第一篇:先进陶瓷材料的连接
《材料连接新技术》
学院: 班级:
姓名:
先进陶瓷材料的连接
陶瓷是指以各种金属的氧化物、氮化物、碳化物、硅化物为原料,经适当配料、成形和高温烧结等人工合成的无机非金属材料。陶瓷具有很多独特的性能。这类材料一般是由共价键、离子键和混合键结合而成,键合力强,具有很高的弹性模量和硬度。陶瓷材料按其应用特性分为功能陶瓷和工程结构陶瓷两大类。功能结构陶瓷是指具有电、磁光、声、热等功能的陶瓷材料,从性能上分有铁电、压电、光电、声光、磁光、生物等功能陶瓷。工程结构陶瓷强调材料的力学性能,以其具有的耐高温、高强度、超硬度、高绝缘性、高耐磨性、耐腐蚀等性能,在工程领域得到广泛应用。
陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。陶瓷材料多相多晶材料,一般由晶相,玻璃相和气相组成。其显微结构是由和制造工艺所决定的。晶相是陶瓷材料的主要组成相,是化合物或固溶体。陶瓷中的晶相主要有硅酸盐,氧化物和非氧化物三种。玻璃相是一种低熔点的非晶态固相。它的作用是连接晶相,填充晶相间的间隙,提高致密度,降低烧结温度,抑制晶粒长大等。玻璃相的组成随着胚料组成,分散度,烧结时间以及炉内气氛的不同而变化。玻璃相会降低陶瓷的强度,耐热耐火性和绝缘性。气相是指陶瓷孔隙中的气体。陶瓷的性能受气孔的含量,形状,分布等的影响。气孔会降低陶瓷的强度,增大介电损耗,降低绝缘性,降低致密度,提高绝热性和抗震性。对功能陶瓷的光,电,磁等性能也会有影响。氧化物陶瓷: 氧化物陶瓷材料的原子结合以离子键为主,存在部分共价键,因此具有许多优良的性能。大部分氧化物具有很高的熔点,良好的电绝缘性能,特别是具有优异的化学稳定性和抗氧化性,在上程领域已得到了较广泛的应用。例如:氧化铝陶瓷: 三氧化二铝为主晶相。根据三氧化二铝含量和添加剂的不同,有不同系列。如根据三氧化二铝含量不同可分为75瓷,85瓷,99瓷等;根据其主晶相的不同可分为莫来石瓷、刚玉-莫来瓷和刚玉瓷;根据添加剂的不同又分为铬刚玉、钛刚玉等。
氮化物陶瓷:氮化物包括非金属和金属元素氮化物,他们是高熔点物质。氮化物陶瓷的种类很多,但都不是天然矿物,而是人工合成的。日前工业上应用较多的氮化物陶瓷有氮化硅(Si3N4)、氮化硼、氮化铝、氮化钛等。例如:氮化硅陶瓷:Si3N4陶瓷材料的热膨胀系数小,因此具有较好的抗热震性能;在陶瓷材料中,Si3N4的弯曲强度比较高,硬度也很高,Si3N4陶瓷耐氢氟酸以外的所有无机酸和某些碱液的腐蚀,高温氧化时材料表面形成的氧化硅膜可以阻碍进一步氧化,抗执化温度达1800℃。
陶瓷的主要制备工艺过程包括坯料制备、成型和烧结。其生产工艺过程可简单地表示为:坯料制备、成型、干燥、烧结、后处理、成品。制备:通过机械或物理或化学方法制备坯料,在制备坯料时,要控制坯料粉的粒度、形状、纯度及脱水脱气,以及配料比例和混料均匀等质量要求。按不同的成型工艺要求,坯料可以是粉料、浆料或可塑泥团;成型:将坯料用一定工具或模具制成一定形状、尺寸、密度和强度的制品坯型(亦称生坯);烧结:生坯经初步干燥后,进行涂釉烧结或直接烧结。高温烧结时,陶瓷内部会发生一系列物理化学变化及相变,如体积减小,密度增加,强度、硬度提高,晶粒发生相变等,使陶瓷制品达到所要求的物理性能和力学性能。烧结是指成型后的坯体在低于熔点的高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固烧结体的致密化过程。
工程结构陶瓷材料具有耐高温、高强度、高硬度、耐磨损、抗氧化、抗腐蚀等优良性能,广泛应用于航空航天、电力电子、能源交通等领域,成为经济和国防发展中不可缺少的支撑材料。但是由于陶瓷本身的脆性使其加工性能差,难以制成尺寸大、形状复杂的构件,从而限制了其进一步的应用与发展。金属材料具有优良的室温强度、延展性、导电性和导热性,与陶瓷材料在性能上形成了一种明显的互补关系。将两种材料结合起来,就可以充分利用各自的优良性能,制造出满足要求的复杂构件,不仅能够降低成本,对陶瓷与金属材料的应用与发展也具有重要意义。由于陶瓷与金属在物理、化学性质上的差异,使得二者之间的连接成为国内外学者研究的热点问题。
陶瓷与金属的连接方法: 陶瓷与金属的连接问题主要表现在以下几个方面:(1)陶瓷与金属键型不同,难以实现良好的冶金连接;(2)陶瓷与金属的热膨胀系数差异大,连接接头容易产生较大的残余应力,致使接头强度低;(3)陶瓷表面润湿性差,连接工艺确定困难。目前,关于陶瓷与金属连接方法的研究已有很多,包括机械连接、粘接连接、钎焊连接、固相扩散连接、瞬时液相连接、熔化焊、自蔓延高温合成连接、摩擦焊、微波连接、超声连接等方法。
钎焊是最常用的连接陶瓷与金属的方法之一,它是以熔点比母材低的材料做钎料,加热到略高于钎料熔点的温度,利用熔化的液态钎料润湿被连接材料表面,从而填充接头间隙,通过母材与钎料间元素的互扩散实现连接。普通金属钎料在陶瓷表面的润湿性较差,因而提高钎料在陶瓷表面的润湿性成为获得高质量钎焊接头的保证。陶瓷与金属的钎焊连接可以分为直接钎焊和间接钎焊。直接钎焊又叫活性金属钎焊法,是在钎料中加入活性元素,通过化学反应在陶瓷表面形成反应层,以提高钎料在陶瓷表面的润湿性。这些活性元素通常包括Ti、Zr、Hf、V、Ta、Nb、Cr 等,如Ag-Cu-Ti 钎料就是在Ag-Cu 共晶钎料中加入活性元素Ti,显著提高了钎料的润湿能力,是现在应用非常广泛的一种钎料。非晶态高温钎料的研制,也大大地增加了陶瓷与金属钎焊接头的应用范围间接钎焊是先将陶瓷表面进行金属化,再利用常规钎料进行钎焊连接,因而又称两步法钎焊。陶瓷表面与金属化的目的就是解决钎料在陶瓷表面润湿性差的问题,电子工业中常用Mo-Mn 法对陶瓷表面进行预金属化,Mo 粉中加入适量的Mn 是为了改善金属镀层与陶瓷的结合。此外,还发展了物理或化学气相沉积、热喷涂法、烧结金属粉末法、超声波法、化学沉积、等离子注入、真空蒸镀等一系列金属化方法;
固相扩散连接广泛应用于异种材料的连接,也是连接陶瓷材料常用的方法之一。它是将被连接材料置于真空或惰性气氛中,使其在高温和压力作用下局部发生塑性变形,通过原子间的互扩散或化学反应形成反应层,实现可靠连接。固相扩散连接适用于各种陶瓷与金属的连接,相对于钎焊连接,其具有连接强度高,接头质量稳定、耐腐蚀性能好,可实现大面积连接,且接头不存在低熔点钎料金属或合金,能够获得耐高温接头等优点。从连接方式来看,固相扩散连接可分为直接扩散连接和间接扩散连接两种。直接扩散连接是指直接将陶瓷与金属进行连接,而间接扩散连接是通过中间层的过渡作用将陶瓷与金属连接起来。由于陶瓷和金属在热膨胀系数和弹性模量上的差异,扩散连接接头容易产生较大的残余应力,导致接头性能下降,因而常采用中间层进行间接扩散连接,或采用直接在陶瓷表面镀金属膜的方法。中间层的介入,不仅可以缓解接头的残余应力,还能够降低连接温度和压力,同时也可以起到抑制和改变接头产物的作用。
第二篇:陶瓷基复合材料的连接
先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
摘要:陶瓷基复合材料具有抗热震冲击、耐高温、耐腐蚀、抗氧化和抗烧蚀低膨胀、低密度、热稳定性好的优点,这些优点使其成为备受关注的新型耐高温结构材料。陶瓷基复合材料的连接不仅具有陶瓷材料连接的难点、异种材料连接的问题、加强相与基体的不利反应及加强相的氧化与性能的降低,还具有陶瓷基复合材料承压能力差的缺点。因此陶瓷基复合材料的连接成为一个研究的热点。
1.陶瓷基复合材料及其应用
陶瓷复合材料虽然具有高温强度高、抗氧化、抗高温蠕变等耐高温性能和高硬度、高耐磨性、线膨胀系数小及耐化学腐蚀等一系列优越的性能特点,但也存在致命的弱点,即脆性,它不能承受激烈的机械冲击和热冲击,这限制了它的应用。而用粒子、晶须或纤维增韧的陶瓷基复合材料,则可使其脆性大大改善。陶瓷基复合材料(CMC)是目前备受重视的新型耐高温结构材料。[1,2,3]
陶瓷虽然具有作为发动机热端结构材料的十分明显的优点,但其本质上的脆性却极大地限制了它的推广应用。增韧的思路经历了从消除缺陷或减少缺陷尺寸、减少缺陷数量,发展到制备能够容忍缺陷,即对缺陷不敏感的材料。目前常见的几种增韧方式主要有相变增韧、颗粒(晶片)弥散增韧、晶须(短切纤维)复合增韧以及连续纤维增韧补强等。此外还可通过材料结构的改变来达到增韧的目的,如自增韧结构、仿生叠层结构以及梯度功能材料等。目前陶瓷基复合材料分为:非连续纤维增强陶瓷基复合材料、连续纤维增强陶瓷基复合材料、层状陶瓷基复合材料。
1.1非连续纤维增强陶瓷基复合材料
相变增韧可以大幅度地提高陶瓷材料的常温韧性和强度,但因在高温下相变增韧机制失效而限制了其在高温领域的应用。颗粒弥散及晶须复合增韧CMC 制备工艺较简单,可明显提高陶瓷材料的抗弯强度和断裂韧性。将颗粒、晶须等增 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
强物加入到基体材料中,由于两者弹性模量和热膨胀系数的差异而在界面形成应力区,这种应力区与外加应力发生相互作用,使扩展裂纹产生钉扎、偏转、分叉或以其它形式(如相变)吸收能量,从而提高了材料的断裂抗力。对于高温下使用的颗粒弥散及晶须复合增韧陶瓷基复合材料,就基体而言,综合考虑高温强度、抗热震性、比重、抗蠕变性、抗氧化性等,首选材料仍是Si3N4 和SiC。在高温下它们的表面会形成氧化硅保护层,能满足1600℃以下高温抗氧化的要求。通过在基体材料中加入合适的增强物及选择适当的材料结构,可大幅度提高陶瓷材料的强度和韧性。[4]
1.2连续纤维增强陶瓷基复合材料
连续纤维增强陶瓷基复合材料(CFCC)具有较高的韧性,当受外力冲击时,能够产生非失效性破坏形式,可靠性高,是提高陶瓷材料性能最有效的方法之一。CFCC 的研究始于1973 年S1R1Levitt 制成的高强度碳纤维增强玻璃基复合材[5]料。70年代中期,日本碳公司(Nippon Carbon Co.)高性能SiC连续纤维Nicalon的研制成功,使制造纯陶瓷质CFCC 成为可能。80年代中期,E1Fitzer[6]等用化学气相沉积法制备出高性能的Nicalon 纤维增强SiC基陶瓷复合材料,有力地推动CFCC的发展。十几年来,世界各国尤其是美国、日本、欧共体等都对CFCC 的制备工艺及增韧机理进行了大量的研究,取得了一些重要成果,少数材料已达到实用化水平。
从目前来看,解决纤维问题的途径主要有2条;一是提高SiC 纤维的纯度,降低纤维中的氧含量。二是发展高性能的氧化物单晶纤维。氧化物连续纤维出现较晚,且一般为多晶纤维,高温下纤维会发生再结晶,使其性能下降,而单晶纤维则可避免这一问题。例如目前蓝宝石单晶纤维使用温度可达1500℃,使材料的高温性能有了很大提高。[7]
随着能承受更高温度的氧化物单晶纤维的出现,高温结构陶瓷基复合材料的研究必将有所突破。连续纤维增强陶瓷基复合材料虽然在力学性能上具有一定优势,但是连续纤维的生产、排布和编织等工艺复杂,复合材料的成型和烧结致密化都很困难,复合材料强度较低,成本高昂。同时,高性能的耐高温陶瓷纤维问题至今尚未完全解决,这都极大地限制了它的推广应用。先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
1.3层状陶瓷基复合材料
近年来,人们模拟自然界贝壳的结构,设计出一种仿生结构材料—层状陶瓷复合材料,其独特的结构使陶瓷材料克服了单体时的脆性,在保持高强度、抗氧化的同时,大幅度提高了材料的韧性和可靠性,因而可应用于安全系数要求较高的领域,为陶瓷材料的实用化带来了新的希望。层状陶瓷复合材料的基体层为高性能的陶瓷片层, 界面层可以是非致密陶瓷、石墨或延性金属等。与非层状的基体材料相比,层状陶瓷复合材料的断裂韧性与断裂功可以产生质的飞跃。
层状复合不仅可有效改善陶瓷材料的韧性,而且其制备工艺具有操作简单、易于推广、周期短而廉价的优点,尤其适合于制备薄壁类陶瓷部件。同时,这种层状结构还能够与其它增韧机制相结合,形成不同尺度多级增韧机制协同作用,立足于简单成分多重结构复合,从本质上突破了复杂成分简单复合的旧思路。[8]
1.4陶瓷基复合材料的应用
(一)航空燃气涡轮发动机的应用
Cf / SiC复合材料在高温下有足够的强度,且有良好的抗氧化能力和抗热震性,非常适合作为高温结构材料。
使用Cf / SiC 复合材料不仅能减轻质量、延长使用寿命,同时具有很低的操作损耗。NASA Lewis 研究中心制备的Cf / SiC 涡轮发动机在燃烧环境及相应热机械载荷作用下其材料的耐热和力学疲劳性能良好,耐高含氢气体环境性能优越。因此Cf/ SiC 复合材料目前被广泛应用于军事和商业运载器,包括应用在涡轮发动机的消耗管道、涡轮泵旋转体、喷管等。欧洲一些研究机构也研制了Cf/ SiC 复合材料发动机喷管和燃烧室部件。[9]
(二)热保护系统的应用
在航天领域,当飞行器进入大气层后,由于摩擦产生的大量热量,将导致飞行器受到严重的烧蚀,为了减小飞行器的这种烧蚀,需要一个有效的防热体系。在热结构材料的构件中包括航天飞机和导弹的鼻锥、导翼,机翼和盖板等。Cf / SiC复合材料是制作抗烧蚀表面隔热板的较佳候选材料之一,它具有质轻耐用的 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
特点。目前,欧洲正集中研究载人飞船及可重复使用的飞行器的可简单装配的热结构及热保护材料,其中Cf / SiC复合材料是一种重要材料体系,并已达到很高的生产水平。在美国,用Cf / SiC复合材料制备的T PS 可用于航天操作工具和航天演习工具,AlliedSignal 复合材料公司生产的Cf / SiC材料在高温环境测试中显示出优异的性能。波音公司通过测试热保护系统大平板隔热装置,也证实了Cf / SiC复合材料具有优异的热机械疲劳特性。[10]
(三)高温连接件的应用
主要应用于连接固定热的外表面和航空框架结构中冷的衬垫,及用作密封装置。未来的空间运输系统和超音速的航天飞机中均要求热保护系统和装置能够耐高热的机械和空气动力载荷,大多数结构和元件需要固定系统,Cf / SiC 复合材料高温连接件能够满足热性能和力学性能的要求,这些材料将由CVI 法制得, 能够在-100℃~1800℃范围内使用,拉伸强度大于230MPa。目前可生产的连接件尺寸在8~12mm 范围内,在连接件上涂上一层抗氧化涂层可使它适用于氧化气氛中。由于金属材料的热性能和化学性能不稳定, 及单相陶瓷太脆的缺点,因此Cf / SiC 复合材料的应用成为必然。Cf / SiC 陶瓷材料已经被制成螺钉和其他连接件。
(四)光学和光机械结构中的应用
Cf / SiC复合材料除了具有优良的高温性能,而且在恶劣环境下工作的超轻光学系统中,其光学和光机械结构同样具有重要的应用前景。Cf / SiC 复合材料是一种轻质高强的工程材料,它有着可调的力学和热学性能,与传统的粉末基体陶瓷相比,由于其韧性的提高和可忽略的体积收缩,设计非常自由。到目前为止,Cf / SiC已经用于制造超轻反射镜、微波屏蔽反射镜等光学结构部件。另外, 由于Cf / SiC 具有优异的力学性能,同时它的高热导性与其合适的热膨胀系数结合较好,因此其热稳定性也比其他反射镜基座材料优越,被广泛应用于光学系统中的结构材料及反射镜支撑体系,如反射镜底座。
(五)在刹车系统中的应用
Cf / SiC复合材料由于其低密度、高强度以及良好的耐磨性等性能也被逐渐用于高速飞行器和高速汽车、火车上的刹车系统。国外一些航天中心和设计研究 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
机构采用液态硅浸渗的方法制备的Cf / SiC复合材料正考虑用于制造汽车的刹车片。在这种刹车盘中,刹车片表面之间具有冷却通道,这种结构可以改善刹车盘的散热性,大幅度提高刹车系统的寿命。此通过应用Cf / SiC复合材料刹车片,刹车片的质量小于以前使用的钢刹车片质量的50%,刹车系统中其他组件的质量同样能够减轻50% 左右,这样不但能够大幅度减少费用,同时也能明显提高刹车系统的功能,因此Cf / SiC复合材料应用在刹车系统是一个潜在的大市场。
2.陶瓷基复合材料的连接问题和连接方法
2.1陶瓷基复合材料的连接问题
陶瓷基复合材料的连接不仅具有连接陶瓷材料的难点,如高熔点及有些陶瓷的高温分解使熔焊困难、多数陶瓷的电绝缘性使之不能用电弧或电阻焊进行焊接、陶瓷固有脆性使其无法承受高压力的方法进行连接、陶瓷材料的化学惰性使其不易润湿而造成钎焊困难等等,还应注意连接异种材料时的问题,如选择连接方法与材料时要同时考虑基体材料与加强材料的适应性。另外在连接陶瓷基复合材料时还应考虑避免加强相纤维的氧化与性能的下降等。因此连接时间和连接温度一般不能太长太高。除此之外,由于纤维增强的陶瓷基复合材料的耐压性能较差,因而连接时不能施加较大的压力。[11] 2.2陶瓷基复合材料的连接方法
常用的连接方法大致可分为三类: 粘接、机械连接、焊接。粘接的界面为物理及化学作用,接头强度低,使用温度也较低, 一般低于200℃。机械连接界面是机械力作用,接头无气密性,易产生应力集中。考虑到CMCS 复杂的受力条件, 较高的使用温度及可靠性因素时,焊接的方法较为适用。由于CMCS 连接的难点: 基体熔点高,不能使用熔焊,耐压能力差,不能使用大的压力进行固相扩散连接。复合材料的化学惰性使之不易润湿而造成钎焊的困难,连接材料对复合材料的适用性,避免增强相和基体之间不利的化学反应而造成CMCS性能的下降。考虑到以上的问题,因此目前常用的焊接方法有: 钎焊、无压固相反应连接、ARCJIONT、先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
聚合物分解连接及在线液相渗透连接。
(一)粘接
粘接是在粘接剂的作用下,使类似的材料或不同材料界面、内部紧密连接的技术。粘接具有固化速度快,使用温度范围宽,抗老化性能好等特点被广泛的应用在飞机的应急修理,炮弹导弹辅助件连接,修复涡轮,修复压缩机转子等方面。粘接剂主要是一些环氧树脂类、改性酚醛类、有机硅等,形成的接头一般只有在使用温度较低,一般低于200℃,且大多用于静载荷和超低静载荷零件。
(二)机械连接
机械连接可分为两种,一种是传统意义上的用紧固件如销钉、螺钉、铆钉和螺栓等进行结合的连接。这种方法连接CMCS 的参数有: 纤维类型与制备方法;纤维的走向;结构形式;纤维的体积分数;紧固件材料等。其优点是: 易于质量控制,安全可靠,强度分散性小;抗剥离能力强,能传递大载荷;便于装卸。但它也存在许多缺点:连接结构一般采用间隙配合,不用干涉配合;制孔和安装过程中易使孔产生分层、掉渣等缺陷,影响连接强度;各向异性显著;应力集中高;对碳纤维复合材料,为防止电偶腐蚀,一般用与之电位接近的钛、钛合金、耐蚀不锈钢、蒙乃尔合金等金属材料的紧固件;而且紧固件的使用增加了整个构件的重量。
另一种是成型连接方法。这种方法可以在制备两个待连接构件时进行接头的设计,使之在制备后自动完成连接。在机械连接中,载荷的传递是依靠连接件进行的。由于机械连接需要增加构件的重量,对连接件的形状有较高要求,而这正是陶瓷基复合材料较难做到的一点。因此,机械连接在陶瓷基复合材料的应用还很少。[12](三)焊接
焊接一般是指界面发生化学反应的连接,其优点是连接强度高,使用温度高, 构件精度高;它的缺点是由于焊接温度高,热物理失配引起的界面应力也高。
对于CMCS 来说,由于有多种材料的存在,CMCS与其他的材料在高温连接时, 界面附近易出现复杂的残余应力,这不仅容易引起陶瓷基体力学性能的下降,而且还可能降低纤维和基体间的结合,使纤维和基体之间发生破坏;而且由于纤维 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
增强的CMCS 表现出各向异性,因此钎焊面和纤维布面之间的关系也会影响接头的强度,当纤维和钎焊面垂直时, 接头的强度一般较高, 这和残余应力有关。
但是考虑到构件的使用温度,气密性,承载能力和可靠性等因素一般认为焊接是连接复合材料较为合适的一种方法。几种有效的连接CMCS的焊接方法有: 钎焊、局部过渡液相连接、无压固相反应连接、聚合物分解连接、ARC Joint 和在线液相渗透连接。
① 钎焊
钎焊是利用钎料在高温下熔化,其中的活性组元和复合材料发生反应,形成稳定的反应梯度层,从而将两种材料连接到一起。
CMCS的化学惰性使之不易润湿,因此可以采用以下两种方法进行钎焊;一是用活性钎料直接进行连接。二是先对复合材料待连接面采用热喷涂、PVD 沉积金属层、CVD 法, 及离子注入等方法进行金属化处理后, 再用一般钎料进行连接。
钎焊结合的主要机制是:钎料在界面处可以产生机械和化学的结合,机械结合可以认为是钎料质粒嵌入或渗入复合材料表层的微孔区,而化学结合强度归结于钎料和基体间的物质转移和反应。在钎焊中, 钎料的选择在连接后接头的性能方面起了关键的作用。为了提高接头的强度, 钎料的选择要从以下几个方面进行考虑:(1)钎料和连接母材材料的润湿性问题。由于连续纤维增韧陶瓷基复合材料很难被润湿,大多数的钎料在接头上往往只形成球珠,很少或根本不产生润湿,这就导致了接头强度较低。针对这种情况,可以选择在钎料中添加表面活性元素Si,Mg,Ti等。
(2)由于陶瓷基复合材料钎焊时存在钎料/ 基体,钎料/ 加强相,基体/ 加强相三种界面。因此在选择钎料时要注意钎料对基体和加强相的共同作用。
(3)钎料和复合材料热膨胀系数的差异,产生的残余应力,导致接头在使用过程中开裂,因此要考虑在中间层中加入塑性材料或线膨胀系数和复合材料相合适的材料作为缓冲层(Cu,Ti 作为软缓冲层;W,Mo作为硬缓冲层;钎料中加入C 纤维以降低钎料的线膨胀系数)。[13] ②局部过渡液相连接(PTLPB)先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
PTLPB 是为了解决活性钎焊、固相扩散焊中的问题,即:低温连接时使用温度低,高温连接时热应力大而使材料的性能受到损害。PTLPB 使用复合层中间层(如B-A-B的形式,其中A厚度远大于B厚度),在连接温度下形成液相,随着连接时间的延长,过渡液相被高熔点金属层消耗,同时过渡液相和母材发生反应的一种连接方法。一般认为它可以分为下四个阶段:
(1)中间层的熔化和扩大,此过程速度取决于液相扩散。
(2)液相的继续扩大,同时成分均匀化并达到液相线,液相的宽度可以由相图计算,这一阶段既有液相扩散又有固相扩散,而且以固相扩散为主。
(3)液相凝固阶段。由固相扩散控制, 凝固时间取决于液相的宽度和互扩散系数。
(4)固相均匀化阶段。
中间层的设计在连接中有很大的作用, 主要从以下几个方面考虑:(1)熔化的B 或AB 的界面产物可以和陶瓷连接。
(2)高熔点的中间层能够消耗低熔点层, 形成合适的高熔点合金。(3)A是高熔点元素且线膨胀系数和复合材料相似。
这种连接方法较固相扩散焊,连接温度更低;不需要使用更大的压力,避免了复合材料性能的降低;另外由于液相的存在,被连接件的表面质量不要求太高。和钎焊相比,使用温度可以大幅度的提高。在这种方法中,由于中间层是由多种金属构成的,因此不仅要考虑中间层对复合材料的适用性,还要考虑各层金属之间的作用,防止生成脆性金属相降低了接头的性能。
③无压固相反应连接
无压固相反应连接是在大气(或Ar或真空中)加热至金属钎料熔点90%,仅施加使接触面产生接触的压力,使复合材料和金属钎料直接反应的一种连接方法。为获得热核反应的高温接头,用高熔点活性元素Zr、T i作为连接材料。由于CMCS材料耐压性能差,所以连接过程中不能施加太大的压力进行连接,主要是利用Zr和Ti固态下和C,SiC反应,形成Zr和Ti的碳化物与硅化物。[14]由于CMCS的抗压能力差,使用较大的压力会使CMCS的纤维发生破坏, 因此这种连接方法最大的优点在于避免了母材的损坏,而且可以形成致密的接头,但接头的力学性能很差, 基本上不能承受载荷。因此Zr和Ti无压固相反应连接可以用来连接 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
CMCS, 形成不承受载荷,但可以耐高温的致密接头。
④利用聚合物分解进行连接
聚合物分解连接CMCS是通过陶瓷先驱体聚合物在高温下分解转化为陶瓷进而实现连接的一种方法。但是由于聚合物在高温分解的过程中会产生大量的气孔, 这将会大大的降低接头的强度。为此,可以通过在聚合物中添加活性或惰性填充物、纤维;在分解过程中施压;以及增加渗透和分解次数来改善这一情况。
聚合物分解进行连接的这种方法的优点在于接头与待连接复合材料的热膨胀系数相匹配,连接后不会产生过大的残余应力,在聚合物的高温分解过程中不需要施加很大的压力。但这种连接方法的不足之处在于聚合物的分解会导致接头处产生大量的气孔,这将会大大的降低接头的强度,因此使用这种连接方法形成的接头可靠性不高。
⑤ARCJoint ARCJoinT 是一种反应成形连接方法。该工艺首先把碳质混合物放置到接点区域,并用夹具固定,在100~120℃温度下热处理10~20 min,然后将Si和Si合金以浆料的形式涂到接点周围,然后根据浆料的类型,在1250~1450℃间对其保温10~15min,融熔状态的Si 或Si 合金与C 发生反应,形成可控硅含量的SiC。在这个方法中, 可以根据冶金成分决定其它相成分, 接头的厚度也可以通过调节碳质浆料的成分和夹紧力大小来控制。由ARCJoinT 方法连接后的连接件在高温下可以保持其结构的完整性, 具有良好的机械强度和耐环境稳定性。它也可以连接大尺寸部件和形状复杂部件, 可满足接头厚度要求和成份要求, 可以修复材料部件所存在的缺陷。但是由于接头产物是SiC, 因此接头较脆, 强度较低。
⑥在线液相渗透连接
它是在CMCS 制备过程中控制其孔隙率,采用一种满足高温使用需求并具有一定耐蚀性的Ni 基合金作为连接剂,在一定的温度及压力下使得连接剂熔化并渗入复合材料的孔隙中,形成的树根状咬合结构,从而实现连接。连接完后再对材料进行气相沉积以完成材料的制备,这一步气相沉积过程还可以为复合材料连接提供防氧化涂层。由于这种连接方法是在复合材料的制备过程中完成连接, 先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
连接完成时材料并没有制备完成,因而这是一种在线的连接方式。它具有如下优点:(1)在线连接。在线液相渗透连接方法在复合材料的制备过程中完成的,使连接过程对材料的损伤作用降低到最小。而且后期的化学气相沉积过程不仅完成材料的制备,同时可以为整个连接构件提供防氧化涂层,真正体现了连接制备加工一体化。
(2)物理结合能力强。在线液相渗透连接方法中,连接剂在复合材料内的渗透大幅度增加了连接剂与复合材料的接触面,并形成了机械的咬合结构,大幅度增加了连接强度,同时提高了连接可靠性。
(3)产生良好的梯度层,缓解热应力。在线液相渗透连接方法由于大量连接剂渗入复合材料,渗入的连接剂在复合材料内部形成一个的良好梯度层,使得在得到最佳连接性能的同时最大限度的缓解连接过程中产生的热应力。
(4)连接温度高。由于所用连接剂有较高的熔点, 所得连接可以满足1000℃ 温度下的使用需求, 因而在线液相渗透连接方法是一种高温连接方法。
(5)连接时间短。在线液相渗透连接方法是在连接剂熔化状态下渗入复合材料而完成连接的,液相的参与使得连接所需时间较短。
3.总结
上述几种方法共同的缺点是需要对连接件进行整体加热。这样做一方面,如果连接件的体积大,则需要加热设备和加热功率增大,这样势必会造成资源浪费。另一方面由于连接件的各个部分热膨胀系数不同,整体加热会造成很高的残余应力,损坏连接件。
因此有必要发展局部加热的连接方式,目前提出的有: 微波连接、电子束连接等方法。这些连接方法都是使用高能量,集中加热接头区域,使接头熔化并进行连接。但由于目前对热源的加热过程控制还不成熟,因此还需要进一步的研究。先进材料连接作业:陶瓷基复合材料的连接
姓名:
学号:
专业:
参考考文献:
[1]黄勇,吴建光.高性能结构陶瓷的现状和发展趋势.材料科学进展,1990,4(2);150~160 [2]许永东,张立同,张湛.陶瓷基复合材料进展.材料科学进展,1992,(4);18~25 [3]苏波.陶瓷纤维及其陶瓷复合材料.材料导报,1994,1(223~237);67~70 [4] Courtright E L.Engineering property limitation of structural ceramics and ceramic composites above 1600℃.Ceram.Eng.Sci.Proc.,1991,12(9/ 10): 1725 [5] Levitt S R.High-strength graphite fiber/ lithium aluminosil-icate composites.J.Mater.Sci.,1973,8(6);793~ 806 [6] Fitzer E,Gadow R.Fiber-reinforced silicon carbide.Am.Ceram.Soc.Bull.,1986,65(2): 326~ 335 [7]刘宏,刘素文,戴干浩.连续纤维补强陶瓷复合材料.现代技术陶瓷,1996,17(4):26~ 31 [8]周洋,袁广江,徐荣九,杜林虎,李宏泉,陈大明.高温结构陶瓷基复合材料的研究现状与展望.硅酸盐通报,2001 [9]葛明龙,田昌义,孙纪国.碳纤维增强复合材料在国外液体火箭发动机上的应用[ J].导弹与航天运载技术,2003, 264(4);22—26.[10] IMUTAM,GOTOH J Development of high temperature materials including CMCs for space application[ J ].Key Engineering Mater, 1999, 164—165:439—444.[11]任家烈,吴爱萍.先进材料的连接[M].北京;机械工业出版社,2000.120-168, 258-261.[12]柯晴青,成来飞,童巧英,张 青.连续纤维增韧陶瓷基复合材料的连接方法.材料工程,2005
[13]陆善平,郭义,陈亮山.活性元素Ti和Ni 基钎焊合金/Si3N4界面上的动态行为研究[ J].焊接技术, 1998,(3): 3-4.[14]童巧英,成来飞,张立同.二维复合材料的显微组织结构和性能[ J ].材料科学与工程, 2002,(11): 14-16.
第三篇:蓬勃发展的先进陶瓷
蓬勃发展的先进陶瓷产业
无机非金属材料是材料领域的一个大类,对人类的发展、社会的进步和人民生活水平的提高有重要作用。陶瓷是最重要的无机非金属材料,先进陶瓷材料则专指用精制高纯人工合成的无机化合物为原料,采用精密控制工艺成型烷结而制成的高性能陶瓷,以区别于用天然无机物烧结而成的传统陶瓷(如碗盆瓶杯等)。先进陶瓷材料大致可分为结构陶瓷与功能陶瓷两个部分。
1·先进陶瓷材料的重要性
与金属或高分子材料相比,先进陶瓷材料更具各众多独特的性能,如结构陶瓷优异的高温力学性能,功能陶瓷特有的光、声、电、磁、热或功能稿合效应是其他材料难以具备的。事实上,现代无机非金属材料已经在很多领域,特别是诸多高技术领域,获得关键性的应用。
无机材料是现代信息与通信技术的基础。大型集成电路中的各类陶瓷基片和衬底材料,光纤通信中的石英光纤等是整个信息产业中最为关键的材料。另外,光通信中有源器件中的激光工作物质、无源器件中光纤连接器用的氧化锗陶瓷材料等都是现代光通信领域内必不少的关键材料。
国防军工领域中,陶瓷材料发挥了关键作用。战略导弹、军事卫星和导弹防御系统是满足现代和未来国家安全需要的.“杀手锏”。战略导弹上的防热端头帽、各类卫星星体和箭体用防热温控涂层材料、火箭喷管碳/陶瓷梯度复合材料和导弹防御系统中的微波介质材料等等,均是先进陶瓷材料。
无机材料在环境保护中做出了贡献。废气的处理是环保的重要方面,将废气转化为无害的气体需要多孔或蜂窝状的陶瓷作为转化器的载体材料或催化/载体一体化材料.其他各种高温吸附、分离和催化材料等也是先进陶瓷材料。清洁能源如太阳能、核能、燃料电池等,均离不开无机非金属材料。
无机材料为人类健康造福。疾病早期诊断采用的先进的医疗设备(如高分辨B超仪、高速CT和正电子断层扫描成像仪PET等)中最关键的探测材料,如超声波发射与探测材料、高能射线探测材料是陶瓷或晶体材料。人工关节、齿科材料等是一类具有生物活性的结构陶瓷材料。
无机材料在传统产业改造中的作用越来越大。各类高档耐磨耐腐蚀密封材料、陶瓷轴承、钢筋轧制用复合陶瓷材料不仅提高了相关传统行业的效率,节约了成本,减轻了劳动强度,还对环境保护大有禅益。高性能的发热体材料是半导体行业使用的加热设备的关键材料。
以上情况可以看出,很多高技术产业和国防军工的发展在很大程度上要依赖包括陶瓷材料在内的无机材料技术的突破和发展才得以实现。国家对高技术和高技术产业的未来需求同样离不开材料的进一步发展。反过来,我国的高技术产业和国防军工的发展,无疑也向无机材料提出了新的更高要求。结构陶瓷将在国防军工、信息通讯、环保和传统产业改造中发挥越来越大的作用。
2·日新月异的大无机
无机非金属材料专业的概念
无机非金属材料,主要有陶瓷,砖瓦,玻璃,胶凝材料(水泥,石灰,石膏等),混凝土,耐火材料和天然矿物材料等传统材料以及新型陶瓷,微晶玻璃,光纤玻璃,MDF水泥,纤维增强混凝土等新型材料。新型无机非金属材料主要有以下几类:
新型陶瓷 主要是指发挥材料机械、热、化学等功能的一大类高性能陶瓷。按照其组成将其分为氧化物类(如氧化锆、氧化铝等)和非氧化物类(如氮化硅、碳化硅等)。一般具有很高的熔点硬度及较强的抗化学腐蚀能力,因而主要用途包括各种高温结构件(如喷嘴、热交换器、高温过滤器、加热元件等)、耐磨材料(如轴承、球磨介质、脱水版等)、耐腐蚀部件(如管道、球阀、泵材等)、密封件、抗冲击结构件(如陶瓷装甲等)、发动机同陶瓷部件等。到目前为止,新型陶瓷的高性能和可靠性问题在一些先进工业国家已逐步解决,降低材料的成本和提高材料的功能成为新型陶瓷大规模商业应用的主要障碍。我国的先进研究也取得了飞跃发展,某些研究甚至处于国际领先地位。但仍有若干高品质的陶瓷原材料需要进口,包括AlN、B4C等。对于TiB2等,由于其潜在的军事用途,美德等都禁止向中国出口。此外,我国各行业都在飞速发展,对高可靠性、大尺寸、复杂形状结构提出来更高的要求。这都需要加大投入,解决有关的技术问题。新型陶瓷在进入广泛的应用则遇到两个问题:工业化技术不完善,产品成品率不高;产品成本太高,无法与进口产品竞争。这也是我国新型陶瓷产业化和参与国际竞争需要解决的核心问题。
特种玻璃 特种玻璃以其所具有的功能特性可以分为光学功能玻璃、电磁功能玻璃、热学功能玻璃、李学功能玻璃、化学功能玻璃以及生物功能玻璃灯。其应用各异:比如光学功能玻璃可用于光信息处理、光传感器等,生物及化学功能玻璃可用于环境净化、疾病的治疗等……技术问题是面临的主要难题,未来的经济效益也是需要考虑的。近一二十年玻璃材料科学与工艺得到迅猛发展,由于核磁共振、扫描电镜等先进手段的综合运用玻璃材料的研究从宏观进入微观,现在可以对玻璃系统的结构惊醒分析和推算,了解其组成、结构等对玻璃的形成、分相、性能及功能的影响。技术问题是面临的主要难题,未来的经济效益也是需要考虑的。未来光电子玻璃、生物玻璃等将有大幅度的发展,又卡能形成很大的商品市场。
无机纤维 无机纤维主要是光导纤维和增强纤维。光纤除大量应用于通讯外,还可以作为力、热、点、磁等多种物理量的灵敏传感器,可在极其恶劣的环境中使用。光纤的研究已十分成熟,目前正尝试用氟化物玻璃光纤代替石英光纤以使损耗降到最低,波长零色散传输。有望在将来得到应用。新型增强纤维是在纤维中加入增强体以改善其性能的复合材料。已广泛应用的有碳纤维、氧化铝纤维、特种玻璃纤维等。但也存在一些问题,如玻璃纤维易受潮,有些纤维低温下容易氧化,一些纤维导热性和隔音性不好。随着新型纤维的品种规格系列化和生产规模的扩大,成本迅速下降,加上应用研究的开展,其应用领域不断拓宽,前景光明。
混凝土 新型混凝土主要有轻质结构混凝土和智能混凝土。混凝土就是由水泥作为凝胶材料,将砂石集料胶结成的工程复合材料,广泛应用于土木工程。随着技术的发展混凝土也朝着智能的方向发展。轻集料混凝土就是其中之一。顾名思义,它就是选用较轻的集料混合成的混凝土。轻质、隔热、保温、保湿、防震性能好。主要用于高层建筑、桥梁工程,以及一些特殊工程如软土地基等,但价格较高。智能混凝土包括自感知混凝土、自阻尼混凝土、自修复混凝土等。据目前的制备技术而言,具有一两种功能的混凝土研究已经取得一定的进展,但及多功能于一体的混凝土还有不少困难,而且未来混凝土将会朝着多功能的方向发展。
半导体材料 半导体材料主要有硅材料、锗材料、薄膜半导体材料、高温半导体材料等,广泛应用于通讯、广播、电视、各种计算机、自动控制、各种仪表等(尤其是硅材料应用最广),目前正致力于新材料的研究如微晶半导体、III-IV族化合物材料以及非晶硫系半导体等。如果技术问题得到解决,相信未来人类的生活又是一番新面貌。
无机非金属专业的发展及就业前景
无机非金属材料已成为各种结构、信息及功能材料的主要来源,在新的世纪里,无机非金属材料将极大地影响人类及社会发展的进程。日益成熟的新型无机无金属材料正在迅速崛起。无机非金属产品原料资源丰富,成本低廉,生产耗能相对较低,产品应用范围广,在很多场合能替代金属材料或高分子材料,且这种替代是必要的,它能使材料的利用更加合理和经济。无机非金属材料有许多优良的性能,如耐高温,硬度高,抗腐蚀,以及有介电,压电,光学,电磁性能及其功能转换特性等等。但无机非金属材料也存在某些缺点,如大多抗拉强度低,韧性差等,有待进一步改善。而将其与金属材料、高分子材料合成非金属基复合材料是一个重要的改良途径(我也觉得复合材料是材料中最有前景的)。材料是人类社会发展的先导,材料的每一次创新,都为人类社会的发展镌刻着一座座里程碑;它是人民生活水平提高的保证,我们每时每刻都在享受着材料进步给我们带来的快乐,人们的衣食住行无不展现着材料创新的丰硕成果;它还是国家实力的重要保证,人们常用塑钢比(塑料产量/钢铁产量)来衡量一个国家的工业实力。
无机非金属专业培养具备无机非金属材料及其复合材料科学与工程方面的知识,能在无机非金属材料结构研究与分析、材料的制备、材料成型与加工等领域从事科学研究、技术开发、工艺和设备设计、生产及经营管理等方面工作的高级工程技术人才。随着科技发展的日新月异,对各种新材料的需求也日益增长,这势必推动无机非金属行业的发展,也势必会创造更多的就业岗位。
通过对无机非金属材料专业的了解,使我认识到了新材料的重要性,认识到了这个专业广阔的发展前景。作为一名材料专业的学生,使我明确了自己的专业目标,对自己的专业更有信心,并明确了自己今后努力的方向。
第四篇:先进陶瓷复习题2014
Chapter I Introduction 1 What are ceramics? 用陶瓷生产方法制造的无机非金属固体材料和制品的通称。2 Typical Characteristics of Ceramic Materials Hard硬, brittle易碎、脆, wear-resistant耐磨, electrically and thermally insulating绝缘、隔热, refractory耐火, chemically stable化学稳定性, durable耐久性.3传统陶瓷、先进陶瓷有何区别?先进陶瓷如何分类? 区别:
先进陶瓷分为功能陶瓷和结构陶瓷,功能陶瓷又分为电子信息材料、能源材料、环境材料 The objective in materials process engineering to find relations between(desired)materials properties and relevant microstructural parameters on one side一方面寻找所需材料性能和相关显微结构参数之间的关系
to understand which process parameter changes a certain microstructural parameter on the other hand.另一方面理解哪个工艺参数能够改变相应的微观结构参数 Basic processes of ceramic fabrication.Powder preparation, Powder treatments like milling and mixing, Forming into a green shape, Coating techniques, Sintering 粉体制备,粉体处理如研磨和混合,成型,涂层技术,烧结 Chapter II Microstructure and property
1、陶瓷烧结体微观结构的控制因素有哪些?
粉料的化学性质及总组成,粉料的表面化学,颗粒形貌(表面积、颗粒尺寸及形状),成型工艺及所用压力大小,固结成瓷所用的热循环
2、陶瓷烧结体的显微结构可由哪些特征所描述?
每一相的化学成分,每一相的尺寸及形状,每一相的择优取向(结构),煅烧前的成型体(生坯)中作为未填充的间隙而存在的气孔率的减小程度
3、显微气孔对陶瓷材料有何不利影响?在陶瓷材料中有何作用?产生显微气孔的方法有哪些? 不利影响:
作用:耐火材料中显微气孔的存在提高抗热震断裂性能 方法:(1)配料由大颗粒和耐火粘结相组成,大颗粒的存在抑制显微气孔的排除(2)添加空心球(3)添加细纤维降低烧结体密度
4、增加陶瓷材料室温强度的本质方法是什么?
减少显微结构缺陷
5、陶瓷材料缺陷来源有哪些?如何降低缺陷尺寸?
来源:大尺度的孔洞、分层,微米尺度的内部显微缺陷 降低:(1)选择适当的原材料;(2)采用清洁工艺制备条件,减少杂质污染;(3)粘合剂不应形成硬团聚体,而在坯体成形时不易压碎;(4)控制化学成分,避免大颗粒的生长,以使残余气孔最小;(5)避免冷加工工艺的原因而产生表面裂纹;(6)减小晶粒尺寸、控制相变
6、玻璃相对陶瓷材料有哪些不利影响?有何作用,举例说明?
7、如何获得高热导率陶瓷材料?
(1)选择高热导率晶相AlN、BeO、SiC、BN等(2)去掉大部分气孔(3)减少烧结添加剂、控制晶粒尺寸
8、获得低热导率陶瓷材料的措施有哪些?
按照本征热导率选择材料 尽可能引入大的气孔率, 减少固体接触路径
考虑强度等综合性能,可能达到的最大气孔率水平约80% 纤维类耐火材料同等气孔率下具有更高强度,可以达到更低密度气凝胶隔热材料是隔热性能最好的固体材料
9、陶瓷表面产生压应力层的目的是什么? 举例说明,如何在陶瓷表面产生压应力层?
目的:表面处形成低膨胀相,使表面承受压应力,达到强化的目的 举例:
10、超低膨胀陶瓷有哪些体系?有哪些结构特征?
11、显微结构对陶瓷材料的电功能特性有哪些影响? 1 气孔率的调整:
去除气孔,以降低损耗、提高耐压。
保持一定气孔率,调解介电常数、气敏陶瓷敏感性 2 含量调整:
减少玻璃相降低损耗
增加玻璃相,吸收杂质(晶界偏析)、包裹晶粒 3 晶粒尺寸调整:
细晶,强度考虑、增大晶界成分 大晶粒,降低损耗 4晶界结构的调整: 晶界层电容器 压敏电阻 PTC热敏电阻
Chapter III Ceramic powder
1、什么是陶瓷粉体?粉体的涵义?粉体制备方法有哪些?
Powder:就是大量固体粒子的集合系
涵义:表示物质的一种存在状态,既不同于气体、液体,也不完全同于固体。
制备方法:粉碎法,合成法
2、从哪些方面表征粉体的宏观特性和微观特性?
宏观:松装密度(bulk density)振实密度(tap density)压实密度(press density)流动性(flowablity)
微观:粒度(particle size)粒度分布(distribution)团聚(agglomeration)形态形貌(morphology)
3、Properties dependent on the physical nature of the powder particle size and particle size distribution 粒径尺寸和分布 particle form(form factor)粉体形状(成型因素)surface area 表面积 porosity 气孔率
pore size and pore size distribution 气孔尺寸和分布 packing density and packing structure 堆积密度和结构 dynamic properties(e.g.flow)动力学性能(如:流体)
4、Properties dependent on the chemical nature of the powder chemical composition 化学组成 purity/impurity 纯度/杂质 phase composition 相组成 surface energy 表面能
surface reactivity 表面活性 surface composition 表面组成
5、ideal morphology of powders Narrow particle size distribution 窄范围的粒径分布 single-phase 单一相
low degree of agglomeration or aggregation 低团聚/聚合度 low content of unwanted impurities 低有害杂质含量
no destructive phase-transformations during further processing 在后期加工中无破坏性相变过程
6、解释粉体的一次粒子,二次粒子,团聚粒子
一次粒子(Ultimate particle or primary particle or crystallite):An ultimate particle of a substance is the smallest state of subdivision which retains all the physical and chemical properties of that substance.These properties are also homogeneous on that scale.指物质在保留所有的物理化学性质情况下能够被细分的最小状态。二次粒子(Aggregate):An aggregate is an assembly of solid particles held together by strong inter-or intramolecular or atomic(adhesive)forces.These forces have a chemical character.二次粒子是指固体粒子通过分子内或分子间以及原子(附着)力结合在一起的聚合物。这些里具有化学特性。 团聚体(软团聚)(Agglomerate):In agglomerates solid ultimate particles(crystalline/amorphous)or aggregates are held together by relatively weak adhesive forces.In many cases these forces are due to an electrostatic surface charge.固体一次粒子(晶体/非晶体)或二次粒子以微弱的结合力(通常情况下是静电相互作用)结合在一起而形成的粒子。
7、理解粉体的粒度,粒度分布(等效直径,球形度,粒度分布曲线,粒度分布特征)
粒度:颗粒的大小。通常球体颗粒的粒度用直径表示,立方体颗粒的颗粒度用边长表示,对不规则的颗粒,则可将与颗粒有相同行为的某一球体直径作为该颗粒的等效直径。
粒度分布:分为频率分布和累积分布,常见的表达形式有粒度分布曲线、平均粒径、标准偏差、分布宽度等。等效直径:对于不规则颗粒,可以找到一个与该颗粒具有相同行为的一个球形颗粒,而此球形颗粒的直径就是不规则颗粒的等效直径。
球形度:这个比值是无量纲的,是一个形状因子;形状相同,不同大小的两个颗粒有相同的球形度因子 粒度分布曲线:包括累积分布曲线和频率分布曲线 粒度分布特征:
8、颗粒尺寸测量方法
(1)筛分分析法:可以采用大量样品;分布函数测定准确;测量范围宽;适用于较大颗粒尺寸,>10m;再现性不够理想;
(2)显微镜分析法:可以对颗粒实际的大小和形态直观测量(3)沉降分析:颗粒尺寸由斯托克斯定律确定
自然沉降:
-粘度;v-沉降速率;
-固液之间密度差;g-重力加速度
离心沉降: x、x0分别代表t、t0时刻,测量位置的颗粒半径
(4)激光散射:利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。一般认为激光法所测的直径为等效体积直径。从原理上讲颗粒越小,衍射角越大,因此它可能更适合小颗粒。
9、粉体的粉碎和混磨常用方法
球磨、振动磨、搅拌磨、气流粉碎等
10、粉碎的强化原理,如何选择助磨剂?
利用表面活性剂的吸附效果来强化分体粉碎过程。
原理:助磨剂通常是一种表面活性剂,它由亲水基团(如羧基-COOH,羟基-OH)和憎水的非极性基团(如烃链)组成。在粉碎过程中,①助磨剂的亲水集团易紧密地吸附在颗粒表面,憎水集团则一致排列向外,从而使粉体颗粒的表面能降低。②助磨剂进入粒子的微裂缝中,积蓄破坏应力,产生劈裂作用,从而提高研磨效率。
选择助磨剂:一般来说,助磨剂与物料的润湿性愈好,则助磨作用愈大。当细碎酸性物料(如二氧化硅、二氧化钛、二氧化钴)时,可选用碱性表面活性物质,如羧甲基纤维素、三羟乙基胺磷脂等;当细碎碱性物料(如钡、钙、镁的钛酸盐及镁酸盐铝酸盐等)时,可选用酸性表面活性物质(如环烷基、脂肪酸及石蜡等)。
11、球磨等粉碎过程对粉体的影响
1、颗粒尺寸减小
2、有杂质引入
3、颗粒内部产生较大晶格应变
4、产生晶体结构改变
5、产生化学反应
12、由实验公式进行配料计算
已知某坯料的实验公式,需算出所需原料在坯料中的质量百分比。
13、由给定组成配方进行配料计算
若已知坯料的化学组成及所用原料的化学组成,可采用逐项满足的方法,求出各种原料的引入质量,然后求出所用各原料的质量百分比。Chapter IV processes for compaction
1、什么是成型
成型是将陶瓷粉料加入塑化剂制成坯料,并进一步加工成特定形状的坯体的过程。它是实现产品结构、形状、性能设计的关键步骤之一。陶瓷的成型技术对于制品的性能具有重要影响
2、The goal of compaction 1.将粉体压制成某一个具体形状 2.获得一个尽可能各向同性的致密体
3、成型方法分类
1.干法成型:dry processing 它是在陶瓷粉末中加入少许甚至不加塑化剂,坯料是具有一定流动性质的干粉态,这样在压实及排塑过程中,需要填充的空隙或排出的气体就少,可获得高密度的成型坯体。这类成型方式主要包括干压成型和等静压成型。
2.塑法成型 paste processing 这类成型方法的共同特点是坯料需加入适量的塑化剂,混合均匀后,具有充分的可塑性,这种可塑性既为形成特定形状坯体提供可能,也为坯体致密度下降付出代价。因为达到可塑态,粉末中必须加入适量多的粘结剂、增塑剂、溶剂等,这些有机挥发物的存在,在脱脂过程中会留下大量的气孔,或收缩变形,从而影响材料性能。包括挤制成型和轧膜成型以及注射成型、热压铸成型等. 3.流法成型 suspension processing 它是使坯料形成流动态的浆料,利用其流动性质来形成特定形状的工序过程。
适于成型复杂形状制品。
除注浆法外,流法成型有机高分子成份的含量明显较高。坯体的排胶脱脂工序更为漫长而复杂,对材料致密度、结构以至性能的影响更要严重。
这类成型方法有普通注浆及压力注浆成型、流延法成型、压滤成型、印刷成型、及胶态法成型等。
4、什么是近尺寸成型
它要求成型制备出的坯体满足使用产品外形,尺寸上的要求,应尽量做到少加工或不加工。近年在陶瓷领域逐步实现的如压滤成型、胶态成型等都是近尺寸成型的有效方法。
5、什么是造粒,目的,方法?
造粒:将已经磨得很细得粉粒,混和粘合剂后,做成流动性好的较粗的颗粒,粒径约为0.1mm。
目的:使颗粒重一些,大一些。目的是使流动性好,成型性好。方法:分层造粒、加压造粒、湿法造粒、喷雾干燥造粒
6、什么是干压,等静压?
干压:将干粉坯料填充入金属模腔中,施以压力使其成为致密坯体。等静压:通过液体对压力惊醒传输,从而使得粉体好像在一个封闭的袋子里,来达到各个方向的压力都一样的方法。
7、Ideal powders for drying press 1.团聚物为球形,彼此之间容易流动而充满模具 2.在颗粒内有可控的,均匀的气孔率和孔径尺寸分布 3.在成型之前具有高的致密度(低压缩比)4.团聚粒子内部和团聚粒子之间有均匀的组成
8、Microstructure development during dry pressing 一般的,陶瓷粉体的成型过程包括基本非变形粉体的重排和破碎,这导致坯体中气孔尺寸的降低和分体之间更好的接触。在加压过程中坯体内部结构的紧凑度发生变化,就微观结构参数而言,是团聚物和气孔形貌发生了变化。
9、干压添加剂的作用
(1)减少粉料颗粒间及粉料与模壁之间的摩擦,这种添加物称为润滑剂;润滑剂分子间低粘结能降低摩擦系数;
(2)增加粉料颗粒之间的粘结作用,这类添加物又称粘合剂;一般是大分子物质,可以吸附在不同颗粒上形成绞缠的分子网络;
(3)塑性剂:促进粉料颗粒吸附、湿润或变形,通常采用表面活性物质。其分子阻止粘结剂官能团之间的联结而降低粘结剂刚度。
10、粘结剂的影响因素
(1)分子量增加可以提高颗粒/粘结剂粘结性;(2)粘结性还取决于颗粒/粘结剂的附着特性;
(3)(4)对模壁摩擦系数的影响:高的分子量增加了模壁摩擦系数(5)粘结剂的玻璃转变温度Tg
玻璃转变温度Tg: 区分粘结剂的延性和脆性行为的温度。塑性剂的主要作用是降低粘结剂的Tg;
水和PEG对PVA都是好的塑性剂;
11、什么是弹性后效应?如何防止弹性后效应产生的破坏?
干压和等静压成型在加压后的卸压过程中坯体的形变回弹现象。
12、什么是注浆成型?有哪些分类?
注浆成型(SC)是一种采用一定形状的多孔模型生产空心制品的陶瓷成型技术。SC工艺利用石膏模具的吸水性,将制得的陶瓷浆料注入多孔质模具,由模具的气孔把浆料中的液体吸出,而在模具中留下坯体。分类:传统注浆成型,离心注浆成型和压力注浆成型。
13、注浆成型对泥浆有何要求?
the fine particle suspension is sufficiently stable to remain invariant under processing conditions.14、陶瓷料浆的稳定机制有哪些?
(1)静电稳定机制
分散在液体介质中的微细陶瓷颗粒,所受到的作用力主要有胶粒双电层斥力(Electrical double layer repulsion)和范氏引力(Van der Wards Attraction),而重力和惯性力(Gravitational and Inertial Forces)的影响较小。根据胶体化学DLVO(DergahinVerwey-Overbeek)理论,胶体颗粒在介质中的总势能取决于双电层排斥能和范氏吸引能(2)空间位阻稳定机制
1950年van der Warden首先观察到碳黑粒子在烃中形成分散体系的稳定性,在加入烷基芳香族化合物后可以得到改善,且体系的稳定程度随烷基芳香族化合物中苯环上的烷基链长度和数目的增加而增加。之后,越来越多的人注意到了高分子聚合物的位阻作用,并在此基础上发展了胶体三大稳定理论之一的空间位阻理论。
(3)静电位阻稳定机制
静电位阻稳定机制是静电稳定和位阻稳定共同作用的结果,即在固体颗粒表面吸附了一层带电较强的聚合物分子层,该分子层既可通过本身所带电荷排斥周围的粒子,又可以用高分子吸附层的位置作用防止在布朗运动中向其它粒子的接近。这样就完全符合了胶体稳定的两个条件:增加势垒高度和增加粒子间的间距。因此,依照静电位阻稳定机制配制出的料浆的稳定性更好。
常见的静电位阻分散剂有:聚丙烯酸铵、聚丙烯酸钠、海藻酸钠、木质素磺酸钠、聚丙烯酰胺和磷酸酯等
15、什么是等电点,如何调节PH获得稳定料浆?
等电点:在某一PH值下存在H+和OH-的等量吸附产生电中性表面,则该点等于电位为零的PH值,即等电点。
16、流延成型原理,步骤,应用
原理:
(1)将粉料、溶剂、分散剂、粘结剂、可塑剂配制成均匀、稳定、粘度适中的浆料。
(2)在流延机上通过刮刀铺展成二维的薄层。
(3)等溶剂挥发完后,浆料中的粘结剂固化交联,将粉料颗粒粘结成具有一定强度的薄层。薄层从基板上剥离下来,形成薄厚均匀,表面质量较好的坯体。步骤:
应用:
17、流延料浆特征
(1)浆料稳定,分散均匀;(2)最优的(低的)浆料粘度和剪切变稀的流变特性,这是因为在流延过程中,浆料流经刮刀,在刮刀的剪切力作用下,浆料粘度变小,利于浆料的流动,当浆料流经刮刀后,浆料不受剪切力的作用,浆料粘度变大,流动性变小,浆料中各组分的移动性变小,利于坯片均匀化。(3)浆料固相含量高,可以降低在流延过程中以及烧结过程中坯片的收缩率。
18、流延料浆有哪些成分组成,各组分作用?
流延浆料主要由陶瓷粉体、溶剂、分散剂、粘结剂和增塑剂等组成。
溶剂的作用:
溶解分散剂、粘结剂、增塑剂和其他添加剂 分散陶瓷颗粒
提供浆料合适的粘度,浆料粘度的调节主要依靠溶剂来进行调节。在适当的温度蒸发干燥 保证生坯无缺陷的固化 分散剂的作用:
主要是提供颗粒间的排斥力,控制颗粒团聚的程度和团聚体的强度,以制得稳定、固相含量高的浆料。分散剂的影响主要体现在稳定浆料,制造密度和性能均一的陶瓷产品。粘结剂作用:
粘结剂最重要的任务是通过包裹粉末颗粒自身固化形成表面和产生三维相互连接的树脂构架,赋予坯体一定的强度和韧性。强度的作用为:1)便于从基板上剥离。2)便于后续的运输和加工。
19、有机体系和水基流延优缺点 水基流延
优点: ①成本低,②使用安全卫生,③对人体毒副作用小,④对环境污染小,便于大规模生产;
缺点:①水对陶瓷粉体颗粒的润湿性能较差、不利于粉体在浆料中的分散;②水的蒸汽压低、汽化热大,不易挥发,导致坯片干燥时间长,坯片内有机物分散不均匀性趋势增加;③浆料除气困难,浆料中气泡的存在会影响流延坯片的质量;④水基流延浆料所用的粘结剂多为乳状液,市场上产品较少,使粘结剂的选择受到限制;⑤水基流延成型过程中各种参数不易不易控制,条件的略变动就会影响浆料以及坯片的性能。因此,水基流延成型使用较少。有机体系: 优点:(1)表面张力小,对颗粒的润湿性好
(2)溶剂挥发时间快,干燥时间短
(3)对有机添加剂溶解性强 缺点:(1)有机溶解多易燃有毒
(2)使产品成本增加 20、水基流延固化机理
流延成型工艺的固化机制包括物理成膜和化学成膜,物理成膜主要是溶剂蒸发成膜以及物理诱发凝胶成膜;而化学成膜则主要是通过化学(或光化学)聚合反应引发凝胶固化而成膜.
21、注射成型、热压铸成型原理,步骤
注射成型:
原理:注射成型就是陶瓷粉料与热塑性有机塑化剂相配比、混合、造粒后,将其加入注射机中,注射进模具型腔,经充填、保压、冷却和脱模,即得提需要的含塑坯体,置排塑炉内,缓缓加热,排除有机气体,从而获得成型的坯体。
热压铸成型: 原理:热压铸成型或热压注成型,是特种陶瓷生产应用较为广泛的一种成型工艺,其基本原理是利用石蜡受热熔化和遇冷凝固的特点,将无可塑性的瘠性陶瓷粉料与热石蜡液均匀混合形成可流动的浆料,在一定压力下注入金属模具中成型,冷却待蜡浆凝固后脱模取出成型好的坯体。坯体经适当修整,埋入吸附剂中加热进行脱蜡处理,然后再脱蜡坯体烧结成最终制品。
热压铸成型的工艺流程:
1.陶瓷粉体中加入表面改性剂如油酸、硬脂酸等,球磨混合,使之具有亲油性,和蜡液良好融合。
2.将改性后的粉料加入熔化的石蜡中搅拌混合至均匀。
3.将混好的料浆加入热压铸成型机中,以适当压力和温度注入模具成型。
4.脱模并对坯体进行适当修整。
5.将坯体埋入吸附剂中,以适当速度升温至900℃-1100℃,使坯体完全排除石蜡并具有一定强度。
6.再将坯体放入烧结炉中烧成最终制品
22、什么是凝胶注模成型,原理,优缺点。
原理:陶瓷料浆中加入一定量有机单体、交联剂、引发剂和催化剂,均匀分散之后注入模具,置于一定温度的环境中,则在引发剂的诱导引发下,单体在催化剂的作用下很短时间内发生聚合反应形成高聚物长链分子,发生凝胶共聚反应,形成固态性胶态坯体的过程。优点:
这种成型工艺非常简单,对模具无任何苛刻要求。成型后坯体强度很高,可进行机加工,坯体致密、结构均匀,可成型外形非常复杂的坯体。缺点:
凝胶成型后料浆中水分及有机物全部保留在凝胶中,后处理工序复杂。影响因素多。
Chapter V Sintering
1、干燥方法,排胶方式
2、What is Sintering ? solid state sintering ?liquid phase sintering? Sintering is the process of bringing the powder at elevated temperature so that, due to the high(er)mobility, the compact densifies, thereby releasing the surface energy of the powder particles.Generally no liquid phase(solid state sintering)or only a limited amount of liquid phase(liquid phase sintering)is present during sintering of advanced(or technical)ceramics.In traditional ceramics up to 30 vol% liquid phase can be present in which case the densification is sometimes called vitrification.烧结:是对粉末在高温下的处理,这样,由于高(较高)移动性,紧凑的致密化,从而释放粉末颗粒的表面能。固态烧结:烧结体是固态的烧结 液态烧结:烧结体中含有少量液相。
3、烧结方式和设备,了解热压、热等静压、气氛压力、微波烧结。
热压烧结是在高温烧结过程中,对坯体施加足够大的机械作用力,达到促进烧结的目的。
气氛压力烧结是一种主要用以制备高性能氮化硅陶瓷的烧结技术.它利用高的气压力来抑制氮化硅的分解.使之在较高温度下达到高致密化而获得高性能,所以又称高氮气压烧结
热等静压工艺(Hot Isostatic Pressing,简写为HIP)是将粉末压坯或装入包套的粉料装入高压容器中,使粉料经受高温和均衡压力的作用,被烧结成致密件
微波烧结利用陶瓷素坯吸收微波能,在材料内部整体加热至烧结温度而实现致密化的烧结工艺称为微波烧结
4、隧道窑依据温度曲线分为那几个部分?正负压如何控制?
隧道窑分为:预热带、烧成带和冷却带; 冷却带,烧成带:微正压; 预热带:微负压; 窑头:微正压
通过鼓入或抽出空气来实现
第五篇:先进结构陶瓷复习(答案汇总)
1、传统陶瓷与先进陶瓷如何划分?它们的发展过程有何特点? 答:先进陶瓷与传统陶瓷的区别,可以从以下几方面来说明。
①原料:传统陶瓷以天然的粘土为主要原料,而先进陶瓷原料是人工提纯、人工化合 成的高纯度物质。
②粒度:传统陶瓷的粉粒大小在0.1毫米以上,而先进的粉粒大小在0.01以下,有的
达到纳米级别。
③制作工艺:先进陶瓷的成型方法也很多,有模压成型、等静压成型、注射成型、热压
铸、流涎成型等,在烧结方面,温度要求更高,条件要求更严,方法也很多,有热压烧结、热等反应烧结、真空烧结、微波烧结、等离子烧结、自蔓燃烧结等,突破了传统陶瓷以炉窑为主要生产的烧结方式。
④加工:传统陶瓷一般不需要二次加工,先进陶瓷烧结成型后,能够进行切割、打孔、磨削、抛光等精密加工。(5、6点为资料中追加)
⑤性能应用:先进陶瓷具有不同的特殊性质和功能,如高强度、高硬度、耐腐蚀、导电、绝缘以及在磁、电、光、声、生物工程各方面具有的特殊功能,从而使其在高温、机械、电子、计算机、宇航、医学工程等各方面得到广泛的应用。
⑥显微结构:普通陶瓷主要由莫来石以及SiO2为主,而先进陶瓷则以单一相构成。
2、与金属比,陶瓷的结构和性能特点?为什么陶瓷一般具有高强度和高硬度?
答:①结构:金属内部原子间结合的化学键为金属件,陶瓷材料的原子间结合力主要为
离子键、共价键或离子–共价混合键;
陶瓷材料显微结构的不均匀性和复杂性(书P1-2)性能:优点:高熔点、高强度、耐磨损、耐腐蚀;
缺点:脆性大、难加工、可靠性与重现性差(书P2)
②原因:上述陶瓷内部的几种结合键具有很高的方向性,结合力较强,破坏化学键所需
能量较大,故硬度与硬度都较高,同时陶瓷材料化学键决定了其在室温下几乎 不能产生滑移或位错运动,因此很难产生塑性变型,室温下只有一个较高的 断裂强度。
3、如何评价陶瓷材料的力学性能?如何提高材料力学性能?
答:强度方面从抗拉、抗压、抗弯以及抗热冲击性能评价;韧性方面通过单刃开口梁法或压痕法测量评价,硬度则主要通过维氏硬度和洛氏硬度进行评价;
通过颗粒弥散、纤维及晶须强化增韧来改善陶瓷的力学性能(求补充)
4、影响陶瓷抗热震性的因素主要有哪些?
答:影响因素主要有热应力、导热系数、热膨胀系数、弹性模量、断裂能、强度和韧性等;①导热系数高,材料各部分温差较小,抗热震性较好;②热膨胀系数较小,材料内部热应力较小,抗热震性较好;③弹性模量较小,在热冲击中可以通过变形来部分抵消热应力,从而提高抗热震性;④强度大,韧性强都能使材料抗热应力而不至于破坏,改善热震性。(答案为材料物理性能书P133)
5、目前先进陶瓷的发展趋势和研究热点有哪些?
答:课本P1:①组成复合化;②结构纳米化;③结构可设计(功能化)
PPT: ①结构微细化、纳米化;②结构—功能一体化;③组成可设计、复合化;
④制备低成本化;⑤性能挖掘潜力大,发现新材料几率高
6、比较注浆成型、热压铸成型、胶态凝固成型和流延成型技术的异同。
答:①注浆成型:分散介质是水、模具材料为石膏;对浆料的要求为流动性好、稳定性好、触变小、渗透性好、脱模性良好、尽量不含气泡,同时在保证流动性的情况下,含水量尽可能小;
②热压铸成型:分散介质是石蜡、模具材料为钢;这种方法生产的产品尺寸精确、光洁
度高、结构致密
③胶态凝固成型:模具为有机、无机混合;成品有一下特点①适用于各种陶瓷粉体,成
形各种复杂形状和尺寸的陶瓷零件;②成形坯体组份均匀,密度均匀,缺陷少; ③ 料的凝固定型时间可通过调节聚合温度和催化剂的加入量来控制;④该工艺对模具无 特殊要求,可以是金属、玻璃或塑料;⑤成形坯体具有较高的强度;⑥这是一种净尺 寸成形技术,在干燥和烧结过程中收缩均匀,变形极小,烧结体可保持成形时的形状 和尺寸比例。
④流延成型:陶瓷粉、塑料膜混合(由粘结剂、塑化剂和溶剂组成)。粉料要求细、粒形圆润,这样才能得到良好流动性的料浆。流延成形设备简单,工艺稳定,可连 续操作,便于自动化,生产效率高。但粘结剂含量高,因而收缩率大,可达 20-21%;
7、如何提高陶瓷材料的烧结密度?
答:①烧结助剂:添加适量烧结助剂,可以引入的添加剂使晶格空位增加,易于扩散,烧结
速度加快,降低烧结温度,还可以使液相在较低的温度下生成,出现液相后晶体能做 粘性流动,因而促进了烧结致密化。
②细化颗粒:粉末颗粒的微细化,使得成型后的坯体所含气孔率降低,还可以加速粉料 在烧结过程中的推动力,降低烧结温度和缩短烧结时间,提高陶瓷材料的烧结密度。③改变烧结方式:可以使用热压烧结、微波加热烧结和微波等离子体烧结等烧结方式来 提高材料的烧结密度。
8、纳米陶瓷粉体的制备方法有哪些?
答:①物理方法:机械粉碎法、蒸发-冷凝(PVD)法
②化学方法: 沉淀法、溶胶-凝胶法、水热法、热分解法、溶剂蒸发法、高温自蔓燃
法、化学气相沉积法
9、比较透明氧化铝陶瓷与石英玻璃和水晶的异同?
答:①从表观上观察,三者均为透明物质;
②从化学组成上分析,透明氧化铝陶瓷主要为氧化铝化合物,而石英玻璃和水晶的主要 成分则是二氧化硅;
③从结晶形态上看,透明氧化铝陶瓷是多晶体,石英玻璃是非晶体,而水晶是单晶体 ③从适应温度上看,透明氧化铝陶瓷能适应1600~1700℃,石英玻璃能适应1200~1300℃,水晶能适应1400℃左右的温度。除了适应温度不同外,其三者在力学性能和电学性能等方面也不一样。(此点为上课笔记,适应温度不太肯定)
10、相变增韧的机理是什么?
答:概念:利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果,统称为相变增韧。
机理:以ZrO2为例子,当部分稳定ZrO2陶瓷烧结致密后,四方相ZrO2颗粒弥散分布于其他陶瓷基体中,(包括ZrO2本身),冷却时,亚稳四方相颗粒收到基体的抑制而处于压应力状态,这时基体沿颗粒连线方向也处于压应力状态。材料在外力作用下所产生的裂纹尖端附近由于应力集中作用,存在张应力场,从而减轻了对四方相颗粒的束缚,在应力诱发下会发生向单斜相的转变并发生体积膨胀,相变和体积膨胀的过程除了消耗能量外,还将在主裂纹作用区产生压应力,二者均阻止裂纹的扩展,只有增加外力做功才能使裂纹继续扩展,于是材料的强度和断裂韧性大幅度提高。
11、如何提高陶瓷材料的强度和韧性?
答:在晶体结构既定的情况下,控制强度的主要因素有三个:弹性模量E、断裂功(断裂表
面能)和裂纹尺寸。提高晶体的完整性,晶粒越细、密度越高、结构越均匀、成分越纯,其含有的缺陷就越少,其强度与韧性也越好。
强化方式有①复合强化(通过成分复合、产生协同增韧补强效应);②热韧化(通过一定加热、冷却制度在表面人为地引入残余压应力,淬冷不仅在表面造成压应力,而且还可使晶粒细化。利用表面层与内部的热膨胀系数不同,也可以达到预加应力的效果。);③表面强化(通过化学或机械抛光技术,以及表面氧化技术等可消除陶瓷材料的表面缺陷或使尖端钝化,达到增强增韧的目的);④相变增韧(利用多晶多相陶瓷中某些相成分在不同温度的相变,从而增韧的效果);⑤弥散强化(在陶瓷基体中引入高度分散的第二相粒子来达到增强增韧的目的);⑥纤维强化(将高强度的纤维或晶须加到陶瓷基体中,使其均匀分布有机结合,可使其强韧性提高纤维的强度高,在工作时可承担大部分负荷,减轻了基体的负担。纤维和基体结合,在结合面上具有一定的结合强度。即使陶瓷基体出现细微裂纹,纤维仍能将其紧紧拉住,防止裂纹进一步扩展。);
12、什么是微晶玻璃,它与玻璃和陶瓷在结构和性能上有何异同?
答:概念:微晶玻璃也称为玻璃陶瓷,是通过加入晶核剂等方法,经过热处理过程在玻璃中形成晶核,再使晶核长大而形成的玻璃与晶体共存的均匀多晶材料。微晶玻璃它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。
结构上:①微晶体由玻璃相与结晶相组成。两者的分布状况随其比例而变化。
②玻璃是一种无规则结构的非晶态固体(从微观上看,玻璃也是一种液体),其分子不像晶体那样在空间具有长程有序的排列,而近似于液体那样具有短程有序。玻璃像固体一样保持特定的外形,不像液体那样随重力作用而流动。③陶瓷材料是由晶粒和晶间相组成的烧结体,其含有少部分的玻璃相和气孔相,大部分为晶相的多晶材料。
性能上:①微晶玻璃——机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高。②玻璃——机械性能差,强度低,常温为绝缘体,熔融状态下可以导电,熔点低,膨胀系数小,抗热震性差,透光性能好,化学稳定性较高。
③陶瓷——耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好,硬度高,弹性模量高,塑性韧性差,强度可靠性差。
13、微晶玻璃的制备技术主要有哪些?各有何特点?
①熔融法:熔融法的最大特点是可采用技术成熟的玻璃成形工艺方法,如压延、压制、吹 制、拉制、浇注等,便于机械化生产。与通常的陶瓷成形工艺如挤压、旋压和注浆相比,其成形速度快,适合自动化操作和制备形状复杂、尺寸精确的制品。由玻璃坯体制备的 微晶玻璃在尺寸上变化不大,组成均匀,不存在气孔等陶瓷中常见的缺陷,因而微晶玻 璃不仅性能优良且具有比陶瓷更高的可靠性
②烧结法:将熔制玻璃粒料与晶化分成二次完成,故又称为二次烧结法。烧结法还有一个显 著的特点,即水淬后的玻璃颗粒细小,表面积增加,比熔融法制得的原始玻璃更易于晶化,因而有时可以少加甚至不加晶核剂。烧结法解决了传统熔融法工艺中存在的熔融和成形不 可分、高温成形难以生产形状复杂的制品以及必须加入晶核剂才能核化和晶化等问题。它 可以采用陶瓷传统的低温成形方法从而制备出形状复杂的制品。但相对于熔融法而言,该、工艺方法的致命缺点是存在气孔,导致生产中出现大量不合格产品,但适合制造多孔的微 晶玻璃。
③溶胶—凝胶法:其制备温度比传统方法低很多,可防止某些组分挥发并减少污染;可获得 均质的高纯材料;可扩展组成范围,制备传统方法无法制备的材料,如不能形成基础玻璃 的系统和具有高液相组成系统的微晶玻璃;用溶胶-凝胶法制备的微晶玻璃主要为具有高 温、高强、高韧性以及其它特殊性能的高新技术材料。
14、碳化物陶瓷主要有哪些(列出常用的4种)?它们共同特点是什么?
答:主要有碳化硅(SiC)、碳化硼(B4C)、碳化钛(TiC)、碳化钒(WC)
①具有熔点高,许多碳化物的熔点都在30000C以上,例如碳化钛的熔点为34600C ②具有较高的硬度,例如碳化硼是仅次于金刚石和立方氮化硼的最硬材料,但碳 化物的脆性一般较大。
③具有良好的导电性和导热性以及化学稳定性,几乎大多数碳化物陶瓷在常温下不
与酸反应。
15、碳化硅的合成方法有哪些?各有何特点?
①化合法:将单质Si和C在碳管电炉中直接化合而成,其反应式如下: Si+C === β-SiC ②碳热还原法:这种方法是由氧化硅和碳反应生成碳化物,反应式如下: SiO2+C===SiO(g)+CO(g),SiO 继续被碳还原:SiO+2C===SiC+CO(g)目前为止碳热还原法所需的温度较高,该法生产的颗粒较小,可提高产物纯度和电导率的 新型制备方法
③气相沉积法:气相沉积法可以分为化学气相沉积法(CVD)和物理气相沉积法(PVD),PVD主要利用了蒸发-冷凝机理,而CVD法则是利用硅的卤化物(SiX)和碳氢化物(CnHm)及氢气在发生分解的同时,相互反应生成SiC。这些方法可以制备高纯度的SiC粉末,也可以得到晶须或者薄膜。④有机硅前驱体:将有机金属化合物在真空、氢或者惰性气氛中在相对较低的温度下进行热解反应,从而得到相应的制品。⑤自蔓延高温合成法(SHS法):是一种化合反应方法,一般化合法是依靠外部热源来维持反应的进行,而 SHS 法则是依靠反应时自身放出的热量维持反应的进行,计算表明 SiC o的绝对温度为1800C(放热反应使产物达到的最高温度)⑥溶胶-凝胶法:采用溶胶-凝胶工艺可得到平均晶粒尺寸为 10nm 的β-SiC 纳米粉体。
16、氮化硅的主要晶型有哪些?对氮化硅陶瓷的结构和性能有何影响?
答:氮化硅有两种晶型,即针状结晶的α-Si3N4和颗粒状结晶的β-Si3N4.①它们均属于六方晶系,都是以[SiN4]四面体共用顶角构成的三维空间网络。Si3N4是以共价键为主的化合物,氮原子与硅原子间的键力很强,因而,Si3N4具有许多优异 性能,如耐磨、高硬度、高强度、耐化学腐蚀和很好的高温稳定性具有较高的硬度。②α型结构内部的应变较大,故自由能比β型高,即体系的稳定性比较差,当加热至1500℃ 时,α-Si3N4将转变为β-Si3N4,且这种转变是不可逆的。高α相含量Si3N4粉烧结时可得 到细晶、长柱状β-Si3N4晶粒,提高材料的结构稳定性和断裂韧性。
17、氮化硅的烧结方法有哪些?如何获得致密烧结的氮化硅陶瓷?
烧结方法有:反应烧结、常压烧结、热压烧结、重烧结、热等静压烧结
①改变烧结方式,反应烧结制得的氮化硅一般气孔率较高,可采用常压烧结、热压烧结等致密性烧结方式,降低气孔率,进而获得致密性高的烧结体; ②添加烧结助剂,促进烧结反应的进行; ③常压烧结时埋粉;
④在氮气气氛下烧结,抑制氮化硅的热分解;
⑤采用均匀、尺寸小的氮化硅粉末,提高烧结驱动力。
18、如何提高氮化铝陶瓷的热导率?
①清洁晶界,提高AlN粉末的纯度、适量添加烧结助剂,减少杂质相的引入;
②添加烧结助剂,可降低AlN晶格的氧含量,同时使AlN颗粒间相互接触从而提高热导率,使用适当的复合添加剂也可以提高其热导率;
③孤立第二相或使第二相处于三角境界处,也可改变添加剂和工艺条件使第二相完全被排除;
④粗化晶粒,减少晶界;
⑤提高其致密性,降低气孔率可提高其热导率; ⑥采用一些后处理措施,从而提高热导率,如在还原气氛中可出去AlN中氧和第二相以提高热导率。
19、简述氮化硼的结构特点。
氮化硼有两种晶型:立方BN和六方BN,在高温高压下六方BN可转变为立方BN。①立方BN:其结构与金刚石类似,即碳原子按四面体成键方式互相连接,组成无限的
三维骨架。每个碳原子都以SP3杂化轨道与另外4个碳原子形成共价键,构成正四面体。结构中C-C键很强,所有的价电子都参与了共价键的形成,没有自由电子。所以立方氮化硼的硬度仅次于金刚石,化学惰性比金刚石和硬质合金好。
②六方氮化硼:其结构与石墨类似,即每个碳原子的周边连结着另外三个碳原子,排列方式呈蜂巢式的多个六边形,每层间有微弱的范德华引力。六方氮化硼是良好的高温润滑材料和高温电绝缘材料。
20、硼化物陶瓷主要有哪些?其结构特点是什么?
①硼化物陶瓷是一类新型结构陶瓷,常见的有TiB2、ZrB2、HfB2、TaB2和LaB6等,主要是硼和过渡金属形成的二硼化物,多属于六方晶系。
212②硼化物的结构特点:硼的电子构型为2s2p,主要采用sp2杂化方式与其他原子成键。sp电子杂化导致平面B3X3六角形成为BN、B2O3、H3BO3以及有关化合物的主结构单元,以及导致B3三角形成为元素硼、硼烷族及其衍生物的典型五倍对称二十面体中的一部分。
21、简述硼化物陶瓷的主要性能特点。
①高熔点和难挥发:几乎所有硼化物的熔点都高达2000℃以上,可用于火箭喷嘴、内燃机喷嘴、高温轴承等高温部件。
②高硬度:二硼化物的硬度比较高,TiB2的维氏硬度达到33.5GPa,比β-SiC的硬度高约30%,ZrB2-B4C复合陶瓷的耐磨耗指数是SiC和Si3N4的2倍左右,也比部分稳定氧化锆(PSZ)陶瓷高。③高导电性:二硼化物具有很低的电阻率,特别是ZrB2和TiB2与金属铁、铂的电阻率相当,导电机制为电子传导,呈正的电阻温度系数。作为电阻发热体时,温度易于控制,可用作特殊用途的电极材料。
④高耐腐蚀性:硼化物陶瓷对熔融金属具有良好的耐腐蚀性,与熔融铝、铁、铜、锌几乎不反应。硼化物的这一特性可应用于金属铝、铜、锌、铁的冶炼。在钢铁冶金中,可用它来制作铁水测温热电偶的保护管、喷嘴和吹气管等。在炼铝工业中,炼铝槽的阴极材料采用硼化物陶瓷后,节电可达30%以上。
22、什么是陶瓷基复合材料?它们是如何分类的?
①陶瓷基复合材料主要指由无机非金属材料作基体材料,通过颗粒弥散、纤维及晶须强化增韧等来改善陶瓷材料的力学性能,特别是脆性的一类复合材料。②按符合效果可分为力学型复合材料和功能型复合材料;按材料在复合结构中的作用,可分为基体材料和增强材料。
23、纳米复相陶瓷的结构特点是什么? 答:纳米复相陶瓷是将纳米级的颗粒分散到纳米或微米级陶瓷基体中,经成型和 烧结制成的。由于纳米颗粒能够抑制基体颗粒的长大,使结构均细化,从而 改善材料的力学性能。纳米增强相与基体之间具有非常良好的化学相容性; 纳米增强颗粒与基体在热膨胀系数上有差异;纳米复合后基体晶粒很小、材 料显微结构呈现均匀化、基体晶界强化。
24、如何获得(制备)陶瓷晶须?晶须补强增韧的机理是什么?
答:晶须增韧陶瓷基复合材料是以陶瓷为基体,以晶须为增强体,通过复合工艺制备的新型复合材料。制备方法通常有熔融法、气相法、内熔剂法、水压热法、常压酸化法、烧结法、KDV法、助溶剂法、溶体法、水热法、急冷烧结结晶法、缓冷烧结结晶法等 作用机理为: ①裂纹桥接机理:晶须的存在使裂纹尖端尾部存在一晶须-基体界面解离区,在此区域 内,晶须把裂纹桥接起来并在裂纹表面产生闭合应力。
②裂纹偏转机理:晶须会导致裂纹发生弯曲和偏转,从而干扰应力场,导致基体的应力 强度降低,起到阻碍裂纹扩展的作用。③晶须拔出机理:晶须在外应力作用下沿着它和基体的界面滑出的现象。晶须的拨出增加了裂纹的路径和材料的断裂功。
25、影响纤维补强陶瓷基复合材料性能的主要因素有哪些?
①纤维尺寸:直径、长度、晶须尺寸
②纤维的排列方向:排列方向与应力方向平行
③晶须含量及分布的均匀性:含量的增加,韧性增大,强度降低。均匀性改善,强度提高,韧性值提高不大
④纤维和基体间的物理相容性:热膨胀性能的匹配
⑤纤维与基体间的化学相容性:不发生化学反应,性能不退化 ⑥界面性质:界面对传递应力、裂纹扩展与能量吸收或分散起重要作用。界面层的性质可以 用纤维与基体之间结合力的大小来衡量。只有纤维与基体之间保持适中的结合强度,其中的纤维可承担大部分外加应力,又能在断裂过程中以“拔出功”的形式消耗能量时,才能获得既补强又增韧的陶瓷基复合材料。
26、设计纤维或晶须补强陶瓷基复合材料应遵循的原则有哪些?
① 尽量使纤维在基体中均匀分散;
② 弹性模量要匹配,纤维的强度和弹性模量应大于基体材料;
③ 纤维与基体要有良好的化学相容性,无明显的化学反应或形成固溶体;
④ 纤维与基体热膨胀系数要匹配,只有不大时才能使纤维与界面结合力适当,保证载荷转 移效应,并保证裂纹尖端应力产生偏转及纤维拔出;
⑤ 适量的纤维体积分数,过低则力学性能改善不明显,过高则纤维不易分散,不易致密烧结;
⑥ 纤维直径必须在某个临界直径以下。
27、高性能陶瓷涂层具有哪些特点?
①能将金属材料的强韧性、易加工性、导电、导热性等和陶瓷材料的耐高温、高耐磨、高耐
特点有机结合,发挥两类材料的综合优势,同时满足产品对结构性能(强度、韧性等)和环境性能(耐磨、耐蚀、耐高温等)或特种功能(红外辐射、微波吸收、热敏、光敏等)的需要。②能够用于制备陶瓷涂层的材料品种多,包括各种氧化物和复合氧化物、碳化物、氮化物、硼化物、硅化物以及金属陶瓷和金属间化合物。③制备陶瓷涂层的工艺方法多,且投资小,灵活方便。
固相沉积:如热喷涂、高温自蔓延法、电火花表面强化法等
气相沉积:如化学气相沉积(CVD)、物理气相沉积(PVD)、真空离子沉积等; 液相法:如溶胶法、电化学沉积法、化学自催化沉积法(化学镀)等。④能够在不同的基体材料上沉积陶瓷涂层。
⑤涂层功能极广。能够制备陶瓷涂层的材料很多,并能根据需要采用不同的涂层制备工艺,获得具有表面强化或特种功能的陶瓷涂层,如高耐磨、自润滑、密封、制动、耐腐蚀、抗氧化、耐高温、绝热、绝缘、屏蔽及微波吸收、敏感元件(压敏、气敏、光敏等)、红外辐射、防辐射、催化、超导及生物功能等。
⑥涂层成分较容易调整。可以通过调整涂层材料的种类、配比及涂覆工艺等,比较容易地实现涂层成分和涂层性能的调整。
⑦物耗少、物流小、附加值高、经济效益突出。⑧陶瓷涂层厚度可控
⑨能够实现制品的局部改性与表面强化,容易成型。
⑩容易与原有金属加工的工装条件结合,企业的技术改造易于实现。不足之处:
①陶瓷涂层有着陶瓷材料塑性变形能力差、对应力集中和裂纹敏感、抗热震和抗疲劳性能差。②陶瓷涂层与金属材料的热物理性能(如膨胀系数、热导率等)差别大,在使用过程中可能产生不同的应力状态,影响其使用性能和寿命。
③陶瓷涂层与基体材料的结合主要为机械嵌合或分子力结合,结合强度不高。
27、何谓梯度功能涂层?有何特点?
梯度功能涂层是采用热喷涂技术,特别是等离子喷涂技术,使用送粉量连续可变的送粉装置,将至少两种组分的涂层材料连续的喷涂在芯模上,使涂层的成分变化实现由 0~100%的连续积分式均匀递变,以达到两种不同涂层材料特别是金属与陶瓷材料的物理力学性能特别是热物理性能优化匹配的目的。将喷涂的涂层从芯模上取下,就获得了梯度功能材料。
梯度功能材料主要用作高温端和冷端温差特别大、热流量很大工况下的高温结构材料,防止因热膨胀系数相差过大而产生高的热应力使高温部件过早破坏或失效。实质上,梯度功能就是材料承受的高温连续递变的温度梯度功能。其特点是:
①降低热应力。能使不同材料特别是金属与陶瓷材料之间的热膨胀系数的差值降至最小,从而使热应力降至最小。
②简化复合材料的制造工艺。克服了采用不同整体材料靠层层粘结、压制、烧结等过程制造复合材料的诸多问题,流程和工序大大简化。③热流传输损失小。解决了高热流传输过程中通过复合材料中不同材料的结合点所产生的热流损失问题,有利于提高热效率。④容易进行无损检测。梯度功能材料具有连续过渡的梯度结构,没有明显的界面和结合点,容易使用无损检测技术如超声检测技术进行检测。⑤可以制造复杂形状部件。如近网状结构,叶片结构等。
⑥优化材料设计。能将最好但却昂贵的材料用在最需要的地方。