automation
configuration
performance 引言:变电站综合自动化是将变电站的二次设备(包括控制、信号、测量、保护、自动装置及远动装置等)应用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站实施自动监视、测量、控制和协调,以及与调度通信等综合性的自动化系统。实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段。计算机技术、信息技术和网络技术的迅速发展,带动了变电站综合自动化技术的进步。近年来,随着数字化电气量测系统(如光电式互感器或电子式互感器)、智能电气设备以及相关通信技术的发展,变电站综合自动化系统正朝着数字化方向迈进。
1.国内变电站综合自动化技术发展现状和趋势
我国变电站综合自动化技术的起步发展虽比国外晚, 但我国70年代初期便先后研制成电气集中控制装置和 “四合一”装置(保护、控制、测量、信号)。如南京电力自动化设备厂制造的 DJK 型集中控制装置, 长沙湘南电气设备厂制造的 WJBX 型“四合一”集控台。这些称之为集中式的弱电控制、信号、测量系统的研制成功和投运为研制微机化的综合自动化装置积累了有益的经验。70年代末80年代初南京电力自动化研究院率先研制成功以 Motorola 芯片为核心的微机 RT U 用于韶山灌区和郑州供电网, 促进了微机技术在电力系统的广泛应用。1987年, 清华大学在山东威海望岛35kV 变电站用3台微型计算机实现了全站的微机继电保护、监测和控制功能。之后, 随着1988年由华北电力学院研制的第1代微机保护(OI 型)投 入运行, 第 2代微机保护(WXB-11)1990年4月投入运行并于同年12月通过部级鉴定。较远动装置采用微机技术滞后且更为复杂的继电保护全面采用微机技术成为现实。至此,随着微机保护、微机远动、微机故障录波、微机监控装置在电网中的全面推广应用,人们日益感到各专业在技术上保持相对独立造成了各行其是, 重复硬件投资, 互连复杂, 甚至影响运行的可靠性。1990年,清华大学在研制鞍山公园变电站综合自动化系统时, 首先提出了将监控系统和 RT U 合而为一的设计思想。1992年5月,电力部组织召开的“全国微机继电保护可靠性研讨会”指出: 微机保护与 RT U, 微机就地监控, 微机录波器的信息传送, 时钟、抗干扰接地等问题应统一规划并制定统一标准, 微机保护的联网势在必行。由南京电力自动化研究院研制的第1套适用于综合自动化系统的成套微机保护装置 ISA 于1993年通过部级鉴定以后, 各地电网逐步开始大量采用变电站综合自动化系统。1994年中国电机工程学会继电保护及自动化专委会在珠海召开了 “变电站综合自动化分专业委员会”的成立大会,这标志着对变电站综合自动化的深入研究和应用进入了一个新阶段。
目前, 国内有关研制和生产单位推出的变电站自动化系统及产品很多, 根据该技术的发展过程及系统结构特点, 归纳起来可分为3种典型类型。第1种类型为基于 RT U、变送器及继电保护与自动装置等设备的变电站综合自动化系统, 一般称为增强型 RT U 方式, 也称集中式, 或第1代综合自动化系统。该类系统实际上是在常规的继电保护及二次接线的基础上增设 RT U 装置以实现 “四遥”。结构上仅是站级概念, 有关重要信息通过硬接点送给 RT U 装置, 变电所的监测量一般经变送器变换后送给 RT U。开关监测量是直接引至 RT U , RT U 的控制输出一般经遥控执行柜发出控制命令。该类系统的特点是: 系统功能不强, 硬件设备重复, 整体性能指标低, 系统联接复杂, 可靠性低, 但其成本低, 特别适合于老站的改造。实际上该类系统仅为变电站综合自动化的初级形式, 尚不能称为综合自动化系统。第2种类型为从硬件结构上按功能对装置进行了划分, 摒弃了集中式单 CP U 结构而走向分散, 系统由数据采集单元,主机单元、遥控执行单元、保护单元组成。各功能单元通过通信网络等手段实现有机结合, 构成系统。该类系统可替代常规的保护屏、控制屏、中央信号屏、远动屏、测量仪表等。它具有较强的在线功能。各种功能比较完善, 且人机界面较好。但系统仍然比较复杂, 联结电缆较多, 系统可靠性不太高。这类系统虽然做到了一定程度上的分散,但没有从整体上来考虑变电站综合自动化系统的结构, 一般仅是监控系统和保护系统简单的相加。由于我国保护和远动分属不同的部门和专业。故我国目前的大多数综合自动化系统均属此类结构系统。这类系统一般称为分散式系统或第2代综合自动化系统, 是一种过渡方案。第3种类型系统是采用国际上成熟的先进设计思想, 引入了站控级和间隔级概念, 系统采用分层分布式结构。设备分变电站层设备(站控级)和间隔层设备(间隔级)。间隔层设备原则上按一次设备组织, 例如1条线路、1台主变压器。每一间隔层设备包括保护、控制、测量、通信、录波等所有功能。设计的原则是: 凡是可以在本间隔层设备完成的功能, 尽量由间隔层设备就地独立处理, 不依赖于通信网和变电站层设备。变电站层设备是通过间隔层设备了解和掌握整个变电站实时运行情况, 并通过间隔层设备实现变电站控制, 它还负责站内信息收集、分析、存储以及与远方调度中心的联系, 这类系统实现了信息资源的共享以及保护、监控功能的综合化,大大简化了站内二次回路, 它完全消除了设备之间错综复杂的二次电缆。由于间隔层设备可放在开关柜上或放置在一次设备附近, 从而可大大缩小主控制室面积, 节省控制电缆, 减少 CT 负担。同时大大提高了整个系统的可靠性、可扩展性, 是综合自动化系统的发展方向。该类系统一般称为分层分布式系统, 也称为第3代变电站综合自动化系统。第1种技术观点认为: 变电站综合自动化系统主要考虑 “四遥量”的采集, 以点为对象, 面向 “功能设计”, 故变电站综合自动化系统应以传统 RT U 装置或在其基础上发展起来的数据采集装置、主控单元、遥控执行等装置组成的监控为基础组成, 它与微机保护的联系只要通过装置上的串行口收集信息即可, 并且特别强调保护的独立性, 即两者不能有任何硬件上的融合。由于变电站综合自动化系统源于传统的 “四遥”并且是在微机远动、微机保护基础上发展起来的, 且保护和远动分属不同的部门和专业, 故这种技术观点曾一度流行。而第2种技术观点认为: 综合自动化技术是以先进可靠的微机保护为核心, 以成熟的网络通信技术将测量控制与继电保护融为一体, 共享数据资源, 并十分强调系统的总体结构优化以及系统的可靠性。系统是以对应的一次设备为对象, 面向“对象设计”。当然它也强调保护的相对独立性, 主张在决不降低保护可靠性和功能的前提下, 目前至少可以在低压上采用保护与测控合一的综合装置。第2种技术观点是在微机保护技术成熟并向网络化多功能方向发展的基础上形成的。因此, 第2种技术观点正逐步成为大家的共识, 它也成为了目前综合自动化技术发展的趋势和潮流。
综观目前国内变电站综合自动化技术的发展轨迹, 我们可以看出如下发展趋势:在总体结构上引入国际上成熟的先进设计思想, 采用分层分布式结构, 并采用计算机局域网(L AN), 通信规约向国际标准靠拢;通信媒介普遍采用光纤, 因为光纤具有抗电磁干扰的突出优点;c.间隔层设备逐步采用保护与测控合一的综合装置, 对于配电线直接安装在开关柜上。
2.国外变电站综合自动化技术发展概况
国外从70年代末、80年代初就开始进行保护和控制综合自动化系统的新技术开发研究工作。其主要特点为: 系统一般采用分层分布式, 系统由站控级和元件/ 间隔级组成, 大部分系统在站控级和元件/ 间隔级的通信采用星形光纤连接,继电保护装置下放到就地, 主控制室与各级电压配电装置之间仅有光缆联系, 没有强电控制电缆进入主控制室, 这样节约了大量控制电缆, 大大减少对主控制室内计算机系统及其他电子元件器的干扰,提高了运行水平和安全可靠性。2.1国外在制定变电站综合自动化技术规范方面的进展
国外变电站综合自动化系统制造厂商颇多, 但他们彼此之间一开始就十分注意系统的技术规范和标准的制定及协调, 以避免各自为政造成的不良后果, 以便于这门新技术能够迅速发展和广泛的应用。目前, 许多国际性组织或权威机构都在进行这项工作, 如国际电工委员会(IEC)、国际大电网会议(CIGRE)、德国电力事业联合会(VDEW)和电工供货商机构(ZVEI)、美 国 电 力 科 学 研 究 院(EP RI)和 IEEE 的电力工程学会(IEEE、PES)都正在制订或已制订了某些标准。1.2.1 德国电力事业联合会(VDEW)和电工供货商机构(Z VEI)制定的关于数字式变电站保护控制系统的推荐草案。该草案于1987年公布, 成为 IECT C57在起草保护与控制之间接口标准的参考。德国的3大电气公司Siemens、ABB、AEG 基本上是按照这一推荐规范设计和开发自己的产品。该草案把变电站的结构规定为 站 控 级(St atio n L evel)和元 件/ 间隔 级(BayL ev el)。对于系统的硬件、软件、参数化、资料、测试、验收和现场调试等都做出了具体而详尽的规定。该推荐草案的公布不仅对德国国内变电站综合自动化的发展而且对整个欧州地区都起了一定的促进和规范作用。
2.2美国电力科学研究院关于变电站控制与保护工程的系统规范
该规范由美国电力科学研究院(EPRI)委托西屋电气公司研究起草, 于1983年8月发表, 1989年11月对该规范作了进一步的修改与增补。该规范定义出了变电站综合自动化系统的范畴, 同时列出了该系统应具备的功能菜单, 规定了每一种功能应具备的内容及基本要求。它反映了变电站综合自动化的基本要求, 总共逐个规定了26种功能。普遍认为, 任何一种装置的功能都不可能超出上述功能清单之外。
3.国内变电站自动化技术发展存在的问题
目前变电站综合自动化系统的设计还没有统一标准,因此标准问题,其中包括技术标准、自动化系统模式、管理标准等问题,是当前迫切需要解决的问题。3.1不同产品的接口问题
接口是综合自动化系统中非常重要而又长期以来未得到妥善解决的问题之一,包括RTU、保护、小电流接地装置、故障录波、无功装置等与通信控制器、通信控制器与主站、通信控制器与模拟盘等设备之间的通信。这些不同厂家的产品要在数据接口方面沟通,需花费软件人员很大精力去协调数据格式、通信规约等问题。当不同厂家的产品、种类很多时,问题会很严重。如果所有厂家的自动化产品的数据接口遵循统一的、开放的数据接口标准,则上述问题可得到圆满解决,用户可以根据各种产品的特点进行选择,以满足自身的使用要求。3.2运行维护人员水平不高的问题 解决好现行的变电站综合自动化系统管理体制和技术标准等问题的同时,还要培养出一批高素质的专业队伍。目前,变电站综合自动化系统绝大部分设备的维护依靠厂家,在专业管理上几乎没有专业队伍,出了设备缺陷即通知相应的厂家来处理,从而造成缺陷处理不及时等一系列问题。要想维护、管理好变电站综合自动化系统,首先要成立一只专业化的队伍,培养出一批能跨学科的复合型人才,加宽相关专业之间的了解和学习。其次,变电站综合自动化专业的划分应尽快明确,杜绝各基层单位“谁都管但谁都不管”的现象。变电站综合自动化专业的明确,对于加强电网管理水平,防止电网事故具有重大意义。
结论
近年来,通信技术和计算机技术的迅猛发展,给变电站综合自动化技术水平的提高注入了新的活力,变电站综合自动化技术正在朝着网络化、综合智能化、多媒体化的方向发展。
参 考 文 献
[1]龚强.王津.地区电网调度自动化技术与应用.北京: 中国电力出版社,2005.[2]张继雄.变电站自动化系统选型中应注意的问题.内蒙古电力技术,2005,2.[3]洪良山.变电站自动化的现状与发展.电力自动化设备,1999 [4]齐有武.浅谈变电站综合自动化系统及其发展趋势,科学论坛,2011
第三篇:国内外农机自动化现状与发展趋势
本文简要回顾了国内外农业机械自动化现状,分析了我国自动控制技术在农业机械自动化中的现状及存在的主要问题,探讨了我国农业机械自动化发展趋势,对以后农业机械自动化产品改进、完善以及自动化的开发提出了新思路。
随着现代科学技术的进步和现代高效农业的不断发展,自动化控制技术,在农业现代化进程中不可替代的地位和作用越来越被人们所认识。农业自动化能够大大提高劳动生产率和增加劳动舒适性,而且随着经济的全球化,面临农产品开放进口和市场竞争的压力,现代农业只有通过进一步提高生产率、降低生产成本和提高产品品质才能生存。从这些新的需求出发,农业生产向着高效率和高精度的机械化、自动化方向发展是必然的选择。
一、现状
1、国外
近年来,国外农业自动化飞速发展,农业机械设计正向高速、宽幅、大功率和舒适的方向发展。自动化控制技术在农业机械上的应用已相当普及,一些著名广商已把自动控制、信息处理、全球定位系统、激光和遥感等现代尖端技术与装备应用于农业机械。如一种农用激光平地机就是利用激光调平传感微机处理技术,经一次地面平整作业即可成形,且能达到“寸水不露泥”的精度。美国约翰·迪尔公司所生产的水稻联合收割机,就安装有一套精密的作业系统。该系统能提供产量或收获量、湿度及待收获作物总质量等信息,能精确测量粮食升运器顶部的谷物流量及实时的产量数据,能分别对分离、滚筒转速、割台升降、割台倾斜和停车制动安全等装置进行实时快捷地监测与控制。该机还装备了全球卫星定位系统和示差定位信号装置,可快速确定出机器所处位置。
随着现代化科学技术的飞速发展,机器人技术正越来越被世界各国所重视。1994年美国机器人的年产量为16480台,日本有机器人生产厂家300多个,生产的机器人占世界总拥有量的60%。农业机器人己被广泛应用到各个领域。
(l)1994年,日本生物系特定产业技术研究所推进 机构开发的蔬菜、果树用无人驾驶少量农药喷洒机,利用地磁方位传感器来检测喷洒机的行走方位。
(2)日本研究出棒状传感器检测秧株,靠离合器接 通和断开实现转向自动控制的联合收割机。
(3)日本京都大学研究出利用机械式传感器检测犁耕地的壁面,控制拖拉机的行走方位。
2、国内
由于历史、观念和技术等方面原因,我国传统农业机械与发达国家相比有很大差距,已远远不能适应农业的科技进步。近些年来,自动化研究逐渐被人们所认识,自动控制在农业上的应用越来越受到重视。如把计算机、微处理和传感技术与检测、信息处理技术结合起来,应用于传统农业机械,极大地促进了产品性能的提高。我国农业部门,总结了一些地区的农业自动化先进经验(如台湾地区的农业生产自动化、渔业生产自动化、畜牧业生产自动化及农产品贸易自动化)开发与应用情况,同时也汲取了国外的先进经验、技术。如日本的4行半喂入联合收割机,就是计算机控制的自动化装置在半喂入联合收割机上的应用。又如,英国通过对施肥机撒播肥料的动力测量,来控制肥料的精确使用量等。这些技术和方法使我国农业机械的自动化装置得到了补充和新的发展,从而形成了一系列适合我国农业特点的自动化控制技术。
(1)已有的农业机械及装置部分自动化控制。自动化技术提高了已有农业机械及装置的作业和操作性能,浙江省把自动化技术应用于茶叶机械上,成功研制出6CRK-55型可编程控制加压茶叶揉捻机,它利用计算机控制电功加压机构,能根据茶叶的具体情况编制最佳揉捻程序,实现揉捻过程的自动控制,是机电一体化技术在茶叶机械上的首次成功应用。①拖拉机。在农用拖拉机上,已广泛使用了机械液压式3点联结的位调节和力调节系统装置,现又在开发和采用性能更完善的电子液压式3点联结装置。②施肥播种机。根据行驶速度和检测种子粒数,来确定播种量是否符合要求的装置以及将马铃薯种子切割成种块后的播种装置等。③谷物干燥机。是不受外界条件干扰、能自动维持热风温度的装置,停电或干燥机过热引起火灾时,自动切断燃料供给的装置。
(2)微灌自动控制技术。我国从20世纪50年代就开始进行节水灌溉研究与推广,1992年,全国共有节水灌溉工程面积1330 hm2,其中喷灌面积80h时,农业节水工程取得了巨大进展。灌溉管理自动化是发展高效农业的重要手段,高效农业和精细农业要求必须实现水资源的高效利用。采用遥感遥测等新技术监测土壤埔情和作物生长情况,对灌溉用水进行动态监测预报,实现灌溉用水管理的自动化和动态管理。在微灌技术领域,我国先后研制和改进了等流量滴灌设备、微喷灌设备、微灌带、孔口滴头、压力补偿式滴头、折射式和旋转式微喷
头、过滤器和进排气阀等,总结出了一套基本适合我国国情的微灌设计参数和计算方法,建立了一批新的试验示范基地。在一些地区实现了自动化灌溉系统,可长时间地自动启闭水泵和按一定轮灌顺序进行灌溉。这种系统,应用了灌水器、土壤水分传感器、温度传感器、压力传感器、水位传感器、雨量传感器以及电线等。
(3)自动控制技术在精准农业中的应用。精准农业是在传统农业与农业装备技术上,运用高新技术进行农业生产的管理。精准农业较传统农业其先进之处主要是应用了全球定位系统(CPS)、地理信息技术、计算机控制技术和专家与决策知识系统,实现农业生产的定位、定量和定时,做到精耕细作。把电子技术、微电子技术和通信技术紧密结合起来,采用现代方法进行自动化监控和管理非常必要,如在渠系、灌水和泵站等方面实现自动化监控与管理等。目前,农业自动化正向智能化方向发展,进一步发展精准农业重点要发展节水、节肥精准农业技术体系的自动化控制,实施精准灌溉、精准施肥提高水资源和化肥资源的利用率。精细设施农业,主要发展以温室为主的自动控制系统智能化,从而降低成本、提高作物产量、提高农产品品质,这有助于我国农业资源的高效利用和农业环境保护,是发展可持续农业的重要途径。计算机视觉技术是一个相当新且发展十分迅速的研究领域,日本、美国等发达国家已在农业计算机视觉技术方面进行了广泛而深入的研究,如农业种子资源管理、获取作物生长状态信息、农产品自动收获以及农产品品质鉴定等。英国开发研制的采摘蘑菇机器人,在定位蘑菇采摘点和测量时,已经利用了计算机视觉和图像处理技术。计算机视觉技术在我国农业生产和农业现代化方面已开始应用,但在设施农业、虚拟农业中的应用尚处于起步阶段,应进一步加强、加快该领域的研究与应用。
2、结论
我国农业自动化已在设施农业中的温室自动化控制、排灌机械自动化和部分农业机械装置自动化等方面得到一定的发展,尤其精准农业的发展越来越得到重视。电子技术和计算机技术的迅速发展,推动了农业机械向自动化方向发展。随着智能化技术的发展,人工智能将是21世纪农业工程发展的重点,各种农业机器人或智能化系统将在农业自动化控制中不断涌现,继续推动和实现农业自动化,是农业机械化工程技术工作者所面临的长远课题和挑战,并进一步促进农业自动化控制技术向智能化技术发展。
编后语:2009年初,中央财政下达昆明市农机购置补贴资金1570万元,其中包括400万元的钢架大棚及喷滴灌等设施农业的补助,在我市的安宁、晋宁两县(市)进行试点示范。
第四篇:国内外变电站自动化技术发展现状及发展趋势 RTU SCADA
国内变电站综合自动化技术发展现状和趋势
我国变电站综合自动化技术的起步发展虽比国外晚, 但我国70年代初期便先后研制成电气集中控制装置和 “四合一”装置(保护、控制、测量、信号)。如南京电力自动化设备厂制造的 DJK 型集中控制装置, 长沙湘南电气设备厂制造的 WJBX 型“四合一”集控台。这些称之为集中式的弱电控制、信号、测量系统的研制成功和投运为研制微机化的综合自动化装置积累了有益的经验。70年代末80年代初南京电力自动化研究院率先研制成功以 Motorola 芯片为核心的微机 RT U 用于韶山灌区和郑州供电网, 促进了微机技术在电力系统的广泛应用。1987年, 清华大学在山东威海望岛35kV 变电站用3台微型计算机实现了全站的微机继电保护、监测和控制功能。之后, 随着1988年由华北电力学院研制的第1代微机保护(OI 型)投 入运行, 第 2代微机保护(WXB-11)1990年4月投入运行并于同年12月通过部级鉴定。较远动装置采用微机技术滞后且更为复杂的继电保护全面采用微机技术成为现实。至此,随着微机保护、微机远动、微机故障录波、微机监控装置在电网中的全面推广应用,人们日益感到各专业在技术上保持相对独立造成了各行其是, 重复硬件投资, 互连复杂, 甚至影响运行的可靠性。1990年,清华大学在研制鞍山公园变电站综合自动化系统时, 首先提出了将监控系统和 RT U 合而为一的设计思想。1992年5月,电力部组织召开的“全国微机继电保护可靠性研讨会”指出: 微机保护与 RT U, 微机就地监控, 微机录波器的信息传送, 时钟、抗干扰接地等问题应统一规划并制定统一标准, 微机保护的联网势在必行。由南京电力自动化研究院研制的第1套适用于综合自动化系统的成套微机保护装置 ISA 于1993年通过部级鉴定以后, 各地电网逐步开始大量采用变电站综合自动化系统。1994年中国电机工程学会继电保护及自动化专委会在珠海召开了 “变电站综合自动化分专业委员会”的成立大会,这标志着对变电站综合自动化的深入研究和应用进入了一个新阶段。
目前, 国内有关研制和生产单位推出的变电站自动化系统及产品很多, 根据该技术的发展过程及系统结构特点, 归纳起来可分为3种典型类型。第1种类型为基于 RT U、变送器及继电保护与自动装置等设备的变电站综合自动化系统, 一般称为增强型 RT U 方式, 也称集中式, 或第1代综合自动化系统。该类系统实际上是在常规的继电保护及二次接线的基础上增设 RT U 装置以实现 “四遥”。结构上仅是站级概念, 有关重要信息通过硬接点送给 RT U 装置, 变电所的监测量一般经变送器变换后送给 RT U。开关监测量是直接引至 RT U , RT U 的控制输出一般经遥控执行柜发出控制命令。该类系统的特点是: 系统功能不强, 硬件设备重复, 整体性能指标低, 系统联接复杂, 可靠性低, 但其成本低, 特别适合于老站的改造。实际上该类系统仅为变电站综合自动化的初级形式, 尚不能称为综合自动化系统。第2种类型为从硬件结构上按功能对装置进行了划分, 摒弃了集中式单 CP U 结构而走向分散, 系统由数据采集单元,主机单元、遥控执行单元、保护单元组成。各功能单元通过通信网络等手段实现有机结合, 构成系统。该类系统可替代常规的保护屏、控制屏、中央信号屏、远动屏、测量仪表等。它具有较强的在线功能。各种功能比较完善, 且人机界面较好。但系统仍然比较复杂, 联结电缆较多, 系统可靠性不太高。这类系统虽然做到了一定程度上的分散,但没有从整体上来考虑变电站综合自动化系统的结构, 一般仅是监控系统和保护系统简单的相加。由于我国保护和远动分属不同的部门和专业。故我国目前的大多数综合自动化系统均属此类结构系统。这类系统一般称为分散式系统或第2代综合自动化系统, 是一种过渡方案。第3种类型系统是采用国际上成熟的先进设计思想, 引入了站控级和间隔级概念, 系统采用分层分布式结构。设备分变电站层设备(站控级)和间隔层设备(间隔级)。间隔层设备原则上按一次设备组织, 例如1条线路、1台主变压器。每一间隔层设备包括保护、控制、测量、通信、录波等所有功能。设计的原则是: 凡是可以在本间隔层设备完成的功能, 尽量由间隔层设备就地独立处理, 不依赖于通信网和变电站层设备。变电站层设备是通过间隔层设备了解和掌握整个变电站实时运行情况, 并通过间隔层设备实现变电站控制, 它还负责站内信息收集、分析、存储以及与远方调度中心的联系, 这类系统实现了信息资源的共享以及保护、监控功能的综合化,大大简化了站内二次回路, 它完全消除了设备之间错综复杂的二次电缆。由于间隔层设备可放在开关柜上或放置在一次设备附近, 从而可大大缩小主控制室面积, 节省控制电缆, 减少 CT 负担。同时大大提高了整个系统的可靠性、可扩展性, 是综合自动化系统的发展方向。该类系统一般称为分层分布式系统, 也称为第3代变电站综合自动化系统。第1种技术观点认为: 变电站综合自动化系统主要考虑 “四遥量”的采集, 以点为对象, 面向 “功能设计”, 故变电站综合自动化系统应以传统 RT U 装置或在其基础上发展起来的数据采集装置、主控单元、遥控执行等装置组成的监控为基础组成, 它与微机保护的联系只要通过装置上的串行口收集信息即可, 并且特别强调保护的独立性, 即两者不能有任何硬件上的融合。由于变电站综合自动化系统源于传统的 “四遥”并且是在微机远动、微机保护基础上发展起来的, 且保护和远动分属不同的部门和专业, 故这种技术观点曾一度流行。而第2种技术观点认为: 综合自动化技术是以先进可靠的微机保护为核心, 以成熟的网络通信技术将测量控制与继电保护融为一体, 共享数据资源, 并十分强调系统的总体结构优化以及系统的可靠性。系统是以对应的一次设备为对象, 面向“对象设计”。当然它也强调保护的相对独立性, 主张在决不降低保护可靠性和功能的前提下, 目前至少可以在低压上采用保护与测控合一的综合装置。第2种技术观点是在微机保护技术成熟并向网络化多功能方向发展的基础上形成的。因此, 第2种技术观点正逐步成为大家的共识, 它也成为了目前综合自动化技术发展的趋势和潮流。
综观目前国内变电站综合自动化技术的发展轨迹, 我们可以看出如下发展趋势:在总体结构上引入国际上成熟的先进设计思想, 采用分层分布式结构, 并采用计算机局域网(L AN), 通信规约向国际标准靠拢;通信媒介普遍采用光纤, 因为光纤具有抗电磁干扰的突出优点;c.间隔层设备逐步采用保护与测控合一的综合装置, 对于配电线直接安装在开关柜上。
国外变电站综合自动化技术发展概况
国外从70年代末、80年代初就开始进行保护和控制综合自动化系统的新技术开发研究工作。其主要特点为: 系统一般采用分层分布式, 系统由站控级和元件/ 间隔级组成, 大部分系统在站控级和元件/ 间隔级的通信采用星形光纤连接,继电保护装置下放到就地, 主控制室与各级电压配电装置之间仅有光缆联系, 没有强电控制电缆进入主控制室, 这样节约了大量控制电缆, 大大减少对主控制室内计算机系统及其他电子元件器的干扰,提高了运行水平和安全可靠性。
RTU RTU(远程终端单元),英文全称RemoteTerminalUnit,中文全称为远程终端控制系统,负责对现场信号、工业设备的监测和控制。RTU(RemoteTerminalUnit)是构成企业综合自动化系统的核心装置,通常由信号输入/出模块、微处理器、有线/无线通讯设备、电源及外壳等组成,由微处理器控制,并支持网络系统。它通过自身的软件(或智能软件)系统,可理想地实现企业中央监控与调度系统对生产现场一次仪表的遥测、遥控、遥信和遥调等功能。RTU,是SCADA系统的基本组成单元。RTU是安装在远程现场的电子设备,用来监视和测量安装在远程现场的传感器和设备,负责对现场信号、工业设备的监测和控制。RTU将测得的状态或信号转换成可在通信媒体上发送的数据格式,它还将从中央计算机发送来得数据转换成命令,实现对设备的功能控制。
SCADA SCADA(Supervisory Control And Data Acquisition)系统,即数据采集与监视控制系统。SCADA系统是以计算机为基础的DCS与电力自动化监控系统;它应用领域很广,可以应用于电力、冶金、石油、化工、燃气、铁路等领域的数据采集与监视控制以及过程控制等诸多领域[1]。
在电力系统中,SCADA系统应用最为广泛,技术发展也最为成熟。它在远动系统中占重要地位,可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能,即我们所知的“四遥”功能.RTU(远程终端单元),FTU(馈线终端单元)是它的重要组成部分.在现今的变电站综合自动化建设中起了相当重要的作用.
第五篇:成型设备总结
曲柄压力机 1.定义
标称压力:是指滑块距下死点某一特定距离时滑块上所容许承受的最大作用力。标称压力角:与标称压力行程对应的曲柄转角定义为标称压力角。标称压力行程:滑块距离下死点的某一特定距离。
滑块行程:是指滑块从上死点到下死点所经过的距离,其值是曲柄半径的两倍,它一般随设备标称压力值的增加而增加。
滑块行程次数:指在连续工作方式下滑块每分钟能往返的次数,与曲柄转速对应。封闭高度:是指滑块处于下死点时,滑块下表面与压力机工作台上表面的距离。装模高度:是指滑块在下死点时滑块下表面到工作台垫板上表面的距离。2.填空
按滑块数量,曲柄压力机:单动压力机、双动压力机 曲柄滑块机构有几种形式:曲轴式,偏心齿轮式
装模高度的调节方式有:调节连杆长度,调节滑块高度,调节工作台高度 过载保护装置:压塌块式过载保护装置和液压式过载保护装置 离合器:刚性离合器和摩擦式离合器
刚性离合器:转键式、滑销式、滚柱式和牙嵌式 摩擦式离合器:干湿式
制动器:带式制动器(偏心带式、凸轮带式、气动带式),摩擦式制动器 3.简答
组成部分及作用: 1.工作机构。由曲柄、连杆、滑块组成,将旋转运动转换成往复直线运动。
2、传动系统。由带传动和齿轮传动组成,将电动机的能量传输至工作机构。
3、操作机构。主要由离合器、制动器和相应电器系统组成,控制工作机构的运行状态,使其能够间歇或连续工作。
4、能源部分。由电动机和飞轮组成,电动机提供能源,飞轮储存和释放能量。
5、支撑部分。由机身、工作台和紧固件等组成。它把压力机所有零部件连成一个整体。
6、辅助系统。包括气路系统、润滑系统、过载保护装置、气垫、快换模、打料装置、监控装置等。提高压力机的安全性和操作方便性。工作原理: 电动机1通过V带把运动传给大带轮3,再经过小齿轮
4、大齿轮5传给曲柄7,通过连杆9转换为滑块10的往复直线运动 液压机 1.定义
标称压力是指液压机名义上能产生的最大力量。
最大净空距H是指活动横梁停止在上限位置时,从工作台上表面到活动横梁下表面的距离。最大净空距反映了液压机高度方向上工作空间的大小。最大行程S指活动横梁能够移动的最大距离。2.填空
液压机的典型结构形式:梁柱组合式,单臂式,双柱下拉式,框架式
液压机一般由本体和液压系统组成,本体结构一般由机架部件、液压缸部件、运动部分及其导向装置所组成。
液压机框架式特点:刚性好,导向精度高,疲劳能力较强
梁柱组合式液压机关键部件:立柱,横梁;立柱的预紧方式:加热预紧、液压预紧与超压预紧,立柱与横梁的连接形式:双螺母式、锥台式、锥套式。3.简答
液压机与机械压力机各有什么优缺点,如何选用? 液压:1.工作压力大,运行平稳,工作行程可以自由控制调节范围大,工作空间较大,工作效率适中,可以完成机械压力机绝大部分的工作,适用面广,本体结构简单,制造容易。2.液压压力机配置较为复杂,稍微大一点压力机一般都配有独立的泵站,控制部分和回路较为复杂,造价相对较高。
机械:运行快,效率高,造价低,控制部分较为简单,易维护保养,2;工作台面较小,为增加其传递动力一般配有配重轮(飞轮)体积较大,运行时噪音大,振动大 试述Y32-315液压机的液压系统的工作原理。P102 液压机的工作原理P82 挤出机 1.定义
几何压缩比:加料段第一个螺槽容积与均化段最后一个螺槽容积之比。物理压缩比,设计时应使几何压缩比大于物理压缩比。挤出的综合工作点:螺杆特性线与口模特性线的交点。2.填空 按螺杆数目:单螺杆挤出机、多螺杆挤出机;
按可否排气:排气式挤出机、非排气式挤出机; 按有无螺杆:螺杆挤出机、无螺杆挤出机; 按螺杆位置:立式挤出机、卧式挤出机。压缩比:几何压缩比,物理压缩比
挤出机料筒的结构形式:整体式料筒,分段式料筒,双金属料筒 熔体在螺槽中的4种流动分别是:正流逆流横流漏流 挤出的综合工作点:螺杆特性线与口模特性线的交点。
挤出机中常规螺杆的主要参数有:螺杆直径,螺杆的长径比,螺杆的分段,螺杆头部结构,螺杆材料的选择
挤出机的冷却系统有:风冷和水冷;一般都设置在:料筒螺杆料斗座
挤管辅机的定型装置的定径方法:外径定径(内压充气法和真空定径法)内径定径 4.简答
塑料挤出机一般由哪几部分组成?每部分的作用是什么?
主机(挤出机)、辅机和控制系统 a.主机
(1)挤压系统:主要由螺杆和料筒组成,塑料在挤压系统被塑化成均匀的溶体,被螺杆连续定压、定温、定量地从机头挤出。
(2)传动系统:驱动螺杆,保证螺杆在工作过程中获得所需要的扭矩和转速。(3)加热冷却系统:通过对料筒和螺杆进行加热和冷却,保证塑料在挤压过程中的温度控制要求。b.辅机
(1)机头:也称口模,是挤出机的成型部件,熔融塑料通过它获得所需制品的截面形状和尺寸。
(2)定型装置:通常采用冷却和加压的办法,将从机头挤出的塑料的形状稳定下来,并对其进行精整,以得到更精确的截面形状和光亮表面。
(3)冷却装置:使从定型装置出来的制品得到进一步的冷却,从而获得最后的形状和尺寸。
(4)牵引装置:用来均匀地牵引制品,使挤出过程连续稳定地进行。制品的截面尺寸可通过调节牵引速度的快慢进行控制。(5)切割装置:将连续挤出制品按要求切成一定的长度或宽度。(6)卷取装置:将软制品卷绕成卷。c.控制系统
主要由电器、仪表和执行机构组成。用于控制挤出机主机和辅机的拖动电动机、驱动液压系统、液压缸和其他各种执行机构,使其按所需的功率、速度和轨迹运行;检测主机和辅机的温度、压力、流量等参数,从而实现对整个挤出机组的自带控制和对产品质量的控制。
常规螺杆分为哪几段?各段有何作用?物料在各段是什么形态?
1)固体输送区:物料由旋转的螺杆作用,通过料筒内壁和螺杆表面的摩擦作用,向前输送并逐步被压实,但仍处于固体状态。
2)熔融区:一方面由于螺纹深度减小使物料进一步被压缩,另一方面在料筒外部加热和螺杆剪切、摩擦热的作用下,物料开始熔融。
3)均化区:物料全部熔融。均化区则进一步将熔体均匀塑化,并使其定量、定压、定温地从机头挤出。
渐变型和突变型螺杆有何区别?他们分别适合那类塑料的挤出?为什么?
渐变型螺杆大多用于非结晶型塑料的加工,它对大多数物料能提供较好的热传导,对物料的剪切作用较小,而且可以控制,适用于热敏性塑料,也可用于结晶型塑料。突变型螺杆由于压缩段较短,对物料能产生较大的剪切作用,故适用于粘度较低、具有突变熔点的结晶型塑料,如尼龙、聚烯烃等。对于高粘度塑料易引起局部过热不宜使用,故不适于聚氯乙烯。
挤出机定型装置的作用是什么?
管坯离开口模的温度还相当高,可视为一种软性管状物,没有足够的强度和刚度来承受自重。为了保证管子获得正确的几何形状和尺寸精度,必须立即进行定径和冷却,使其硬化定型。
挤出辅机有何作用?一般由哪几个基本部分组成?
(辅机的作用:将机头连续挤出并获得初步形状和尺寸的高温熔体冷却,并在一定的装置中定型,再通过进一步冷却,使之由高弹态最后转变为室温下的玻璃态,达到一定的表面质量,成为符合要求的制品或半成品。
辅机的组成:冷却定型(吹胀)装置-冷却装置-牵引装置-切割装置-卷取(堆放)装置。)挤出机的加热冷却系统有何作用?为什么加热冷却系统多是分段设置的?
在挤出过程中的热量来源有两个:一是料筒外部加热系统供给电能转化成的热量;另一个是传动系统的机械能通过塑料剪切和摩擦而转化成的热量。
在螺杆的加料段,因为槽较深,物料尚未压实,产生的摩擦热较少,主要靠外部加热来提高料温;
在均化段,物料已是温度较高的熔体,而且螺槽较浅,产生的剪切摩擦热量较多,有时不但不需要加热器供热,还需冷却器进行冷却;
在压缩段,物料受热情况是上述两种情况的过渡状态。因此,挤出机料筒的加热和冷却系统是分段设置的。此外,为使塑料能连续地从料斗进入料筒,加料口处也要进行冷却。
注射机 1.定义
注射量也称公称注射量。它是指对空注射的条件下,注射螺杆或柱塞作一次最大注射行程时,注射装置所能达到的最大注射量。注射量在一定程度上反映了注射机的加工能力,标志着能成型的最大塑料制件。
注射机的塑化能力是指单位时间内所能塑化的物料量。
注射时为了克服熔料流经喷嘴、流道和型腔时的流动阻力,螺杆(或柱塞)对熔料必须施加足够的压力,此压力称为注射压力。
锁模力是指注射时为克服型腔内熔体对模具的涨开力,注射机施加给模具的锁紧力。
注射量也称公称注射量。它是指对空注射的条件下,注射螺杆或柱塞作一次最大注射行程时,注射装置所能达到的最大注射量。2.填空
注射机的型号表示:注射量表示法(立方厘米)合模力表示法(*10kn),注射量与合模
力表示法
注射机的基本参数有:注射量、注射压力、注射速率、注射速度、注射时间、塑化能力、锁模力、合模装置的基本尺寸、开合模速度、空循环时间等。
注射量有两种表示方法:一种是以聚苯乙烯为标准,用注射出熔料的质量(单位g)表示;
另一种是用注射出熔料的容积(单位cm3)表示。注射压力的大小与流动阻力,制件的形状,塑料的性能,塑化方式,塑化温度,模具温 度,对制件的要求等有关
注射形式:柱塞式、螺杆预塑式和往复螺杆式
注射螺杆有渐变螺杆和突变螺杆两大类。实现变化的方法有等距变深和等深变距两种。注射机的喷嘴按其结构分:直通式和自锁式两大类。
根据注射和合模装置的排列方式进行分类:立式注射成型机,卧式注射成型机
角式注射成型机
液压式合模装置的主要形式有单缸直压式、充液式、增压式、稳压式等。
液压-曲肘式合模装置:单肘式合模装置、双肘式合模装置 调模装置是用于:液压曲肘式合模装置。
调模装置有:螺纹肘杆调距,移动合模液压缸位置调距,拉杆螺母调距
动模板间连接大螺母调距
顶出装置有:机械顶出,气动顶出,液压顶出 3.简答: 注射机由哪几部分组成?各部分的功用如何?
(注射装置、合模装置、液压传动系统、电器控制系统等。)(1)注射装置
使塑料均匀地塑化成熔融状态,并以足够的速度和压力将一定量的熔料注射进模具型腔的系统。(2)合模装置
保证注射模具可靠地闭合,实现模具开、合动作以及顶出制件的系统。(3)液压和电器控制系统
保证注射机按预定工艺过程的要求(如压力、温度、速度和时间)和动作程序准确有效工作的系统。
试述注射成型动作循环过程,为何注射后要保压?
1.合模和锁紧2.注射装置前移3.注射与保压4.制件冷却与预塑化5.注射装置后退 6.开模与顶出制件
注入模腔的熔料由于低温模具的冷却作用而产生收缩,为了生产出质量致密的制件,对熔料还需要保持一定压力以进行补缩。分析比较卧式注射机与立式注射机的优缺点。立式注射成型机
注射装置与合模装置的轴线呈一直线且铅垂排列。优点:占地面积小,模具拆装方便。
缺点:不易实现全自动化操作,稳定性差,加料及机器维修不便。
主要用于注射量在60cm3以下的小型注射机。卧式注射成型机
注射装置与合模装置的轴线呈一直线且水平排列。
优点:机身低,利于操作和维修,稳定,易实现全自动操作。
对大、中、小型注射机都适用。
螺杆式注射装置的结构组成、工作原理及优缺点。
组成和工作原理:由两个料筒组成的,一个是螺杆预塑料筒,另一个是注射料筒,两个料筒的连接处有单向阀。粒料通过螺杆预塑料筒而塑化,熔料经过单向阀进入注射料筒。当注射料筒中的熔料量达到预定量时,螺杆塑化停止,注射柱塞前进并将熔料注入模腔。预塑料筒中的螺杆在转动过程中不仅输送塑料,还对塑料产生剪切摩擦加热和搅拌混合作用。
塑化质量和塑化效率比柱塞式注射装置有显著提高。注射时压力损失也大大减小,注射速率也比较稳定,故在连续注射或大型注射装置上应用较多。
柱塞式注射装置的塑化部件有何缺点?柱塞式注射装置中分流梭的有何作用?
塑化方式:利用外加热的热传导方式使塑料熔融塑化。会使料筒内的塑料形成一定的温度梯度,而塑料的导热性能差,故塑料与料筒接触处的温度和塑料与分流梭接触处的温度是不同的,从而造成塑化不良和温度不均。柱塞式注射装置的结构组成、工作原理及优缺点。柱塞式注射装置的组成和工作原理
组成:定量加料装置、塑化部件、注射液压缸、注射座移动液压缸等。
工作原理:粒料从料斗落入加料装置的计量室中,当注射液压缸中的活塞前进时,推动柱塞前移,与之相连的传动臂带动计量室同时前移,从而将一定量的粒料推入料筒的加料口。当柱塞后退时,加料口的粒料进入料筒,同时料斗中的第二份粒料又落入计量室中。注射动作反复进行,粒料在料筒中不断前移,在前移的过程中,依靠料筒加热器加热塑化,使粒料逐渐变为粘流态,通过分流梭与料筒内壁间的窄缝,使熔料温度均匀,流动性进一步提高。最后,在柱塞的推动下,熔料通过喷嘴注射到模腔中成型。
塑化方式:利用外加热的热传导方式使塑料熔融塑化。会使料筒内的塑料形成一定的温度梯度,而塑料的导热性能差,故塑料与料筒接触处的温度和塑料与分流梭接触处的温度是不同的,从而造成塑化不良和温度不均。
提高塑化能力,主要依靠增加料筒直径和长度。因这种注射装置的料筒分为加料室和塑化室两段,提高塑化量意味成倍增加料筒的长度或截面积,这对设计和热传导均不利,从而限制了塑化能力的提高。因此,这种塑化装置一般用于小型注射机上。
注射压力损耗大。这是因为粒状塑料在柱塞的推力作用下,首先被压实成柱,然后被分流梭分开,物料进一步受到压缩,这自然要有一定的压力损失。另外,物料熔融前后流经料筒、分流梭、喷嘴时要克服一定的阻力,也要损失一部分压力。往复式注射装置的主要作用是什么?
对塑料进行加热加压,塑化注射。注射装置应能均匀加热和塑化一定数量的塑料;以一定的压力和速度将熔料注入模腔;保压一段时间以防止模内熔料的反流,且向模内补充一部分熔料,补偿制件的冷却收缩。
依靠螺杆的转动,使塑料逐渐塑化塑化的熔料被输送到螺杆前端,随着螺杆的转动,塑料不断被塑化,塑化的熔料在喷嘴处越集越多,压力也越来越大,在熔料压力的作用下,螺杆边转边退,螺杆后退的背压通过背压阀进行调节;当螺杆前端的熔料达到所需注射量(即螺杆后退到一定距离)时,撞击行程开关(计量装置6),使螺杆停止转动;开始注射;注射时压力油进入注射液压缸5的右腔推动活塞带动螺杆2以一定的速度和压力将熔料注入模腔,进行保压补料,开模取件,随后开始第二次循环。液压式和液压-肘杆式合模装置各有哪些优缺点?
试述液压-曲肘式合模装置的工作原理和特点,锁模力是如何获得的? 当压力油从合模液压缸的上部进入时,推动活塞向下,迫使两根连杆伸展为一条直线,从而锁紧模具。开模时,压力油从液压缸下部进入,使连杆屈曲。液压缸用铰链与机架相连,开、合模过程中,液压缸可以摆动。液压-曲肘式合模装置
1)具有增力作用。增力倍数的大小与肘杆机构的形式、各肘杆的尺寸以及相互位置有关。2)具有自锁作用。肘杆自锁获得锁模力
3)运动特性好。模板运动速度从合模开始到终了是变化的。4)模板间距、锁模力、合模速度调节困难,必须设置专门调模机构。压铸机 1. 定义
合模力:压铸机的合模装置对模具所能施加的最大夹紧力,单位常用kN。它限制了设备所能成形制品的最大投影面积。
压射力:压射冲头作用于金属液的最大力,单位常用kN。压射过程中设备作用于金属液的压射力不是恒定不变的,它的大小随不同的压射阶段而改变,在金属液充满模腔的瞬间升至最大值。
压射比压:压射冲头作用于单位面积金属液表面上的压力,单位常用MPa。
压室容量:压铸机的压室每次浇注能够容纳金属液的最大质量,单位常用kg,其大小与压室直径及压铸合金的种类有关,反映了设备能够成形制品的最大质量。2.填空
压铸机的类型:热压室压铸机,卧式冷压室压铸机,立式冷压室压铸机,全立式冷压室压铸机
高压和高速是压铸区别于其他铸造方法的重要特征。表示方法:J1113B
13-锁模力:1300kn 镁、锌合金及其他低熔点合金压铸成形通常选用热压室压铸机,铝、铜合金及黑色金属压铸通常选用冷压室压铸机。
中心浇口的制品比较适合于立式冷压室压铸机成形,用侧浇口的制品较适合于卧式冷压室压铸机成形
带嵌件(如电动机转子)压铸件则较适合于全立式压铸机压铸成形。3.简答
金属压铸成形有何特点? 压力铸造简称压铸,它是将熔融合金在高压、高速条件下充型并在高压下冷却凝固成形的一种精密铸造方法,是发展较快的一种少无切削加工制造金属制品的方法。高压和高速是压铸区别于其他铸造方法的重要特征 压铸机的基本结构主要由哪些部分组成?
组成:合模机构、压射机构、机座、动力部分、液压与电气控制系统及其他辅助装置。需配备合金熔炉和保温炉。工作原理P206