第一篇:高分子材料加工成型原理作业
《高分子材料加工成型原理》主要习题
第二章 聚合物成型加工的理论基础
1、名词解释:牛顿流体、非牛顿流体、假塑性流体、胀塑性流体、拉伸粘度、剪切粘度、滑移、端末效应、鲨鱼皮症。
牛顿流体:流体的剪切应力和剪切速率之间呈现线性关系的流体,服从牛顿黏性定律的流体称为非牛顿流体。
非牛顿流体:流体的剪切应力和剪切速率之间呈现非线性关系的流体,凡不服从牛顿黏性定律的流体称为非牛顿流体。
假塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而降低的流动特性的流体,常称为“剪切变稀的流体”。
胀塑性流体:是指无屈服应力,并具有黏度随剪切速率或剪切应力的增大而升高的流动特性的流体,常称为“剪切增稠的流体”。P13 拉伸粘度:用拉伸应力计算的粘度,称为拉伸粘度,表示流体对拉伸流动的阻力。
剪切粘度:在剪切流动时,流动产生的速度梯度的方向与流动方向垂直,此时流体的粘度称为剪切粘度。
滑移:是指塑料熔体在高剪切应力下流动时,贴近管壁处的一层流体会发生间断的流动。P31 端末效应:适当增加长径比聚合物熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称“端末效应”。
鲨鱼皮症:鲨鱼皮症是发生在挤出物表面上的一种缺陷,挤出物表面像鲨鱼皮那样,非常毛糙。如果用显微镜观察,制品表面是细纹状。它是不正常流动引起的不良现象,只有当挤出速度很大时才能看到。
6、大多数聚合物熔体表现出什么流体的流动行为?为什么?P16 大多数聚合物熔体表现出假塑性流体的流动行为。假塑性流体是非牛顿型流体中最常见的一种,聚合物熔体的一个显著特征是具有非牛顿行为,其黏度随剪切速率的增加而下降。此外,高聚物的细长分子链,在流动方向的取向粘度下降。
7、剪切流动和拉伸流动有什么区别?
拉伸流动与剪切流动是根据流体内质点速度分布与流动方向的关系区分,拉伸流动是一个平面两个质点的距离拉长,剪切流动是一个平面在另一个平面的滑动。
8、影响粘度的因素有那些?是如何影响的?
剪切速率的影响:粘度随剪切速率的增加而下降; 温度的影响:随温度升高,粘度降低; 压力的影响:压力增加,粘度增加;
分子参数和结构的影响:相对分子质量大,粘度高;相对分子质量分布宽,粘度低;支化程度高,粘度高;
添加剂的影响:加入增塑剂会降低成型过程中熔体的粘度;加入润滑剂,熔体的粘度降低;加入填料,粘度升高。
12、何谓熔体破裂?产生熔体破裂的原因是什么?如何避免?
高聚物熔体在挤出过程中,当挤压速率超过某一临界值时挤出物表面出现众多的不规则的结节、扭曲或竹节纹,甚至支离和断裂成碎片或柱段,这种现象称为熔体破裂。
原因:一种认为是由于熔体流动时,在口模壁上出现了滑移现象和熔体中弹性恢复所引起;另一种是认为在口模内由于熔体各处受应力作用的历史不尽相同,因而在离开口模后所出现的弹性恢复就不可能一致,如果弹性恢复力不为熔体强度所容忍,就会引起熔体破裂。
避免熔体破裂需注意:控制剪切应力与熔体温度;设计口模模唇时,提供一个合适的入口角,使用流线型的结构是防止聚合物熔体滞留并防止挤出物不稳定的有效方法。
第三章 成型用的物料及其配制
4、简述增塑剂的增塑机理,如何选用增塑剂?
增塑剂在加入聚合物大分子后,增塑剂的分子因溶剂化及偶极力等作用而“插入”聚合物分子之间并于聚合物分子的活性中心发生时解时结的联结点,由于有了增塑剂-聚合物的联结点,聚合物之间原有的联结点就会减少,从而使其分子间的力减弱,并导致聚合物一系列性能的改变。选用增塑剂要选择与树脂的相容性好、增速效率高、增塑效果持久、低温柔韧性好、电绝缘性好、耐老化性好、阻燃性好、毒性低等。
5、何谓稳定剂?简述热稳定剂的稳定机理。
凡在成型加工和使用期间为有助于材料性能保持原始值或接近原始值而在塑料配方中加入的物质称为稳定剂。热稳定剂的作用机理归纳如下:(1)捕捉降解时放出的HCL。(2)置换不稳定的氯原子(3)钝化具有催化作用的金属氯化物(4)防止自动氧化(5)与共轭双键结构起加成作用(6)能与自由基起反应。
8、何谓润滑剂?为什么润滑剂有内、外之分?
为改进塑料熔体的流动性能,减少或避免对设备的摩擦和粘附以及改进制品表面光亮度等,而加入的一类助剂称为润滑剂。
润滑剂中有一类与高聚物有一定的相容性,加入后可减少高聚物分子的内聚力,降低其熔融粘度,从而减弱高聚物分子间的内摩擦,此类润滑剂为内润滑剂。还有一类与高聚物仅有很小的相容性,它在加工机械的金属表面和高聚物表面的界面上形成一润滑层,以降低高聚物与加工设备之间的摩擦,此类润滑剂为外润滑剂。不同的相容性让润滑剂有了内外之分。
第五章 挤出成型
2、普通螺杆在结构上为何分段,分为几段?各段的作用如何?
螺杆的主要功能包括输送固体物料,压紧和熔化固体物料,均化、计量和产生足够的压力以挤出熔融物料,所以根据物料在螺杆上运转的情况可将螺杆分为加料、压缩和计量三段。
加料段是自物料入口向前延伸约4~8D的一段,主要功能是卷取加料斗内物料并传送给压缩段,同时加热物料;压缩段(又称过渡段)是螺杆中部的一段,在这段中物料除受热和前移外,主要是由粒状固体逐渐被压实并软化为连续的熔体,同时还将夹带的空气排出;计量段是螺杆的最后一段,其长度约为6~10D,主要的功能是使熔体进一步塑化均匀,克服口模的阻力使物料定量、定压的由机头和口模流道中挤出,所以这一段也称为均化段。
3、根据固体输送率的基本公式,分析当螺杆的几何参数确定之后,提高固体输送率的途径及工业实施方法。
提高固体输送率可从挤出机结构和挤出机挤出工艺两个方面采取措施。从挤出机结构角度来考虑,可增加螺槽深度;其次,可降低塑料与螺杆的摩擦系数,这就需要提高螺杆的表面光洁度;再者,可增大塑料与料筒的摩擦系数,料筒内表面要尽量光洁。
从挤出工艺角度来考虑,关键是控制送料段料筒和螺杆的温度。
9、何谓螺杆压缩比?为什么要有压缩比?在螺杆结构上如何实现?
通常将加料段一个螺槽的溶剂与计量段一个螺槽容积之比称为螺杆的压缩比。
压缩比对塑料挤出成型工艺控制有重要影响。挤出不同的塑料,根据塑料的物理性能选择螺杆的压缩比。
实现压缩比的途径:变动螺纹的高度或导程;螺杆根径由小变大或外径由大变小;螺纹的头数由单头变成二头或三头。
13、用方框图表示出挤出成型工艺,并注明各工艺环节所用的设备。
各工艺环节所用的设备:
原料的预处理和混合:烘箱或烘房; 挤出成型:挤出机、挤出机机头口模;
定性装置:真空定径(真空定径套、冷却水槽、真空泵等)和内压定径; 冷却装置:浸浴式冷却水箱或喷淋式冷却水箱; 牵引装置:滚轮式牵引机或履带式牵引机;
切割装置:圆盘锯切割机或自动星型锯切割机。
第六章 注射模塑
1、名词解释:塑化、塑化压力、注射压力
塑化是注射成型的准备过程,是指物料在料筒内受热达到流动状态并具有良好的可塑性的全过程。
塑化压力:采用螺杆式注射机时,螺杆顶部熔料在螺杆转动后退时所受到的压力称为塑化压力,亦称背压。
注射压力:是指柱塞或螺杆顶部对塑料所施加的压力,由油路压力换算而来。
2、注射成型方法适合于何种制品的生产?为什么?请用框图形式表示一个完整的注 射成型工艺过程。
适合于热塑性塑料及多种热固性塑料制品的生产。
注射成型的成型周期短、生产效率高,能一次成型外形复杂、尺寸精准、带有嵌件的制品;生产热固性塑料时,不仅使其制品质量稳定、尺寸精准和性能提高,而且使成型周期大大缩短,劳动条件也得到改善。
6、与挤出机的螺杆相比,注射机的螺杆在结构上、运动上及功能上有何特点?
(1)注射螺杆在旋转时有轴向位移,因此螺杆的有效长度是变化的;(2)注射螺杆的长径比较小,一般为10-15之间;(3)注射螺杆的压缩比较小,一般为2-2.5之间;
(4)注射螺杆因有轴向位移,因此加料段应该长,约为螺杆长度的一半,而压缩段和计量段则各为螺杆长度的四分之一;注射螺杆的螺槽较深以提高生产率;
(5)注射螺杆在转动时只需要它能对物料进行塑化,不需要它提供稳定的压力,塑化中物料承受的压力是调整背压来实现的;
(6)为使注射时不致出现熔料积存或沿螺槽回流的现象,应考虑螺杆头部的结构。
13、为什么要保压?保压对制品性能有何影响?
熔体注入模腔后,由于模具的低温冷却作用,使模腔中的熔体产生收缩。为了保证注射制品的致密性、尺寸精度和强度,必须使注射系统对模具施加一定的压力(螺杆对熔体保持一定的压力),对模腔塑件进行补缩,直到浇注系统的塑料冻结为止。
对制品的密度、克服制品表面缺陷、制品的致密性、尺寸精度和强度都有一定的影响。
第七章 压延成型 简述压延机的基本结构和工作原理。
各类压延机除辊筒数目及排列方式不同外,其基本结构大致相同,主要由机座、机架、辊筒、辊距调节装置、润滑系统、传动装置、紧急停车装置等部分组成。
压延成型主要依靠辊筒异向旋转,将熔融塑化的物料带入辊筒间隙,由于辊筒间速比的存在,辊隙间有速度梯度,使料层间产生相对运动。使熔料在辊筒间隙中受到辊筒挤压延展、拉伸而成为具有一定规格尺寸连续片(膜)状制品。
第二篇:高分子材料加工成型原理题库--最重要
高分子材料加工成型原理题库
填空:
1. 聚合物具有一些特有的加工性质,如有良好的__可模塑性__,__可挤压性__,__可纺性__和__可延性__。正是这些加工性质为聚合物材料提供了适于多种多样加工技术的可能性。
2. __熔融指数__是评价聚合物材料的__可挤压性__这一加工性质的一种简单而又实用的方法,而__螺旋流动试验__是评价聚合物材料的__可模塑性__这一加工性质的一种简单而又实用的方法。3. 在通常的加工条件下,聚合物形变主要由__高弹形变__和__粘性形变__所组成。从形变性质来看包括__可逆形变__和__不可逆形变__两种成分,只是由于加工条件不同而存在着两种成分的相对差异。
4. 聚合物的粘弹性行为与加工温度T有密切关系,当T>Tf时,主要发生__粘性形变__,也有弹性效应,当Tg 6. 假塑性流体在较宽的剪切速率范围内的流动曲线,按照变化特征可以分为三个区域,分别是:__第一牛顿区__、__非牛顿区__和__第二牛顿区__。 7. 聚合物液体在管和槽中的流动时,按照受力方式划分可以分为__压力流动__、__收敛流动__和__拖拽流动__; 按流动方向分布划分:__一维流动__、__二维流动__和__三维流动__。 8. 影响聚合物流变形为的的主要因素有:_温度_、_压力_、_应变速率_和_聚合物结构因素_以及_组成_等。 9. 聚合物流动行为最常见的弹性行为是_端末效应_和_不稳定流动,它们具体包括:_入口效应_、出口膨胀效应、__鲨鱼皮现象__和__熔体破裂__。 10.聚合物加工过程中的主要的物理变化有:结晶_和_取向;主要化学变化有:降解_和_交联。 11.加工成型过程中影响结晶的主要因素有:_冷却速率_、_熔融温度_、_熔融时间_、_应力作用__以及__低分物和链结构的影响__。 12.加工成型过程中取向按照流动成因可分为:拉伸取向_和_流动取向;按照取向方式可分为:单轴取向_和__双轴取向__。 13.聚合物在成型加工过程或长期使用容易发生老化现象,有效方法之一是添加__防老剂__,按照功用的不同可将防老剂具体分为:__稳定剂__、__光稳定剂__、__抗氧剂__和__驱避剂__等。 14.聚合物在成型加工过程中物料的混合过程一般是靠__扩散__、__对流__和__剪切__三种作用实现的。 15.单螺杆挤出机的基本结构主要包括五个部分,它们分别是:传动装置_、加料装置_、料筒_、螺杆、机头口模。16.根据物料在螺杆中的变化特征将螺杆分为三个部分:__加料段__、__压缩段__、__均化段__。 17.挤出机的机头与口模的组成部件包括:__过滤网_、多孔板_、_分流器__、__模芯__、__口模_和__机颈__等。18.注射机按照结构特征划分可以分为__柱塞式__和__螺杆式__。它们都主要由三个主要系统构成,具体包括:__注射系统__、__锁模系统__和__模具系统__。 19.注射机的螺杆的主要作用是:__送料__、__压实__、__塑化__、__传压__。 20.塑料一次成型工艺有多种,其中用于最广泛的四种分别有:挤出成型、注塑成型、模压成型_和__压延成型__。21.注射模具的结构可以千变万化,而且基本结构都是一致的,主要由:浇注系统、成型零件__和__结构零件__三大部分组成。 名词解释: 一次成型:—次成型是通过加热使塑料处于粘流态的条件下,经过流动、成型和冷却硬化(或交联固化),而将塑料制成各种形状的产品的方法 二次成型:在一定条件下将一次成型得到的片、板、棒等塑料成品,加热使其处于类橡胶状态,通过外力作用使其形变而成型为各种较简单形状,再经冷却定型而得新产品。 挤出成型:借助螺杆或柱塞的挤压作用,使受热融化的塑料在压力推动下,强行通过口模而成为具有恒定截面的连续型材的一种成型方法。 压制成型:将粉状或糊团等形状的热固性树脂加入加热的模具型腔内,然后闭合模具加压加热,使树脂达到流动状态,并充满模具型腔的各个角落,同时,通过交联反应固化定型,经适当的固化时间后,打开模具取出制品。 压延成型:先用各种塑炼设备将成型物料熔融塑化,然后使已塑化的熔体通过一系列相向旋转的滚筒间隙,使之经受挤压与延展作用成为平面状的连续塑性体,再经过冷却定型和适当的后处理即得到膜、片类塑料制品。 注射周期:注射周期或称总周期,指完成一次注射成型所需的时间。 压延效应:在压延过程中,热塑性塑料由于受到很大的剪切应力作用,因此大分子会顺着薄膜前进方向发生定向作用,使生成的薄膜在物理机械性能上出现各向异性,这种现象称为压延效应。 中空吹塑成型:将挤出或注射成型的塑料管坯(型坯)在高弹态时置于各种形状的模具中,并即时在管坯中通入压缩空气将其吹胀,使其紧贴于模腔壁上成型,经冷却脱模后即得中空制品。 热成型:利用热塑性塑料的片材作为原料,夹在模具的框架上,让其在Tg至Tf间的适宜温度加热软化,施加压力,使其紧贴模具的型面,取得与型面相仿的形状尺寸,经冷却定型和修整后即得制品。 牛顿流体:在一维剪切流动情况下,当有剪切应力于定温下施加到两个相距dr的流体平行层面并以相对速度dv运动,剪切应力与剪切速率成线性关系的流体称为牛顿流体.非牛顿流体:不遵从牛顿流动定律的流体统称为非牛顿流体。 粘度:又叫切变粘度系数,简称粘度产生单位剪切速率(速度梯度)所必须的剪切应力值 宾汉液体:与牛顿流体相同,剪切速率~ 剪切应力的关系也是一条直线,不同处:它的流动只有当 高到一定程度后才开始,需要使液体产生流动的最小应力y称为屈服应力。当 y时,完全不流动。 假塑性液体:流体的表观粘度随剪切应力的增加而降低。也即切力变稀现象。 膨胀性液体:流体的表观粘度随剪切应力的增加而增加,也即切力增稠现象。 剪切速率:单位时间内流体所产生的剪切应变 端末效应:管子进口端与出口端与聚合物液体弹性行为有关的现象称为端末效应。 鲨鱼皮症:一般指“鲨鱼皮症”,是发生在挤出物熔体流柱表面上的一种缺陷现象,其特点是在挤出物表面形成很多细微的皱纹,类似于鲨鱼皮。 熔体破碎:也是一种不稳定流动现象,具体是挤出物表面出现凹凸不平,外形畸变支离断裂,内部和外部都产生破坏的现象。 结晶:是指晶体形成的具体过程。 取向:聚合物结构单元或纤维状填料在某种程度上顺着流动的方向作平行排列,这种排列常成为取向 降解:降解:聚合物分子量降低的作用。 交联:聚合物的加工过程,形成三向网状结构的反应称为交联 熔融指数:是指在一定载荷下定温下10分钟内聚合物从出料口挤出的重量,单位是克。 温度敏感指标:给定剪切速率下相差40℃的两个温度T1和T2的粘度比。 2、分别阐述聚合物在高弹态和粘流态时的粘弹性形变特点。 即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。 当温度升到足够高时,在外力作用下,由于链段运动剧烈,导致整个分子链质量中心发生相对位移,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。 3、什么是聚合物的力学三态,各自的特点是什么?各适用于什么加工方法? 玻璃态、高弹态和粘流态称为聚合物的力学三态。 聚合物在外力作用下的形变小,具有虎克弹性行为:形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态。车、铣、刨、削等机械加工 这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。真空成型、压力成型、压延、弯曲成型等加工 聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态。熔融纺丝、注射、挤出、吹塑、贴合等加工 4、画出几种典型流体的剪切力-剪切速率流动曲线,并简单说明各自的流变行为特征。 宾汉流体: 与牛顿流体相同,剪切速率~ 剪切应力的关系也是一条直线,不同处:它的流动只有当 高到一定程度后才开 始,需要使液体产生流动的最小应力y称为屈服应力。当 y时,完全不流动。假塑性流体: 流体的表观粘度随剪切应力的增加而降低。也即切力变稀现象。膨胀性流体: 流体的表观粘度随剪切应力的增加而增加,也即切力增稠现象。牛顿流体: 在一维剪切流动情况下,当有剪切应力于定温下施加到两个相距dr的流体平行层面并以相对速度dv运动,剪切应力与剪切速率成线性关系的流体称为牛顿流体.6、影响聚合物粘度的因素分别有哪些? 对于高聚物熔体来说,影响粘度的因素有许多,应力、应变速率、温度、压力、分子参数和结构、相对分子质量分布、支化和添加剂等。但归结起来有两个方面: (1)熔体内的自由体积因素,自由体积 粘度 (2)大分子长链间的缠结,凡能减少缠结作用因素,都能加速分子运动,粘度 7、压力流动、收敛流动、拖拽流动的定义及各自常见发生场合。 压力流动:在简单的形状管道中因受压力作用而产生的流动。<受力:压力、剪切力>;聚合物成型时在管内的流动多属于压力梯度引起的剪切流动。如注射时流道内熔体的流动。 收敛流动:在截面积逐渐减小的流道中的流动。<受力:压力、剪切力、拉伸力>;多发生在在锥形管或其他截面积逐渐变小的管道中。 拖拽流动:在具有部分动件的流道中的流动。<受力:拉伸力、剪切力>,如在挤出机螺槽中的聚合物流动以及线缆包覆物生产口模中。 8、牛顿流体及非牛顿流体在圆管中的流动特征各是什么? 牛顿流体在圆管中的流动特征: 剪切应力:管壁处剪切应力最大,中心处为零;剪切应力在液体中的分布与半径成正比,并呈直线关系。 流体速度:液体在圆形管道中的流动时具有抛物线型的速率分布;管中心处的速率最大,管壁处为零,圆管中的等速线为一些同心圆。非牛顿流体流动的特征: 剪切应力:管壁处剪切应力最大,中心处为零;剪切应力在液体中的分布与半径成正比,并呈直线关系。(与牛顿流体相同) 流体速度:对于膨胀性非牛顿液体(n>1),速度分布曲线变得较为陡峭,n值愈大,愈接近于锥形;对假塑性非牛顿液体(n<1),分布曲线则较抛物线平坦;n愈小,管中心部分的速度分布愈平坦,曲线形状类似于柱塞。管中心处的速率最大,管壁处为零,圆管中的等速线为一些同心圆。 9、聚合物加工中,对于尺寸变化的管道中通常采用一段有收敛作用的管道来连接,是何原因? 答:避免任何死角的存在,减少聚合物因过久停留而引起的分解,同时有利于降低流动过程因强烈扰动带来的总压力降,减少能耗,减少流动缺陷,提高产品质量和设备生产能力。 10、入口效应和出口效应对聚合物加工有何不利?一般怎样去降低? 1入口效应和离膜膨胀效应通常对聚合物加工来说都是不利的,特别是在注射、挤出和纤维纺丝过程中,可能导○制产品变形和扭曲,降低制品尺寸稳定做并可能在制品内引入内应力,降低产品机械性能。 2增加管子长度、增加管径、L/D增加,减小入口端的收敛角,适当降低加工应力、增加加工温度、给以牵伸力,○ 减小弹性变形的不利因素。 11、什么是鲨鱼皮症?试总结产生的原因。 一般指“鲨鱼皮症”,是发生在挤出物熔体流柱表面上的一种缺陷现象,其特点是在挤出物表面形成很多细微的皱纹,类似于鲨鱼皮。 原因: 一方面主要是熔体在管壁上的滑移,熔体在管道中流动时,管壁附近速度梯度最大,其大分子伸展变形程度比中心大,在流动过程中因大分子伸展产生的弹性变形发生松弛,就会引起熔体流在管壁上出现周期性滑移。 另一方面,流道出口对熔体的拉伸作用也是时大时小,随着这种张力的周期性变化,熔体流柱表层的移动速度也时快时慢,流柱表面上就会出现不同形状的皱纹。 12、总结并简单分析加工成型过程中影响结晶的因素。 1、冷却速度的影响 2、熔融温度和熔融时间的影响 3、应力作用的影响: 压力影响球晶的大小:压力低能生成大而完整的晶体;高压下形成小而形状不规则的球晶。压应力会使聚合物的结晶温度提高。 4、低分子物和固体杂质的影响 14、聚合物成型加工过程中在管道或模具中取向结构分布规律? 分子取向从浇口处起顺着料流方向逐渐增加,达到最大点后逐渐减小,中心区和表面层取向程度不高,中心区四周取向程度高。 15、聚合物取向对制件性能的影响有哪些?(详细在课本P82) ① 单轴取向:取向方向上制品的拉伸屈服强度↑,模量↑,压缩屈服强度↓,非晶聚合物断裂伸长率↑,结晶聚合物断裂伸长率↓;非取向方向上性能变化和上述相反。 ② 双轴取向:两个取向方向上制品的模量、抗拉强度和断裂伸长率↑,但取向度小的取向方向上的性能变化程度低于另一个方向上的。 16、成型加工过程中如何避免聚合物的降解?(1)严格控制原材料技术指标,使用合格原材料;(2)使用前对聚合物进行严格干燥; (3)确定合理的加工工艺和加工条件,使聚合物能在不易产生降解的条件下加工成型;(4)加工设备和模具应有良好的结构; (5)在配方中考虑使用抗氧剂、稳定剂等以加强聚合物对降解的抵抗能力。 17、塑料制品中有哪些原材料和添加剂?其各自的作用? 聚合物是塑料的主要成分 主要添加剂有: 增塑剂 作用:降低塑料的软化温度范围、提高其加工性、柔韧性或延展性 防老剂 防老剂的作用: (1)抑制聚合物的降解作用:稳定剂——去除聚合物中原有的和新形成的活性中心,以抑制聚合物继续降 解。 (2)抑制聚合物的氧化作用:抗氧剂——能代替易受氧化分解的聚合物与氧反应,防止或推迟氧对聚合物的影响,抑制聚合物的氧化。 填料 作用: ① 降低成本,减少聚合物消耗; ② 提高制品性能。 润滑剂 作用:是减少分子之间、聚合物粒子之间、树脂和填料之间的摩擦,以及熔体和设备、制品和模具之间的摩擦,以改善加工流动和脱模性。 着色剂作用:使制品获得鲜艳的色彩,增进美观。 固化剂 使树脂完成或加快交联反应的物质。 18、常见的混合设备有哪些?并说明每种设备主要采用什么作用实现混合的?(课本P112) 初混合:捏合机、高速混合机、管道式捏合机等; 混合塑炼:双辊塑炼机、密炼机、挤出机等。作用:。。。。 19、简述单螺杆挤出机的基本结构,螺杆的基本参数,机头和口模的组成部件。 基本结构主要包括:传动装置、加料装置、料筒、螺杆、机头与口模。 螺杆的主要参数:直径、长径比、压缩比、螺距螺槽深度、螺旋角、杆筒间隙 机头与口模: 主要组成:滤网、多孔板、分流器、模芯、口模和机颈等。 20、分析主要螺杆参数对加工过程的影响。 直径:D↑,加工能力↑。挤出机生产率∝D2,D通常为45~150mm; 长径比:L/D↑,改善物料温度分布,有利于混合及塑化,生产能力↑; 但L/D过大,物料可能发生热降解,螺杆也可能因自重而弯曲,功耗增大;L过小则塑化不良。L/D通常为18~25; 螺槽深度: 螺槽深度↓,剪切速率↑,传热效率↑,混合及塑化效率↑,生产率↓。故热敏性塑料宜用深螺槽,而熔体粘度低且热稳定性好的塑料宜用浅螺槽。 螺旋角: 螺旋角↑,生产能力↑,对塑料的剪切作用和挤压力↓。 21、根据物料的变化特征可将螺杆分为几个阶段,它们各自的作用是什么? 加料段(Ⅰ)、压缩段(Ⅱ)、均化段(Ⅲ) 加料段(Ⅰ)作用:将料斗供给的料送往压缩段,塑料在移动过程中一般保持固体状态由于受热而部分熔化。压缩段(Ⅱ)作用:压实物料,使物料由固体转化为熔体,并排除物料中的空气。 均化段(计量段)的作用:是将熔融物料,定容(定量)定压地送入机头使其在口模中成型。均化段的螺槽容积与加料一样恒定不变。 22、简单叙述挤出成型、注射成型、压制成型、压延成型各自的工艺过程。 1、挤出成型工艺主要程序:物料的干燥,成型,定型与冷却,制品的牵引与卷取,制品的后处理。 2、注射过程:塑化→充模→保压→冷却→脱模 3、压制成型过程主要包括:加料、闭模、排气、固化、脱模与清理模具。 4、压延工艺过程: 1供料阶段:捏合 → 塑化 → 供料 ○2压延阶段:压延 → 牵引 → 刻花 → 冷却定型 → 输送 → 切割、卷取 ○ 23、比较注塑螺杆和挤出螺杆在结构上的主要差别。注塑螺杆和挤出螺杆在结构上的主要差别: 注塑螺杆长径比比挤出螺杆小; 注塑螺杆均化段螺槽深度比挤出螺杆深; 注塑螺杆压缩比比挤出螺杆小; 注塑螺杆加料段长度比挤出螺杆长,而均化段长度比挤出螺杆短; 挤出螺杆多为圆头或锥头,而注塑螺杆多为尖头并带有特殊结构。 注塑螺杆只起预塑化和注射作用,对塑化能力、压力稳定性以及操作连续性和稳定性没有挤出螺杆要求高。 24、阐述注射机的基本结构。 注射系统——包括:加料装置、料筒、螺杆(分流梭和柱塞)、喷嘴; 锁模系统——是实现闭合模具、开启模具和顶出制品的机构。 模具——包括:主流道、分流道、浇口、型腔、排气孔、导向零件、脱模装置、抽芯机构、加热或冷却系统 25、分析在注射成型中确定料筒温度的依据 料筒末端温度要高于Tf或Tm,但不能超过分解温度Td 一般地,螺杆式注射机的料筒温度要比柱塞式的低10~20℃ 薄制品采用较高料筒温度,厚制品需要较低的料筒温度,形状复杂或有嵌件的制品采用较高温度。 26、如何确定注射成型中的喷嘴温度? 喷嘴温度一般要稍低于料筒的最高温度 27、注射制品产生内应力的主要原因有哪些? 当注射制件脱模时,大分子的形变并非已经停止,在贮存和使用过程中,制件中大分子的进一步形变能使制件变形。制品收缩的主要原因是熔体成型时骤冷使大分子堆积得较松散(即存在“自由体积”)之故。在贮存和使用过程中,大分子的重排运动的发展,使堆积逐渐紧密,以致密度增加体积收缩。能结晶的聚合物则因逐渐形成结晶结构而使成型的制品体积收缩。 28、有哪些成型方法属于一次成型? 1、挤出成型 2、注射成型 3、模压成型 4、压延成型 5、铸塑成型 6、传递模塑成型 7、模压烧结成型和泡沫塑料和成型 29、中空吹塑成型和热成型各自主要的工艺方法有哪些? 1、中空吹塑的主要的工艺方法:挤出吹塑成型、注射吹塑成型、注射拉伸吹塑成型。 2、热成型的主要的工艺方法:真空成型、压力成型、覆盖成型、柱塞辅助成型、推气成型、对模成型。 30、对于一次成型和二次成型中常见的成型方法各有哪些?每种方法各举出至少一例对应的制 1、一次成型: 1挤出成型:管材、板材、薄膜、线缆包覆物 ○2注射成型: ○3模压成型:块状模塑复合料BMC和片状模塑复合料SMC。○4压延成型品:管材、板材 ○ 2、二次成型: 1中空吹塑成型:瓶、容器、儿童玩具、家电零部件办公用品,还可以用于汽车保险杠,燃油箱等汽车工业零部件,○叫做“工程吹塑”。 2热成型:热成型适应性很广,如一粒小药片的包装、一次性使用的饮料杯、各种商品的仿型包装、冰箱内胆、汽车○和游艇的外壳部件、化工容器直到一个室内游泳池的成型,都可用热成型方法制造。 ○3拉幅薄膜的成型:薄膜 四、分析与论述 1.图为注射过程过程柱塞、喷嘴和模具内压力的关系,请结合图说明注射过程可分为哪些阶段?(课本P146)答:按时间次序,注射过程可分为以下几个阶段: 空载期(a)——充模期(b)——保压期(c)——反料期(d)——凝封期(e)——继冷期(f) 2.图为典型的模具结构图,请指出图中的数字标示各指的是什么零件? 3.图为圆管挤出机头结构示意图,请指出图中的数字标示各指的是什么部件。 4.图为螺杆结构的结构示意图,图中的字母标示了螺杆的主要参数,请分别指出它们是什么?这些参数是怎样影响加工性能的?(课本P119) 螺杆的主要参数对加工的影响: 直径:D↑,加工能力↑。挤出机生产率∝D2,D通常为45~150mm; 长径比:L/D↑,改善物料温度分布,有利于混合及塑化,生产能力↑; 但L/D过大,物料可能发生热降解,螺杆也可能因自重而弯曲,功耗增大;L过小则塑化不良。L/D通常为18~25; 螺槽深度: 螺槽深度↓,剪切速率↑,传热效率↑,混合及塑化效率↑,生产率↓。故热敏性塑料宜用深螺槽,而熔体粘度低且热稳定性好的塑料宜用浅螺槽。 螺旋角: 螺旋角↑,生产能力↑,对塑料的剪切作用和挤压力↓。 5.图为典型的模塑面积图,请结合该图说明注射产品质量和温度、注射压力的关系。(课本P152) 液态金属结构可以这样描述:液态金属由许多近程有序的原子集团组成,这些原子集团原子排列规则,有激烈的原子热运动和大量空穴,存在较大的能量起伏。同时,这些原子集团和空穴时聚时散,时大时小,处于瞬息万变的状态。 液态金属冷却到冷却到平衡结晶温度Tm(熔点)时,并没有开始结晶,而是冷却到低于Tm时,固相才开始结晶析出(形核并长大),这种现象叫做过冷 平衡结晶温度Tm与实际结晶温度T之间的温度差称为过冷度(△T),△T= Tm –T。金属凝固的驱动力,主要取决于过冷度△T。过冷度越大,凝固的驱动力越大。 液相内部出现晶核时系统自由能对变化: 当过冷液体中出现晶核时,系统自由能将产生变化。系统自由能的变化由两部分组成,一部分是体积自由能变化,即固、液相之间的体积自由能差△GV。它使系统的自由能降低,它是相变的驱动力;另一部分是界面能变化,由于晶核形成的同时,也形成了新的液一固相界面,因而产生了新的界面能△Gi。这部分能量将导致系统的自由能增大,它是相变的阻力。 图为在三种曲率不同的表面上形核的示意图,它们具有相同的润湿角和晶核曲率半径,但是显然包含的原子数不同。显然在凸面上形成的晶核包含原子数最多,平面上次之,凹面上最少。可见,即使是同一种物质作为形核基底,起形核能力也不同,跟界面的曲率方向和大小有关,凹面的形核能力最强。 一般来说形核剂应该满足以下几个条件: 1.失配度小、完全共格对应,方式的界面能最低,促进非自发形核的能 力最强,形核率也最大。 2.粗糙度大、在基底上存在凹坑时,形核能力较强。故表面粗糙不平的形核剂对促进形核有利。 3.分散性好、若形核剂聚集成团,大大降低了有效基底面积,对形核有 不利影响。 4.高温稳定性好,形核剂在高温熔体中使用,如发生分解、氧化,或者 与熔体发生一些化学反应,形核剂将发生变质,不能起到促进形核的作用。 金属结晶为什么需要过冷度呢?结晶在什么条件下才能自发进行呢? 这是由结晶的热力学条件所决定的。从热力学观点来看,物质状态的稳定性取决于该状态的自由能高低:自由能越高,状态越不稳定;自由能越低,状态越稳定。物质总是自发地从自由能较高的状态向自由能较低的状态转变。所以,只有伴随着自由能降低的过程才能自发进行。对于凝固而言,只有当固态金属的自由能低于液态金属时,结晶过程才可能进行。 液相和由它析出的固相具有不同的成分,这种由于合金在结晶过程中,析出固相的溶质含量不同于液相,而使界面前沿溶质富集或者贫化的现象,叫做溶质再分配。 在一般凝固条件下,固—液界面前沿将发生溶质富集(k0 <1时),这种溶质富集,将导致液相凝固温度TL发生变化,与界面前沿实际温度Ta存在差别,从而引起过冷。引起这种凝固温度变化是由相图中的液相线决定的。相图中的液相线就是合金的平衡结晶温度(熔点),该温度随合金中溶质的含量而变化,对于k0 <1的合金,界面前沿液相中的溶质富集将引起液相线温度的降低,若熔体温度低于该合金的液相线温度时,则处于过冷状态,过冷度等于液相线温度与实际温度之差。 由溶质再分配导致界面前沿平衡凝固温度发生变化而引起过冷称为成分过冷。 成分过冷判据 宏观偏析通常指整个铸锭或铸件范围内产生的成分不均匀现象。一般将宏观偏析分为正偏析、逆偏析、比重偏析、V形偏析和逆V形偏析、带状偏析、区域偏析、层状偏析等 在不同的合金体系中,由于共晶两相在析出过程表现的相互关系不同,其结晶方式可分为共生生长和离异生长两种。 砂型铸造时,固、液边界线的间距很宽,在很长一段凝固时间内,固液共存的两相凝固区几乎贯穿了整个铸件断面,这种凝固方式称为糊状凝固; 金属型铸造时,固、液边界线的间距很窄,整个凝固过程中,仅有很薄一层两相共存区,凝固层由表面向中心逐渐加厚,这种方式称为逐层凝固。这两种凝固方式没有明显的界限,介于两者之间的称为中间凝固方式。 最初各枝晶的取向是很乱的,只有那些主干平行于热流方向的枝晶才能向前延伸,而将取向不的枝晶逐渐淘汰,这样柱状晶的生长方向越来越一致。晶体的这种相互竞争、相互淘汰的生长过程称为择优生长; 欲控制获得细等轴晶组织,采取的工艺措施有如下几条:(1)适当降低浇注温度 (2)合理运用铸型对液态合金的强烈激冷作用(3)孕育处理(4)动态晶粒细化 焊接过程中,改善凝固组织,防止粗晶产生的主要措施有:(1)变质处理。(2)振动结晶。(3)优化焊接工艺参数。 焊接热源有许多种,如电弧、气体火焰、摩擦热、电渣焊的熔渣电阻热等等。热源的性质不同,焊接时的温度场也不同。 在电弧焊条件下,25mm以上的钢板焊接时,就可以认为是点状热源;而100mm以上大厚度工件电渣焊时,只能认为是线状热源。 塑性加工 利用金属材料的塑性变形特性,用工模具加金属材料施加机械作用,使其发生塑性变形,达到所要求的形状、尺寸、精度和组织性能。该过程中尺寸形状和组织性能都同时改变。主要有: 成材的塑性加工:如轧制、挤压、拉拔等 成形的塑性加工:主要有锻造、拉深、冲压等 先进的塑性成形:主要有超塑性成形、液压胀形、电磁成形等 主应力图示 变形体某方向上一个线段(如长、宽、高)的起点和终点在垂直于该方向上也可能有位移差(切变量),与线段原始长度之比,也是衡量变形程度的物理量。叫工程切应变。 《材料成形技术基础》第页第9、11、14、17题 变形机制:滑移、孪生、晶界滑动、扩散蠕变 组织性能演变:冷变形-、热变形-中 塑性与变形抗力:塑性与塑性变形、影响塑性的因素、超塑性、变形抗力的组成、应力状态对抗力的作用、应力应变关系曲线 1.每个晶粒都处于不同位向的晶粒的包围之中,晶粒在周围(邻居)的约束下变形,晶粒所受的应力状态发生变化; 2.各个晶粒的取向不同,受力状态不同,造成各晶粒之间变形的不同 时性和不均匀性; 3.相邻晶粒之间的变形在晶界上需要协调配合;造成晶界处多系滑移的提前开始和晶界上变形困难,造成晶界和晶内变形的不均匀。 孪生:晶体在外力的作用下,其一部分沿着一定的晶面和该晶面(孪生面)上的一定晶向(孪生方向),产生均匀切变。孪生后,晶体的变形部分与未变形部分形成关于孪生面的镜面对称。镜面两侧晶体的相对位向发生了改变,但不改变晶体的晶格点阵类型。孪生变形部分称为“机械孪晶”。 滑移 孪生 原子相对移动距离: 等于 小于(变形方向上一个原子间距 金属在其再结晶及其以上(通常>0.5Tm)温度进行的加工叫热加工。其特点是: 生产变形的位错: 全位错 不全位错 原子移动方向: 双向 单向/有极性 变形均匀性: 集中在 在整个孪晶 滑移面上 带上均匀 移动部分晶体取向: 不变 改变/镜面对称 开动应力服从: H-P关系 H-P关系 开动条件服从: Schmid定律 Schmid定律 冷变形中金属组织变化 一、形成纤维组织 二、产生结构缺陷 三、产生晶体学择优取向 四、晶粒超细化、甚至非晶化,形成非平衡材料 冷变形中金属性能变化 一、加工硬化(应变强化):随着变形程度的增加,金属的强度指标上升,塑性指标下降。这就是加工硬化。 二、各向异性 三、其他性能变化:冷加工还会造成:密度降低、导电性降低、导热性降低、耐蚀性变差以及磁性变化等多种物理、化学性能的变化。 拉深:法兰区坯料在切向压应力、径向拉应力作用下向直壁流动,形成筒形或带法兰的筒形零件的板成形过程。 1.变形温度高,加工硬化小; 2.变形抗力低、耗能少; 3.塑性好;加工变形量大; 4.不易产生裂纹等加工缺陷。 但:加工精度低;组织性能不均匀性大。 热塑性变形过时的基本软化过程包括:动态回复、动态再结晶、静态回复、静态再结晶、亚动态再结晶等。 动态回复、动态再结晶是发生在变形过程中的回复和再结晶过程; 而静态回复和静态再结晶则在变形的间歇期间或热变形后发生。 热变形时金属组织性能变化: 1.消除缺陷:消除某些铸造缺陷,如使气孔、疏松锻合;消除或减轻 铸造偏析; 2.改善晶粒组织:均化和细化晶粒使性能(强度、塑性等)提高。3.改善第二相分布:破碎粗大第二相和化合物,改善夹杂物与脆性相的分布形态。 4.形成流线: 金属中存在的不溶性物质沿着主应变方向拉长,形成流线。沿着流线方向材料性能提高。5.形成带状组织:铸锭中原来存在枝晶偏析——合金元素的贫区与富 区。热加工时,这些沿主应变方向扩展,形成带状。合金元素含量的不同造成相变温度的差别,如贫锰区比富锰区发生A——F转变,将碳抛向富锰区,造成贫锰的带状区F比例大,而富锰的带状区P比例大,形成带状组织。塑性:材料在外力作用下能连续地生产塑性变形而不断裂的能力 溶质原子溶入溶剂点阵中,造成强度的提高,这就是固溶强化。 当合金中含有细小弥散的颗粒时,就会对位错运动造成障碍。运动的位错必须与其滑移面上的弥散颗粒交互作用,从而引起变形抗力的提高。这种作用叫作弥散强化。 手工电弧焊原理:用手工操作焊条进行焊接的一种电弧焊方法。手工电弧焊特点(优点):手工电弧焊的简便灵活,适应性强,手工电弧焊特点(不足之处): 手工电弧焊对焊工的操作技术要求较高,焊接质量在一定程度上决定于焊工的操作技术。此外,手工电弧焊劳动条件差,生产率低。因此,手工电弧焊适用于焊接单件或小批量产品,短的和不规则的、各种空间位置的以及其它不易实现机械化焊接的焊缝。 埋弧自动焊特点(优点) (1)生产率高 由于可用较大焊接电流,加上焊剂与熔渣的隔热作用熔深也大。不开坡口单面一次焊,熔深可达20mm。(2)焊缝质量高 熔渣隔绝空气的保护效果好。熔池金属与熔化的焊剂之间有较充分的时间进行冶金反应,较大限度地减少了焊缝中产生气孔、裂纹的可能性。 (3)劳动条件好 既无弧光辐射又无烟尘,劳动环境好。埋弧自动焊特点(不足之处) 埋弧自动焊的主要缺点一是由于采用颗粒状焊剂堆积形成保护条件,因此,一般只适用于平焊位置。其它焊接位置需采用特殊措施才能保证焊剂覆盖焊接区。二是焊接设备比手工电弧焊设备复杂,灵活机动性也较差,所以较适合于长焊缝的焊接,短焊缝显示不出生产率高的特点。 钨极氩弧焊特点(优点) 1)氩气本身不和金属产生化学反应又不溶于金属,且比空气重25%,能有效地隔绝电弧周围空气。因而可成功地焊接易氧化、氮化及化学活泼性强的有色金属、不锈钢和各种合金。 2)直流正极性电弧(工件接直流电源正极,钨电极接电源负极)稳定,即使在很小的焊接电流(<10A)下仍可稳定燃烧,特别适用于薄板,超薄板的焊接。 3)明弧无渣,熔池可见度好,便于控制,易于实现机械化、自动化和全位置焊接。 4)电弧热源与填充焊丝分别控制,易于实现单面焊双面成形,并由于填充焊丝不通过电弧,故不会产生飞溅,焊缝成形美观。钨极氩弧焊特点(不足之处) 1)钨电极承受电流能力有限,所以熔深浅,熔敷率小,生产率低。2)焊接所用惰性气体(氩气、氦气)较贵,与其它电弧焊方法(手工电弧焊,埋弧焊,CO2气体保护焊)相比,生产成本较高。 3)由于此焊接方法是依靠氩气机械排开空气进行保护,所以焊前对焊件表面的清理工作要求严格。钨极氩弧焊用途 钨极氩弧焊几乎可以焊所有的金属和合金,但由于生产成本较高,一般仅用于不锈钢、耐热钢以及铜、钛、铝、镁等有色金属的焊接。对于低熔点(低沸点)和易蒸发的铅、锡、锌等金属则难以焊接。由于钨电极承受电流能力有限,从生产率考虑所焊板材范围以3mm以下为宜。对于某些厚壁重要构件(压力容器和管道)要求焊透的坡口打底焊、全位置焊和窄间隙焊也可采用钨极氩弧焊。 熔化极氩弧焊的特点(优点) 1)与钨极氩弧焊一样,它几乎可以焊接所有金属,尤其适合于焊接铝及铝合金,铜合金以及不锈钢等材料。 2)由于用焊丝作电极,电流密度大,因而焊接熔深大,填充金属熔敷速度快,用于焊接厚板铝、铜等金属时生产率比钨极氩弧焊高,焊件变形也小。3)常采用直流反接,焊接铝及铝合金时有良好的阴极雾化作用。 熔化极脉冲氩弧焊(MIGP)1)具有较宽的电流调节范围 2)可用较小的平均电流进行焊接,有利于实现全位置焊 3)可有效控制输入热量,改善接头性能 CO2气体保护焊的特点(优点) 1)生产率高。2)成本低。3)能耗低 4)适用范围广。5)抗锈能力强。 6)明弧无渣,熔池便于监视和控制,有利于实现焊接过程的机械化和自动化。 目前,CO2电弧焊由于有氧化性,合金元素易烧损主要用于低碳钢及低合金钢等黑色金属的焊接。对于不锈钢,由于对焊缝金属有增碳现象,影响抗晶间腐蚀性能。因此,用于对焊缝性能要求不高的不锈钢焊件。 热轧钢及正火钢的焊接要点是: ①抗热裂性比较好。②有一定的冷裂倾向。 ③沉淀强化的钢种(15MnTi、15MnVN、14MnMoV、18MnMoNb等)有产生再热裂纹的倾向。 ④热轧钢在制造厚大件时,有层状撕裂的危险 ⑤这类钢不存在热影响区软化问题,但有过热区脆化问题。 低碳调质钢的焊接要点是: ①一般含碳量低,而含锰量高,因此热裂倾向小。高镍低锰类低合金高强钢对液化裂纹比较敏感。 ②冷裂纹倾向比较大,但只要工艺合适,冷裂纹是呵以避免的。 ③有一定的再热裂纹敏感性(如14MnMoNbB钢中碳化物形成元素Mo、Nb、B共同作用结果使其易产生再热裂纹)。④对层状撕裂不敏感。 ⑤有过热区脆化和热影响区软化问题。 以k0 <1的合金为例说明成分过冷的形成原因 在一般凝固条件下,固—液界面前沿将发生溶质富集(k0 <1时),这种溶质富集,将导致液相凝固温度TL发生变化,与界面前沿实际温度Ta存在差别,从而引起过冷 对于k0 <1的合金,界面前沿液相中的溶质富集将引起液相线温度的降低,若熔体温度低于该合金的液相线温度时,则处于过冷状态,过冷度等于液相线温度与实际温度之差。 由溶质再分配导致界面前沿平衡凝固温度发生变化而引起过冷称为成分过冷。石墨形态对灰口铸铁性能的影响 除微量溶于铁素体以外,绝大部分以石墨形式存在,断口呈灰色,是应用最广的铸铁。根据石墨形态不同又可分为普通灰口铸铁(片状)、蠕墨铸铁(蠕虫状)、可锻铸铁(团絮状)、球墨铸铁(球状) 普通灰口铸铁通常指具有片状石墨的铸铁,显微组织是由金属基体(铁素体及珠光体)与片状石墨组成。其抗拉强度、弹性模量比钢低,塑韧性接近于零,为脆性材料,不可锻、冲和焊接成形。但具有优良的铸造性能和切削加工性能。 球墨铸铁不仅具有与钢相近的力学性能,而且也具有良好的铸造性、减摩性及低的缺口敏感性等。 蠕墨铸铁石墨呈短片状,片端钝而圆,类似蠕虫,是介于片状和球状之间的一种过渡形态。承载时应力集中比灰口铁要小得多,但比球墨铸铁大。力学性能介于灰铁和球铁之间。导热性、抗高温生长及抗氧化性比其它铸铁好。 可锻铸铁石墨呈团絮状,大大减轻了石墨对基体的割裂及应力集中作用,因此强度和韧性较灰口铸铁有了很大提高,其抗拉强度最高可达700MPa,伸长率最高达12%,可锻铸铁因此而得名。 形核剂条件(1)失配度小(2)粗糙度高(3)分散性好(4)高温稳定性好 在设计铸件时,应考虑以下几个方面。1.合理设计铸件壁厚 2.铸件壁厚应尽可能均匀 3.铸件的转角应采用圆角联接 4.增设防裂筋 5.注意缓解收缩应力 铸造工艺图是在零件图上用各种工艺符号表示出工艺方案的图纸,主要包括:铸件的浇注位置、铸型分型面、型芯的数量、形状及其固定方法、加工余量、拔模斜度、收缩率、浇注系统、冒口、冷铁的尺寸和布置等。 1助剂是某些材料和产品在生产或加工过程中所需要添加的各种辅助化学品用以改善生产工艺和提高产品性能,树脂和生胶加工成塑料和橡胶制品这一过程中所需要的各种辅助化学品。 2喷聚:固体助剂的析出; 发汗:液体助剂的析出。 3焦烧现象:是指橡胶胶料在加工过程中产生的早期硫化的现象。 4促进剂的后效应:在硫化温度以下,不会引起早期硫化达到硫化温度时则硫化活性大的这种性质。5色母粒:是一种把超常量的颜料或染料均匀载附于树脂之中而制得的聚集体。 6增塑剂:是加进塑料体系中增加塑性同时又不影响聚合物本质特性的物质。 外增塑剂:一般为外加到聚合体系中的高沸点的较难挥发的液体或低熔点固体物质。 内增塑剂:在聚合物的聚合过程中引入能降低了聚合物分子链的结晶度增加了塑料的塑性第二单体物质。主增塑剂:分子既能插入聚合物的无定形区域同时又能插入结晶区域的增塑剂。 辅助增塑剂:分子仅能插入部分结晶的聚合物的无定形区域的增塑剂,此增塑剂又叫非溶剂型增塑剂。7相容性:增塑剂与树脂相互混合时的溶解能力,是增塑剂最基本要求之一。 8聚能密度(CED):单位体积溶剂的蒸发能。9溶解度参数:单位体积溶剂的蒸发能的平方根所得值。1浊点(Tc):聚合物与增塑剂的稀均相溶液,在冷却下变成浑浊时的温度。 2塑化效率:使树脂达到某一柔软程度的增塑剂用量称为该增塑剂的塑化效率。 3聚合物的氧化是指随着时间的增加聚合物的性能降低,又称为自动氧化。分为诱导期、强烈氧化期。4抗氧剂:是指对高聚物受氧化并出现老化现象能起到延缓作用的一类化学物质。 主抗氧剂:主抗氧剂被认为是一种自由基的清洗剂,它通过偶合反应(即终止反应)或给出一个氢原子来阻止聚合物中的自由基的破坏作用。辅助抗氧剂:助抗氧剂的作用是可分解聚合物氧化所产生的过氧化物。5金属离子钝化剂:具有防止重金属离子对聚合物产生引发氧化作用的物质。 6稳定剂:是防止或延缓聚合物在加工、贮藏和使用过程中老化变质的化学药品。 热稳定剂:主要用于PVC和其他含氯的聚合物,既不影响其加工与应用,又能在一定程度上起到延缓其热分解的作用的一类助剂。光稳定剂:凡能抑制或减缓光氧老化进行的的物质称为光稳定剂或紫外光稳定剂。7自由基捕获剂:是一类具有空间位阻效应的哌啶衍生物类光稳定剂,简称为受阻胺类光稳定剂(HALS)。8光氧老化或光老化:分子材料长期暴露在日光或短期置于强荧光下,由于吸收了紫外线能量,引起了自动氧化反应,导致了聚合物的降解,使得制品变色、发脆、性能下降,以致无法再用。 9阻燃剂:能够增加材料耐燃性的物质叫阻燃剂。0燃烧速度:指试样单位时间内燃烧的长度。1协同效应:指两种或两种以上的助剂配合使用时,其总效应大于单独使用时各个效应的总和。 协同作用体系:阻燃剂的复配是利用阻燃剂之间的相互作用,从而提高阻燃效能,称为协同作用体系。2燃烧速度:是指试样单位时间内燃烧的长度。燃烧速度是用水平燃烧法和垂直燃烧法等来测得。3氧指数:是指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。 4外摩擦:高分子材料在成型加工时,聚合物熔体与加工设备表面间的摩擦。内摩擦:高分子材料在成型加工时,熔融聚合物分子间存在的摩擦。5润滑剂:为减少高分子内摩擦和外摩擦,改进塑料熔体的流动性,防止高分子材料在加工过程中对设备的粘附现象,保证制品表面光洁度而加入的物质称为润滑剂。6脱模剂:对加工模具和被加工材料完全保持化学惰性的物质称为脱模剂。 7发泡剂:是一类能使处于一定粘度范围内的液态或塑性状态的橡胶、塑料形成微孔结构的物质。 发泡助剂:发泡过程中,能与发泡剂并用并能调节发泡剂分解温度和分解速度的物质,或能改进发泡工艺,稳定泡沫结构和提高发泡体质量的物质。物理发泡剂:依靠在发泡过程中本身物理状态变化来达到发泡目地的一类化合物;化学发泡剂:在一定温度下会热分解而产生一种或多种气体,使聚合物发泡。 8抗静电剂:添加在树脂、燃料中或涂附在塑料制品、合成纤维表面的用以防止高分子材料和液体燃料静电危害的一类化学添加剂统称为抗静电剂。外用抗静电剂:采用涂布、喷雾、浸渍等方法使它附在塑料、纤维表面,耐久性较差,所以又叫做暂时性抗静电剂。内用型抗静电剂(或混炼型抗静电剂):在树脂加工过程中(或在单体聚合过程中)添加到树脂组成中的抗静电剂,因其有较好的耐久性,又称为永久性抗静电剂。9偶联剂:是能改善填料与高分子材料之间界面特性的一类物质。 0着色剂:在聚合物中加入的改变制品颜色,提高制品美观性的助剂。 着色力:指颜料影响整个混合物料颜色的能力,着色力大,使用着色剂量就小,成本也低。 1遮盖力:指着色剂阻止光线穿透着色制品的能力。2增透剂:能改善结晶聚合物透明性的助剂。3迁移性:指着色剂向介质渗色或向接触的物质迁移的现象。一般地说,有机酸的无机盐(色淀性颜料)迁移性比较小;分子量较高者比较低者迁移性小。4防霉剂:(生物抑制剂)有抑制霉菌生长和杀灭霉菌的功能。5荧光增白剂:能增加塑料制品的白度、亮度使色彩更加鲜艳夺目的物质。 6防雾剂:又称流滴剂,是防止透明材料雾害的一类添加剂。 7老化:高分子材料在成型、贮存、使用过程中发生结构变化,逐渐地失去使用价值的现象。 第一章 1.高分子材料的定义 以高分子材料为主要组分的材料 2.高分子材料成型加工的定义 高分子材料是通过成型加工工艺得到具有实用性的材料或制品过程的工程技术 3.高分子材料工程特征的含义 高分子材料制品的性能既与材料本身的性质有关,有很大程度上受成型加工过程所产生的附加性质的影响 第三章 2.热稳定剂是一类能够防止高分子材料在成型加工或使用过程中因受热而发生降解或交联的添加剂 分类: 铅盐类稳定剂,有机锡类稳定剂,有机锑类稳定剂,有机辅助稳定剂,复合稳定剂,稀土类稳定剂 用于食品: 有机锡类稳定剂,复合稳定剂,稀土类稳定剂 3.Pvc塑料 因为PVC是一种极现在高温下的加工成型。 ??/、?性高分子,分子间的作用力很强,导致加工温度超过其分解温度,只有加入热稳定剂才能实 4.抗氧剂是指可抑制或延缓高分子材料自动氧化速度,延长其使用寿命的物质。 抗臭氧剂是指可以阻止或延缓高分子材料发生臭氧破坏的化学物质。 不同:抗氧剂是抑制扩散到制品内部的氧,而抗臭氧只是在制品表面上发挥作用。 5.光稳定剂是可有效地抑制光致降解物理和化学过程的一类添加剂。 ?/、?/ 8.润滑剂是降低熔体与加工机械或成型模具之间以及熔体内部相互直接按的摩擦和黏附,改善加工流动性,提高生产能力和制品外观质量的一类添加剂。 因为其可以调节PVC树脂熔化速率和降低熔体黏度 9.??? 10.硫化促进剂:提高硫化速度,缩短硫化时间,降低硫化温度,减少了硫化剂用量,提高或改善硫化胶物理机械性能 硫化活性剂:提高胶料中硫化促进剂的活性,减少硫化促进剂的用量,缩短硫化时间 防焦剂:少量加入即可防止或延迟胶料在加工和贮存时产生焦烧 12.着色剂,发泡剂,阻燃剂,抗静电剂,偶联剂,防霉剂 第四章 1.高分子材料制品设计中,成型加工方法选择的依据是什么? 制品形状,产品尺寸,材料特征,公差精度,加工成本 2.?? 3.?? 4.高分子材料进行配方设计的一般原则和依据各是什么? 制品的性能要求:抓住主要矛盾,用其所长,避其所短,必要时可共混或复合改性 成型加工性能的要求:各种成型加工方法的工艺和设备各有其特点,对材料的要求也不同,故需充分考虑。 原材料的要求:材料的主体成分-高分子化合物决定了材料的基本性能,添加剂对材料及其制品的性能有很大的影响 产品的经济成本要求:在满足使用性能的前提下,选用质量稳定可靠,价格低的原材料,调节配方,尽可能的减少成本 5.配方有哪几种表示方法?各有何作用?相互关系是什么? 以质量份数表示的配方:以高分子化合物为100份,计量容易,应用广泛,适于工业生产 以质量百分数表示的配方:以混合料为100份,计算原材料消耗,定额指标等方便,便于财务的成本核算及定价 以体积百分数表示的配方:以混合体积为100份,便于计算体积成本及原材料仓储体积 生产配方:生产中实际使用的配方表示形式,便于直接计算,符合生产实际 相互关系:?/?、??? 第六章 1.物料的混合有哪三种基本运动形式?聚合物成型时熔融物料的混合以哪一种运动形式为主?为什么? 答:混合涉及到三种扩散的基本运动形式,即分子扩散、涡流扩散和体积扩散。 体积扩散,即对流混合。是指流体质点、液滴或固体粒子由系统的一个空间位臵向另一空间位臵的运动,两种或多种组分在相互占有的空间内发生运动,以期达到各组分的均匀分布。在聚合物加工中,这种混合占支配地位。 2.什么是“非分散混合”,什么是“分散混合”,两者各主要通过何种物料运动和混合操作来实现? 答:非分散混合。在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程称为非分散混合或简单混合。 这种混合的运动基本形式是通过对流来实现的,可通过包括塞形流动和不需要物料连续变形的简单体积排列和臵换来达到。 分散混合。是指在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。分散混合的目的是把少数组分的固体颗粒和液满分散开来,成为最终粒子或允许的更小颗粒或液滴,并均匀地分布到多组分中,这就涉及少组分在变形粘性流体中的破裂问题,这是靠强迫混合物通过窄间隙而形成的高剪切区来完成的。 3.为什么在评定固体物料的混合状态时不仅要比较取样中各组分的比率与总体比率的差异大小,而且还要考察混合料的分散程度? 答:衡量混合效果需从物料的均匀程度和组分的分散程度两方面来考虑。均匀程度指混入物所占物料的比率与理论或总体比率的差异。但就是相同比率的混合情况也是十分复杂的。在取样分析组成时,若一次抽取的试样的量足够多,或者,一次取样量虽不多,但取样的次数足够多,虽然每次抽取的试样分析结果有所出入,但(取多个试样分析结果的平均值时,)仍可得出混合情况相同的结论。然而从混合料中各组分的分散程度来看,则可能相差甚远。因此,在判定物料的混合状态时,还必须考虑各组分的分散程度。 4.温度对生胶塑炼有何影响?为什么天然橡胶在110℃时塑炼效果最差? 答:低温下,氧和橡胶大分子的直接引发氧化作用很小,但是低温橡胶的粘度很高,机械剪切作用力大大提高,橡胶大分子链在机械力作用下的断裂破坏是主要的,其断裂生成的大分子游离基立即与周围的空气中的氧相结合,生成分子量较小的稳定大分子,自由基活性得到终止。高温时,氧和橡胶大分子的化学活泼性大大提高,氧可以直接引发大分子发生氧化裂解反应,随着温度的升高反应速度急剧加大,所以机械塑炼效果也随之加大。当天然橡胶在110摄氏度的时候,它的机械力作用是最小的时候,氧化裂解的作用也是最小的时候。5.天然橡胶的低温机械塑炼的目的及其原理与聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的及其原理有何异同? 答:天然橡胶的低温机械塑炼的目的是提高天然橡胶的可塑性,便于配合剂在基体中的均匀分布,也有利于后续的成型加工;原理是在主要在机械力的作用下,使大分子链发生断链。 聚氯乙烯塑料中添加邻苯二甲酸二丁酯的目的是为了降低大分子链之间的作用下,提高链段的运动能力,使得玻璃化温度降低,最终制品的韧性增强,柔性增大。 6.何谓橡胶的混炼?用开炼机混炼时三阶段及配合剂的加入次序? 答:混炼就是将各种配合剂与可塑度合乎要求的生胶或塑炼胶在机械作用下混合均匀,制成混炼胶的过程。开炼机混炼经历包辊、吃粉、翻捣三个阶段。 配合剂加入顺序是混炼主要的工艺条件,为了能在较短的混炼时间里得到质量良好的混炼胶,应根据配合剂的作用、用量及其混炼特性来合理安排加入顺序。一般原则是;难分散的、量少的先加;易分散的、量多的后加;硫化剂和促进剂分开加,以免混在一起加入时因局部温度过高而使胶料焦烧;硫黄最后加。所以通常配合剂加入顺序为: 生胶一固体软化剂—促进剂、活性剂、防老剂一补强剂、填充剂一液体软化剂—硫黄及超促进剂。 7.何谓胶料混炼过程中产生的结合橡胶? 答:生胶在塑炼时橡胶大分子断链生成自由基,这种情况在混炼时同样会发生。在混炼过程中,橡胶分子断链生成大分子自由基可以与炭黑粒子表面的活性部位结合,也可以与发黑聚集体在混炼时被搓开所产生的具有较高活性的新生面结合,或者已与炭黑结合的橡胶又通过缠结或交联结合更多的橡胶,形成一种不溶于橡胶溶剂的产物--结合橡胶。 8.区分“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2-3例 答:简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。如: PE、PP、PTFE。 复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。如:PF、SPVC 9.成型用的塑料形态有哪几种?各种形态的塑料有什么不同的特点?它们的应用情况如何? 答:热塑性塑料:热塑性塑料分子结构都是线型结构,在受热时发生软化或熔化,可塑制成一定的形状,冷却后又变硬。在受热到一定程度又重新软化,冷却后又变硬,这种过程能够反复进行多次。如聚氯乙烯、聚乙烯、聚苯乙烯等。塑性塑料成型过程简单,能够连续化生产,并且具有相当高的机械强度,因此发展很快。 热固性塑料:热固性塑料的分子结构是体型结构,在受热时也发生软化,可以塑制成一定的形态,但是受热到一定程度或加入少量固化剂后,就硬化定型,再加热也不会变软和改变形态了。热固性塑料加工成型后,受热不再软化,因此不能回收再用,如酚醛塑料、氨基塑料、环氧树脂等都是属于此类塑料。热固性塑料成型工艺过程比较复杂,所以连续生产有一定的困难,但其耐热性好、不容易变形,而且价格比较低廉。 工程塑料:工程塑料是可作为工程结构材料和代替金属制造机器零部件等的塑料。例如聚酰胺、聚碳酸酯、聚甲醛、ABS树脂、聚四氟乙烯、聚酯、聚砜聚酰亚胺等。工程塑料具有密度小、化学稳定性高、机械性能良好、电绝缘性优越、加工成型容易等特点,广泛应用于汽车、电器、化工、机械、仪器、仪表等工业,也应用于宇宙航行、火箭、导弹等方面。 通用塑料:是指产量大、价格低、应用范围广的塑料,主要包括聚烯烃、聚氯乙烯、聚苯乙烯、酚醛塑料和氨基塑料五大品种。人们日常生活中使用的许多制品都是由这些通用塑料制成。10.什么叫塑料的混合和塑化,其主要区别在哪里? 答:这是物料的初混合,是一种简单混合,是在树脂的流动温度以下和较低剪切作用下进行的,在这一混合过程中,只是增加各组分微粒空间的无规则排列程度,而不减小粒子的尺寸。一般是一个间歇操作过程。 塑化物料在初混合基础上的再混合过程,是在高于树脂流动温度和较强剪切作用下进行的。塑化的目的是使物料在温度和剪切力的作用下熔融,获得剪切混合的作用,驱出其中的水分和挥发物,使各组分的分散更趋均匀,得到具有一定可塑性的均匀物料。11.哪些机械通常用于塑料的初混合?哪些机械用于塑炼? 答:初混合:在大批量生产时,较多使用高速混合机,其适用于固态混合和固液混合。S型和Z型捏合机主要适用于固态和液态混合,对物料有较强的撕捏作用,另外还有转鼓式混合机和螺带式混合机。塑化常用的设备主要是开放式塑炼机、密炼机和挤出机。12.塑料的塑化与橡胶的塑炼二者的目的和原理有何异同? 答::塑化:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后,塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。 塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。) 13.什么是“生胶的塑炼”,什么是“塑料的塑炼”,为什么要分别对生胶和塑料进行塑炼?两者分别可采取哪些措施,提高塑炼效果? 答:生胶的塑炼:使生胶由强韧的弹性转变为柔软的便于加工的塑性状态的过程。目的是使生胶获得一定的可塑性,使之适合于混炼、压延、压出、成型等工艺操作;使生胶的可塑性均匀化,以便得到质量均匀的胶料。(目的是降低弹性,增加可塑性,获得流动性;混炼时配合剂易于分散均匀,便于操作;使生胶分子量分布变窄,胶料质量均匀一致。) 塑料的塑炼:再混合,是高一级的混合。在高于流动温度(Tf或Tm)和较强烈的剪切速率下进行。混合后塑料各组份的物理和化学性质有所变化。其目的是使物料在一定温度和剪切力下熔融,驱出其中的水份和挥发物。使各组份的分散更趋均匀,得到具有一定可塑性的均匀物料。 14.聚氯乙烯粒状塑料与酚醛压塑粉在配臵过程中的塑化工序、目的、作用原理有何不同? 答:聚氯乙烯粒状塑料:通过双键聚合而成,经过筛选、配料、混合、塑化成粒状。 酚醛压塑粉:过滤、配料、混合、塑化的粉状塑料。目的:都是为了得到制品成型前的物料。 原理:使用的机械不同,他们的自身的物理化学性质不同,致使他们得到的物料不同。 15、何谓塑料溶液和溶胶塑料? 答:塑料溶液的主要组成是作为溶质的合成树脂及各种配合剂和作为溶剂的有机溶剂。溶剂的作用是为了分散溶解树脂,使得到的塑料溶液获得流动性。溶剂对制品是没有作用的,只是为了加工而加入的一种助剂,在成型过程中必须予以排出。 溶胶塑料又称糊塑料,是固体树脂稳定地悬浮在非水液体介质中形成的分散体(悬浮体)。在溶胶塑料中氯乙烯聚合物或共聚物应用最广,通常称聚氯乙烯糊。 溶胶塑料中的非水液体主要是在室温下对树脂溶剂化作用很小而在高温下又很易增塑树脂的增塑剂或溶剂,是分散剂。有时还可加入非溶剂性的稀释剂,甚至有些加入热因性树脂或其单体。除此之外,溶胶塑料还因不同的要求加入胶凝剂、填充剂、表面活性剂、稳定剂、着色剂等各种配合剂,因此,溶液塑料的组成是比较复杂的,其在室温下是非牛顿液体,具有一定流动性。16.简述聚合物共混的目的及原则 答:1.利用各聚合物组分的性能,取长补短,消除各单一聚合物组分性能的缺点,保持各自的优点,得到综合性能优异的聚合物材料。2.少量的某一聚合物作为另一个聚合物的改性剂,获得显著的改性效果。 3.通过共混改善聚合物的加工性能。 第七章 1.何谓热固性塑料的固化速度?固化速率太慢或太快对制品有何影响? 答:这是热固性塑料成型时特有的也是最重要的工艺性能,它是衡量热固性塑料成型时化学反应的速度。它是以热固性塑料在一定的温度和压力下,压制标难试样时,使制品的物理机械性能达到最佳值所需的时间与试件的厚度的比值(s/mm厚度)来表示,此值愈小,固化速率愈大。 固化速率应当适中,过小则生产周期长,生产效率低,但过大则流动性下降,会发止塑料尚未充满模具型腔就已固化的现象,就不能适于成型薄壁和形状复杂的制品。 2.简述热固性塑料模压成型的工艺步骤。 答:热固性塑料模压成型工艺过程通常由成型物料的准备、成型和制品后处理三个阶段组成。 1、计量; 2、预压; 3、预热; 4、嵌件安放; 5、加料; 6、闭模; 7、排气;8.保压固化; 9、脱模冷却; 10、制品后处理; 3.试分析模压温度的高低对模压成型工艺的影响。 答:模压温度是指成型时所规定的模具温度,对塑料的熔触、流动和树脂的交联反应速度有决定性的影响。 在一定的温度范围内,模温升高、物料流动性提高,充模顺利,交联固化速度增加,模压周期缩短,生产效率高。但过高的模压温度会使塑料的交联反应过早开始和固化速度太快而使塑料的熔融粘度增加,流动性下降,造成充模不全。另外一方面,由于塑料是热的不良导体,模温高,固化速度快,会造成模腔内物料内外层固化不一,表层先行硬化,内层固化时交联反应产生的低分子物难以向外挥发,会使制品发生肿胀、开裂和翘曲变形,而且内层固化完成时,制品表面可能已过热,引起树脂和有机填料等分解,会降低制品的机械性能。因此模压形状复杂、壁薄、深度大的制品,不宜选用高模温,但经过预热的塑料进行模压时,由于内外层温度较均匀,流动性好,可选用较高模温。 模压温度过低时,不仅物料流动性差,而且固化速度慢,交联反应难以充分进行,会造成制品强度低,无光泽,甚至制品表面出现肿胀,这是由于低温下固化不完全的表层承受不住内部低分子物挥发而产生的压力的缘故。 4.在热固性塑料模压成型中,提高模温应相应地降低还是升高模压压力才对模压成型工艺有利?为什么? 答:在热固性塑料模压成型中,提高模温一般应相应地升高模压压力才对模压成型工艺有利。在一定范围内模温提高能增加塑料的流动性,模压压力可降低;但模温提高也会使塑料的交联反应速度加速,从而导致熔融物料的粘度迅速增高,因而需更高的模压压力。综合以 上因素,提高模温一般应相应地提高模压压力。 5.热固性塑料模压成型中物料的预热温度对模压压力有何影响?为什么? 答:进行预热可以使物料熔化速度加快,黏度下降,流动性提高,模压压力降低;但如果预热温度过高会使塑料在预热过程中有部分固化,会抵消预热增大流动性效果,模压时需更高的压力来保证物料充满型腔。在预热时软化倾向>交联倾向,一般经过预热的物料可使用较低的模压压力。 6.在高分子材料成型加工中,哪些地方要求交联?交联能赋予高聚物制品哪些性能? 答:未硫化的橡胶Tg 在室温以下,常温下发黏,强度很低,基本无使用价值。通过硫化(交联),才能使用。酚醛树脂、氨基树脂、环氧树脂、不饱和聚酯等是具有活性官能团的低分子量的齐聚物,也只有通过交联,才能充分发挥它们的特性。在聚乙烯、聚氯乙烯、聚氨酯等泡沫塑料生产中,交联也是极为重要的工艺技术,交联有助于提高泡孔壁的强度。交联后的性能取决于交联密度。交联密度高,相邻交联点之间相对分子质量小,链段活动性受到限制,Tg 随之增高。交联改善了高分子材料的力学性能、耐热性能、化学稳定性能和使用性能。 7.试述天然橡胶以硫磺硫化后的制品大分子结构特征。 答:硫化后,橡胶大分子结构中各部位已程度不同地形成了网状结构,大分子链之间有主价键力的作用,使大分子链的相对运动受到一定的限制,在外力作用下,不易发生较大的位移,变形减小,强度增大,失去可溶性,只能有限溶胀。 8.试述橡胶硫化后的物理性能的变化,并解释之。 答:天然橡胶在硫化过程中,随着线型大分子逐渐变为网状结构,可塑性减小,拉伸强度、定伸强度、硬度、弹性增加,而伸长率、永久变形、疲劳生热等相应减小,但若继续硫化,则出现拉伸强度、弹性逐渐下降,伸长率、永久变形反而会上升的现象。这些现象都是线形大分子转变为网状结构的特征。 9.生胶和硫化胶在分子结构及性能上有何不同? 答:硫化前:结构:线性大分子,分子与分子之间无价键力; 性能:可塑性大,伸长率高,具可溶性。 硫化后:结构:1)化学键;2)交联键的位臵;3)交联程度; 4)交联 性能:1)力学性能(定伸强度、硬度、拉伸强度、伸 长率、弹性);2)物理性能;3)化学稳定性 10.橡胶的硫化历程分为几个阶段?各阶段的实质和意义是什么? 答:橡胶在硫化过程中,其各种性能随硫化时间增加而变化。将与橡胶交联程度成正比的某一些性能(如定伸强度)的变化与对应的硫化时间作曲线图,可得到硫化历程图。橡胶的硫化历程可分为四个阶段:焦烧阶段、预硫阶段、正硫化阶段和过硫阶段。 焦烧阶段。又称硫化诱导期,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模型内有良好的流动性。对于模型硫化制品,胶料的流动、充模必须在此阶段完成,否则就发生焦烧,出现制品花纹不清,缺胶等缺陷。 预硫阶段。焦烧期以后橡胶开始交联的阶段。在此阶段,随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平,但有些性能如抗撕裂性、耐磨性等却优于正硫化阶段时的胶料。预硫阶段的长短反映了橡胶硫化反应速度的快慢,主要取决于胶料的配方。 正硫化阶段。橡胶的交联反应达到一定的程度,此时的各项物理机械性能均达到或接近最佳值,其综合性能最佳。此时交联键发生重排、裂解等反应,胶料的物理机械性能在这个阶段基本上保持恒定或变化很少.所以该阶段也称为平坦硫化阶段。 过硫阶段。正硫化以后继续硫化便进入过硫阶段。交联反应和氧化及热断链反应贯穿于橡胶硫化过程的始终,只是在不同的阶段,这两种反应所占的地位不同,在过硫阶段中往往氧化及热断链反应占主导地位,因此胶料出现物理机械性能下降的现象。 11.橡胶制品生产过程中,剩余焦烧时间的长短与橡胶制品的类型有什么关系? 答:不同的硫化方法和制品,对焦烧时间的长短亦有不同要求。在硫化模压制品时,总是希望有较长的焦烧期,使胶料有充分时间在模型内进行流动,而不致使制品出现花纹不清晰或缺胶等缺陷。在非模型硫化中,则应要求硫化起步应尽可能早一些,因为胶料起步快而迅速变硬,有利于防止制品因受热变软而发生变形。不过在大多数情况下,仍希望有较长的焦烧时间以保证操作的安全性。12.何谓返原性胶料和非返原性胶料? 答:在过硫阶段中不同的橡胶出现的情况是不同的。天然橡胶、丁苯橡胶等主链为线型大分子结构,在过硫阶段断链多于交联而出现硫化返原现象;而对于大部分合成橡胶,如丁苯、丁腈橡胶,在过硫阶段中易产生氧化支化反应和环化结构,胶料的物理机械性能变化很小,甚至保持恒定,这种胶料称硫化非返原性胶料。 13.何谓硫化三要素?对硫化三要素控制不当会造成什么后果? 答:硫化温度、硫化压力和硫化时间。 硫化温度是促进硫化反应的主要因素,提高硫化温度可以加快硫化速度,缩短硫化时间,提高生产效率。 硫化压力的选取主要根据胶料的性质、产品结构和其他工艺条件等决定的。对流动性较差的,产品形状结构复杂的,或者产品较厚、层数多的宜选用较大的硫化压力。硫化温度提高,硫化压力也应高一些。但过高压力对橡胶的性能也不利,高压会对橡胶分子链的热降解有加速作用;对于含纤维织物的胶料,高压会使织物材料的结构被破坏,导致耐屈挠性能下降。 橡胶在硫化过程中,性能在不断变化,所以选取恰当的硫化时间对保证制品质量十分重要。在一定的硫化温度和压力下,橡胶有一最宜的硫化时间,时间太长则过硫,时间太短则欠硫,对产品性能都不利。14.何谓正硫化和正硫化时间?正硫化时间的测定方法有哪几种?各有何特点? 答:正硫化是一个阶段,在正硫化阶段中,胶料的各项物理机械性能保持最高值,但橡胶的各项性能指标往往不会在同一时间达到最佳值。 橡胶处在正硫化时,其物理机械性能或综合性能达到最佳值,预硫或过硫阶段胶料性能均不好。达到正硫化所需的时间为正硫化时间。测定正硫化点的方法很多,主要有物理机械性能法、化学法和专用仪器法。 (1)物理机械性能法。此法的缺点是麻烦,不经济。 (2)化学法。测定橡胶在硫化过程中游离硫的含量,以及用溶胀法测定硫化胶的网状结构的变化来确定正硫化点。此法误差较大,适应性不广,有一定限制。 (3)专用仪器法。这是用专门的测试仪器来测定橡胶硫化特性并确定正硫化点的方法。目前主要有门尼粘度计和各类硫化仪,其中转子旋转振荡式硫化仪用得最为广泛。 15.某一胶料的硫化温度系数为2,当硫化温度为137℃时,测出其硫化时间为80min,若将硫化温度提高到143℃,求该胶料达正硫化所需要的时间?上述胶料的硫化温度时间缩短到60min时,求所选取的硫化温度是多少? t答:1Kt2802t214313710T2T110 t2=52min 80260T213710 1.249=0.3010(T2-137) T2=141.2℃ 16.某胶料的硫化温度系数为2,在实验室中用试片测定,当硫化温度为143℃时,硫化平坦时间为20---80min,该胶料在140℃下于模型中硫化了70min,问是否达到正硫化? 解:由范特霍夫方程得 t1/t2=KT2-T1/10 得 t1/70=2140-143/10 解得 t1=56.9min ∵t1=56.9min在硫化平坦时间20---80min范围内 ∴该胶料已达到正硫化 17.绘出增强热固性塑料层压板成型时热压过程五个时期的温度和压力与时间的关系曲线,并说明各时期的温度和压力在成型中的作用。答:压制的温度控制一般分为五个阶段 预热阶段:板坯的温度由室温升至树脂开始交联反应的温度,使树脂开始熔化,并进一步渗入增强材料中,同时排出部分挥发物。此时的压力=最高压力的1/3~1/2。 中间保温阶段:树脂在较低的反应速度下进行交联固化反应,直至溢料不能拉成丝,然后开始升温升压。 升温阶段:将温度和压力升至最高,加快交联反应。(此时树脂的流动性已下降,高温高压不会造成胶料流失) 热压保温阶段:在规定的温度和压力下,保持一定时间,使树脂充分交联固化。 冷却阶段:树脂在充分交联后,使温度逐渐降低,进行降温冷却。 第八章 1.挤出机螺杆在结构上为何分段?分段的根据是什么? 答:根据物料在螺杆中的温度、压力、黏度等的变化特征,可将螺杆分为加料段、压缩段、均化段三段。 2.挤出螺杆一般分为哪几段?每段各有什么作用?对于晶态塑料的挤出成型,应选择何种螺杆?其L2 的长度有何特征,为什么? 答:根据物料在螺杆中的温度、压力、粘度等的变化特征,可将螺杆分为加料段、压缩段和均化段三段。 加料段:加料段的作用是对料斗送来的塑料进行加热,同时输送到压缩段。塑料在该段螺槽始终保持固体状态。压缩段:又叫相迁移段,其作用是对加料段送来的料起挤压和剪切作用,同时使物料继续受热,由固体逐渐转变为熔融体,赶走塑料中的空气及其他挥发成分,增大塑料的密度,塑料通过压缩段后,应该成为完全塑化的粘流状态。 均化段:又叫计量段,其作用是将塑化均匀的物料在均化段螺槽和机头回压作用下进一步搅拌塑化均匀,并定量定压地通过机头口模挤出成型。 对于晶态塑料的挤出成型:挤出结晶型热塑性塑料的加料段要求较长,使塑料有足够的停留时间,慢慢软化,该段约占螺杆全长的60% 65%;结晶型塑料,熔融温度范围较窄,压缩段较短,为3 5Ds;为了稳定料流,均化段应有足够的长度,通常是螺杆全长的20% 25%。 其L2 的长度较短,因为其熔融温度范围较窄。 3.什么叫压缩比?挤出机螺杆设计中的压缩比根据什么来确定? 答:螺杆的压缩比A:指螺杆加料段第一个螺槽的容积与均化段最后一个螺槽的容积之它表示塑料通过螺杆的全过程被压缩的程度。A愈大,塑料受到挤压的作用也就愈大,排除物料中所含空气的能力就大。但A太大,螺杆本身的机械强度下降。压缩比一般在2 5之间。 压缩比的大小取决于挤出塑料的种类和形态,粉状塑料的相对密度小,夹带空气多,其压缩比应大于粒状塑料。另外挤出薄壁状制品时,压缩比应比挤出厚壁制品大。压缩比的获得主要采用等距变深螺槽、等深度变距螺槽和变深变距螺槽等方法,其中等距变深螺槽是最常用的方法。 4.什么是挤出机螺杆的长径比?长径比的大小对塑料挤出成型有什么影响?长径比太大又会造成什么后果? 答:螺杆的长径比L/Ds:指螺杆工作部分的有效长度L与直径Ds之比,此值通常为15 25,但近年来发展的挤出机有达40的,甚至更大。 L/Ds大,能改善塑料的温度分布,混合更均匀,并可减少挤出时的逆流和漏流,提高挤出机的生产能力。L/Ds过小,对塑料的混合和塑化都不利。因此,对于硬塑料、粉状塑料或结晶型塑料要求塑化时间长,应选较大的L/Ds。L/Ds大的螺杆适应性强,可用于多种塑料的挤出。 但L/Ds大大,对热敏性塑料会因受热时间大长而易分解,同时螺杆的自重增加,制造和安装都困难,也增大了挤出机的功率消耗。目前,L/Ds以25居多。 5.渐变型和突变型螺杆有何区别?它们各适合哪类塑料的挤出?为什么? 答:等距变深螺杆按其螺槽深度变化的快慢(即压缩段的长短)又可分为等距渐变形螺杆和等距突变形螺杆。非晶型塑料宜选用渐变形螺杆,结晶型塑料宜选用突变形螺杆。 6.如欲提高挤出机加料段固体输送能力,应对设备采取什么措施?指出其理论依据。答:固体塞的移动情况是旋转运动还是轴向运动占优势,主要决定于螺杆表面和料筒表面与物料之间的摩擦力的大小。只有物料与螺杆之间的摩擦力小于物料与料筒之间的摩擦力时,物料才沿轴向前进;否则物料将与螺杆一起转动,因此只要能正确控制物料与螺杆及物料与料筒之间的静摩擦因数,即可提高固体输送能力。 为了提高固体输送速率,应降低物料与螺杆的静摩擦因数,提高物料与料筒的径向静摩擦因数。要求螺杆表面有很高的光洁度,在螺杆中心通入冷却水,适当降低螺杆的表面温度,因为固体物料对金属的静摩擦因数是随温度的降低而减小的。 7.塑料在挤出机中的熔化长度的意义是什么? 答:挤出过程中,在加料段内是充满未熔融的固体粒子,在均化段内则充满着已熔化的物料,而在螺杆中间的压缩段内固体粒子与熔融物共存,物料的熔化过程就是在此区段内进行的,故压缩段又称为熔化区。在熔化区,物料的熔融过程是逐渐进行的,自熔化区始点A开始,固体床的宽度将逐渐减小,熔池的宽度逐渐增加,直到熔化区终点B,固体床的宽度下降到零,进入均化段,固体床消失,螺槽全部充满熔体。从熔化开始到固体床的宽度降到零为止的总长度,称为熔化长度。 8.塑料熔体在挤出机螺槽内有几种流动形式?造成这几种流动的主要原因是什么? 答:从压缩段送入均化段的物料是具有恒定密度的粘流态物料,在该段物料的流动已成为粘性流体的流动,物料不仅受到旋转螺杆的挤压作用,同时受到由于机头口模的阻力所造成的反压作用,物料的流动情况很复杂。 通常把物料在螺槽中的流动看成由下面四种类型的流动所组成:(1)正流:是物料沿螺槽方向向机头的流动,这是均化段熔体的主流,是由于螺杆旋转时螺棱的推挤作用所引起的,从理论分析上来说,这种流动是由物料在深槽中受机筒摩擦拖曳作用而产生的,故也称为拖曳流动,它起挤出物料的作用。 (2)逆流:沿螺槽与正流方向相反的流动,它是由机头口模、过滤网等对料流的阻碍所引起的反压流动,故又称压力流动,它将引起挤出生产能力的损失。 (3)横流:物料沿x轴和y轴两方向在螺槽内往复流动,也是螺杆旋转时螺棱的推挤作用和阻挡作用所造成的,仅限于在每个螺槽内的环流,对总的挤出生产率影响不大,但对于物料的热交换、混合和进一步的均匀塑化影响很大。 (4)漏流:物料在螺杆和料筒的间隙沿着螺杆的轴向往料斗方向的流动,它也是由于机头和口模等对物料的阻力所产生的反压流功。9.分析挤出成型时,螺杆均化段末端黏流态物料的压力与哪些因素有关? 10.各种挤出成型制品的生产线由各自的主、辅机组成,请归纳它们的工艺过程,用框图表示 11.塑料薄膜挤出生产工艺方法有哪几种?简要分析各种方法的工艺特点。不同成型方法所得的塑料薄膜性能有何不同的特点及应用情况如何? 12.管材挤出的工艺过程是什么?挤出管材如何定径? 答:管材挤出的基本工艺是:由挤出机均化段出来的塑化均匀的塑料,经过过滤网、粗滤器而达分流器,并为分流器文架分为若干支流,离开分流器文架后再重新汇合起来,进入管芯口模间的环形通道,最后通过口模到挤出机外而成管子,接着经过定径套定径和初步冷却,再进入冷却水槽或具有喷淋装臵的冷却水箱,进一步冷却成为具有一定口径的管材,最后经由牵引装臵引出并根据规定的长度要求而切割得到所需的制品。 管材挤出装臵由挤出机、机头口模、定型装臵、冷却水槽、牵引及切割装臵等组成,其中挤出机的机头口模和定型装臵是管材挤出的关键部件。 管材挤出后,温度仍然很高,为了得到准确的尺寸和几何形状以及表面光洁的管子,应立即进行定径和冷却,以使其定型。 外径定型是使挤出的管子的外壁与定径套的内壁相接触而起定型作用的,为此,可用向管内通入压缩空气的内压法或在管子外壁抽真空法来实现外径定型。 内压法进行外径定型的定径套如图所示。定型时,可通过分料筋的孔道通入一定压力的压缩空气(一般为0.05--0.3MPa表压)。并在挤出的管端或管内封塞。定径套的外壁为夹套,内通冷却水以冷却管子,经定径后的管子离开定径套时不再变形。 第九章 1.何谓注射成型,它有何特点?请用框图表示一个完整的注射成型工艺过程。 答:塑料的注射成型又称注射模塑,或简称注塑,是塑料制品成型的重要方法。目前注射制品约占塑料制品总量的30%。在工程塑料中有80%是采用注射成型。 注射成型是间歇生产过程,除了很大的管、棒、板等型材不能用此法生产外,其他各种形状、尺寸的塑料制品都可以用这种方法生产。它不但常用于树脂的直接注射,也可用于复合材料、增强塑料及泡沫塑料的成型,也可同其他工艺结合起来,如与吹胀相互配合而组成注射—吹塑成型。 塑料的注射成型是将粒状成粉状塑料加入到注射机的料筒,经加热熔化呈流动状态,然后在注射机的柱塞或移动螺杆快速而又连续的压力下,从料简前端的喷嘴中以很高的压力和很快的速度注入到闭合的模具内。充满模腔的熔体在受压的情况下,经冷却(热塑性塑料)或加热(热固性塑料)固化后,开模得到与摸具型腔相应的制品。 2.塑料挤出机的螺杆与移动螺杆式注射机的螺杆在结构特点和各自的成型作用上有何异同? 答:注射螺杆与挤出螺杆在结构上有如下区别: 1)注射螺杆的长径比较小,在10 15之间。2)注射螺杆压缩比较小,在2 2.5之间。 3)注射螺杆均化段长度较短,但螺槽深度较深,以提高生产率。为了提高塑化量,加料段较长,约为螺杆长度的一半。4)注射螺杆的头部呈尖头型,与喷嘴能很好的吻合。 注射螺杆起预塑化和注射作用,是间歇操作过程,它对物料的塑化能力、稳定以及操作连续性等要求没有挤出螺杆那么严格。 注射机的螺杆功能为加料、输送、塑化和注射;而挤出机的螺杆功能则是加料、输送、塑化和挤出。 注射机螺杆的运动方式为:旋转、轴向运动;而挤出机的螺杆运动方式为旋转。 注射机的螺杆头部为尖头;而挤出机的螺杆头部为圆头、平头。3.请从加热效率出发,分析柱塞式注射机上必须使用分流梭的原因。 答:分流梭装在料筒前的中心部分,是两端锥形的金属圆锥体,形如鱼雷,因此也叫鱼雷头。分流梭的作用是将料筒内流经该处的料成为薄层,使塑料流体产生分流和收敛流动,以缩短传热导程。既加快了热传导,也有利于减少或避免塑料过热而引起的热分解现象。同时,塑料熔体分流后,在分流梭与料简间隙中流速增加,剪切速度增大,从而产生较大的摩擦热,料温升高,粘度下降,使塑料得到进一步的混合塑化,有效提高柱塞式注射机的生产率及制品质量。 柱塞式注射机必须采用分流梭,移动螺杆式注射机的塑化效果好,不采用分流梭。 4.注射机的喷嘴有哪几种类型?各适合何种聚合物材料的注射成型? 答:在料筒的前部,是连接料筒和塑模的通道,其作用是引导塑化料从料筒进入棋具,并使有一定的射程。喷嘴的内径一般都是自进口逐渐向出口收敛,以便与模具紧密接触,由于喷嘴的内径不大,当塑料通过时,流速增大,剪切速度增加,能使塑料进一步塑化。热塑性塑料的注射喷嘴类型很多,结构各异,使用最普遍的有如下三种形式: 1)通用式喷嘴:是最普遍的形式,制造方便,无加热装臵,注射压力损失小,常用于聚乙烯、聚苯乙烯、聚氯乙烯及纤维素等的注射成型。2)延伸式喷嘴:是通用式喷嘴的改进型,制造方便,有加热装臵,注射压力降较小,适用于有机玻璃、聚甲醛、聚砜、聚碳酸酯等高粘度树脂。 3)弹簧针阀式喷嘴:是一种自锁式喷嘴,结构较复杂,制造困难,流程较短,注射压力降较大,较适用于尼龙、涤纶等熔体粘度较低的塑料注射。 5.以柱塞式注射机成型聚丙烯制品时,注射机料筒的加热效率为0.8,如果聚丙烯预热温度50℃,注射料温230℃,注射机的料筒最高温度应控制几度? 答: TTOE,TO50℃,T230,E0.8,代入得TW275℃TwTO 6.试分析注射成型中物料温度和注射压力之间的关系,并绘制成型区域示意图。 答:在同一塑料的摩擦因数和熔融黏度是随料筒温度和模具温度而变动的,故注射压力与料温是相互制约的,料温高时,注射压力减小;反之,所需注射压力加大。 7.保压在热塑性塑料注射成型过程中的作用是什么?保压应有多少时间?何谓凝封? 答:保压阶段。是熔体充满模腔时起至柱塞或螺杆撤回时为止的一段时间。在这段时间内,塑料熔体会因受到冷却而发生收缩,柱塞或螺杆需保持对塑料的压力,使模腔中的塑料进一步得到压实,同时料筒内的熔体会向模腔中继续流入以补足因塑料冷却收缩而留出的空隙。随模腔内料温下降,模内压力也因塑料冷却收缩而开始下降。保压时间一般约20-100s,大型和厚制品可达2-5min。塑料注射充模保压时,浇注系统的熔体先行冷却硬化的现象叫“凝封”,凝封可防止模腔内尚未冷却的熔体向喷嘴方向倒流。8.试述晶态聚合物注射成型时温度(包括料温和模温)对其结晶性能和力学性能的影响。 答:料筒的温度的高低主要决定与塑料的性质,必须把塑料加热到黏流温度(Tf)或熔点以上,但必须低于其分解温度。?????不会 模具温度不但影响塑料充模时的流动行为,而且影响制品的物理机械性能和表观质量。实际上冷却速度的大小取决于塑料熔体温度(Tm)与冷却介质温度(Tc)的温差;当Tc<Tg为骤冷,Tc≈Tg为中速冷,Tc>Tg为缓冷。结晶型塑料注射入模具后,将发生相转变,冷却速率将影响塑料的结晶速率。缓冷,即模温高,结晶速率大,有利结晶,能提高制品的密度和结品度,制品成型收缩性较大,刚度大,大多数力学性能较高,但伸长率和冲击强度下降;反过来,骤冷所得制品的结晶度下降,韧性较好。但骤冷不利于大分子的松弛过程,分子取向作用和内应力较大。中速冷塑料的结晶和取向较适中,是用得最多的条件。实际生产中用何种冷却速度,还应按具体的塑料性质利制品的使用性能要求来决定。、9.聚丙烯和聚苯乙烯注射成型时,考虑到产品的性能和生产效率,它们的模具温度应分别控制在哪个温度范围最适宜?为什么?(PP:Tg=-10℃左右,PS:Tg=80℃左右) 答:聚丙烯的结晶能力较强,提高模具温度有助于改善熔体在模内的流动性,减小内应力和分子的定向作用,增强制件的密度和结晶度甚至能够提前脱模;但制件的冷却时间、收缩率和脱模后的翘曲变形将增大。制品结晶度的增加,制件的表面粗糙度值也会随之减小。综合考虑PP 模具温度Tc>Tg,生产上常用温度为40-90℃ 无定形塑料注射充模后无相转变,故模温高低主要影响充模时间长短,较低的模温,冷却快,生产效率提高。PS 熔融黏度较低,采用偏低的模温Tc 11.试分析注射成型过程中快速充模和慢速充模各有什么利弊。 答:充模速度↑,物料受剪切↑,生热↑,T ↑,黏度下降,充模压力↑,充模顺利,能提高制品的熔接缝强度,生产周期缩短;但速度↑↑,料流为湍流,严重时引起喷射用,卷入空气,可引起塑料局部烧伤及分解,使制品不均匀,内应力较大表面常有裂纹。慢速充模时,熔体以层流状态流动,顺利将模腔内的空气排出,制品质量较均匀;但充模过慢,会使熔体在流道中冷却降温,引起黏度提高,流动性下降,引起充模不全,并出现分层和结合不好的熔接痕,影响制品强度和表面质量。 12.简述热固性塑料和橡胶的注射成型原理。答:热固性塑料注射成型原理:其主要组分是线型或带有支链的低分子量聚合物,而且聚合物分子链上存在可反应的活性基团,因此,热固性塑料受热成型过程中不仅发生物理状态的变化,而且还发生不可逆的化学变化。加进料筒内的热固性塑料受热转变为黏流态,而成为具有一定流动性的熔体,但有可能因发生化学反应而使黏度升高,甚至交联硬化为固体。所以为了便于注射成型能顺利进行,要求成型物料首先在温度相对较低的料筒内预塑化到半熔融状态,注入高温模腔后继续加热,物料就通过自身反应基团或反应活性点与加入的固化剂作用,经一定时间的交联固化反应,使线性树脂逐渐变成体型结构。 橡胶的注射成型原理:橡胶注射成型是将胶料通过注射机进行加热,然后在压力作用下从机筒注入密闭的模型中,经热压硫化而成为制品的生产方法,其注射模具是直接装在注射机上,生产时将带状胶料喂入加料口,经预热、塑化后由注射机的螺杆或柱塞直接注入模型就地硫化。第三篇:材料成型原理 重点整理
第四篇:高分子加工助剂名词解释
第五篇:高分子材料成型加工