大数据与云计算在教学运用的可行性探究

时间:2019-05-13 00:19:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大数据与云计算在教学运用的可行性探究》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大数据与云计算在教学运用的可行性探究》。

第一篇:大数据与云计算在教学运用的可行性探究

大数据与云计算在教学运用的可行性探究

摘要:

在过去近20年的信息化建设中,人们的生活方式已经发生了巨大的变化,而在教育领域,特别是义务教育阶段学与教的方式改变甚微。进入21世纪,随着云计算技术的发展和在此基础上延伸出的大数据采集、处理、挖掘等技术的实际运用,IT技术的迅猛发展为教育信息化发展提供了强劲的动力,为新时代教学工作带来翻天覆地的变化。

关键字:大数据,云计算,教学运用 什么是云计算技术?从Amazon的“弹性计算云”到IBM的“蓝云”,从Google Apps到微软的Windows Live。对于“云”的解释,众说纷纭,每个人、每个行业都有自己的认识。我的理解是,在义务教育领域,云计算技术提供廉价、安全、科学的数据服务,将学生、教师、家长、学校管理各方面紧密联系起来,提高效率。主要应用有云存储、云教育、云会议。

什么是大数据?大数据并不是简单的名词,在教学过程中,它主要指通过对学生、教师等用户每天通过各种终端在网络上学习、娱乐、交流等产生的大量数据的采集、分析、处理、挖掘,为教学、学生管理等提供指导和预测。

一.利用云计算的功能特点应用教学中:

1、利用云计算技术的网络化特点搭建师生,家校,师校的平台。

云计算、大数据技术依托互联网,并在此基础上进行了极大的扩展和丰富。特别是随着移动互联网技术的运用,各种廉价移动终端的大量使用,云计算、大数据技术为学生、教师提供了随时随地沟通、交流、学习的可能性。

(1)通过云计算网络上的各种应用,可以方便地实现学生与教师之间的交流,这种交流方式更直接、更公平。教师可以通过应用程序发布课前预习内容或者课后作业,甚至直接将教学视频发在网络上供学生随时调阅,学生则可以在评论板块发表自己的意见,教师及时对学生的疑问给予反馈,提高学习效率。在英语教学中,学生既可以在课前网上搜索信息,做好预习工作,将有疑问的内容标记下来,课上做到有的放矢,提高课堂效率,也可以将课后练习中遇到的难题发布到网上供全体学生讨论,集思广益,让大数据成为学生间沟通的桥梁。

(2)建立起教师、家长、学校管理层等各方面的有效沟通,家庭教育是学校教育的基础,建立家-校互动平台将促进家长与教师之间的及时交流。引导家长参与学校的管理,利用移动互联技术实现对学生在家、在学校行为的实时联系和互动,家长可以对学校课程设置、学生管理制度等提出自己的意见,学校予以回应,形成有效互动,共同关心学生的成长。例如,英语学科可以把学生的每天默写成绩通过平台发给家长,让家长了解孩子每天所学内容的欠缺和家长应该配合的部分,初中三年是孩子心里和生理成长的关键阶段,有效即时的沟通可以让家长了解孩子成长的过程及心理的变化,学校,家长和教师三方面共同努力为孩子创造良好的成长环境,让孩子健康,快乐地渡过青春期。

(3)有助于建立扁平化的集体管理模式,创造民主、平等的校园文化。云技术的出现可以改变传统的学校科层制管理模式,构建一个学校内部管理平台,学校的管理制度不再由某个或者某几个高层领导决断,而是大家集体智慧的结晶,创建一个开放、和谐、深度互动的平台。决策的每一步和最终的内容都建立在充分民主的基础上,让学校的每一位教职员工都形成共同的愿景,实现学校和教育事业的可持续发展。

2、结合数据挖掘等技术,云计算技术可以帮助教师实现学生的个性化学习。

(1)在移动网络的帮助下,学生的学习突破了传统学校教育的时间和空间限制,学生可以在任何时间、地点根据自身情况自主选择学习的内容,提出疑问并得到教师的回复。

(2)运用数据挖掘等技术,在教学过程中,教师发现自己录制的一段课程其中的某几个环节或时间点,被学生们反复浏览和点击的时候,他通常会及时地意识到这可能是一个对学生来说难以掌握的知识点,或是一个自己的讲解表述有差失的地方,接下来就可以据此调整讲义。而对考试这件事来说,通过在线模拟测试,大数据可以用来分析和统一某个学生群体或个体对不同知识点的掌握情况,当某个知识点的题目被频繁做错的时候,系统就会在接下来的模拟测试中不断强化出现与这个知识点相关的题目,以巩固学习效果。这不是帮人“作弊”,反而是强化理解知识的方式。

(3)将云计算、大数据技术与学习型组织建设结合起来,更好、更科学地挖掘学生的潜能。由于学生的个体差异很大,通过大数据系统的数据处理,可以帮助教师更好地了解每个学生知识掌握程度,将班级学生分为若干不同层次、不同水平的对象小组,有针对性地进行个性辅导,极大提高教学效率,减少传统的一个班级上一堂课这种难以兼顾高低的低效率教学方式,减轻学生和教师的负担,提高效率。培养学生创新精神与自主性。借用工商管理领域中学习型组织的概念,学校作为一个组织也应该通过培养弥散于整个组织的学习气氛,充分发挥教师、学生的创造性思维而建立起来一种有机的、高度柔性的、1 扁平的、符合人性的、可持续发展的学习型组织。实现民主、平等的校园文化,在对话和交往中完成学习和知识的共享。云计算技术创建了一个自由的学习空间,教师承担的是辅导者和促进者的角色,学生成为主动的学习者,享受更多自由支配学习的权利,有利于发展学生的创新精神和自主性,通过丰富的手段积极引导学生变“要我学”为“我要学”。将相同兴趣的学生集合起来,在班级内部形成多层次的学习小组,将网络学习的单人教育与集体学习结合起来,形成组织内的浓厚学习气氛,促进组织内的每个学生共同进步。同时,教师也应该根据不同年龄段学生的自主控制能力来合理、科学地分配教师在教学过程中发挥作用的比例,不能一味的放任学生自主学习,适当的引导、控制非常重要。

3、云计算及大数据技术在教育领域的大规模应用,其在客户端的低成本优势可带来教育平衡与公平。

(1)云计算与大数据技术的本质,是将教学工作所需的大量计算、存储、多媒体展示等复杂任务交给后台的云端来处理。学校本身不再需要配备昂贵的服务器,仅仅需要配备低功能、廉价的展示平台即可,大大降低了学校信息化的成本。例如:在云计算时代,教师制作的一个包含视频展示、PPT演示、模拟实验等多媒体内容的教学内容,仅仅需要将做好的内容放在云端,由云端将所有内容处理后向各客户端直接输出经过压缩过的视频,学生的客户端仅仅需要配置简单的解压缩功能和视频播放功能即可,不需要更高级的处理能力和视频处理能力。

(2)云计算及大数据技术降低了对教师IT能力的要求,教师不再需要学习复杂的操作,仅仅需要学习一些软件的使用即可,后台如何处理完全交给云端,学校也不需要配备专业性很强的IT教师,节省了大量人力资源。

(3)基于以上两点,云计算、大数据技术在教育领域的大规模应用,还会带来教育的平衡与公平。目前,社会各界都已经认识到教育均衡发展的重要性,教育是“社会发展的平衡器、稳定器,是社会进行再分配的一个调节手段。”随着我国互联网、移动互联技术的发展,利用云计算、大数据技术在客户端的低成本优势,通过资源的共享来实现教育公平。给不同阶层、不同背景的孩子更加公平的学习机会,为社会不同阶层的垂直流通创造可能,促进社会和谐。利用云计算及大数据技术拉近东西部地区、城市与农村教育水平。宏观上看,如果建立某一地区或者省市,大到国家层面这些信息的统一数据库,可以从中分析出哪些地区在某些教育环节上的薄弱之处,可以请先进地区提供经验,对教育不发达地区教师进行培训,甚至直接请名师对学生进行远程教学,拉近不同区域教学水平。(4)、高性能,高安全性,为学生创造一个干净、安全的网络环境。云计算的终端是由Google、IBM等专业的网络公司来搭建的,其后台的数据处理能力强大,而对客户端的要求较低。互联网这样一个自由、开放的平台上很多负面、不健康的内容也会不加选择地呈现在学生的面前,这也是目前困扰家长及教师该不该让学生上网的一个核心问题。很多家长由于IT技术的缺乏,很难做到对孩子上网行为的控制。在云计算、大数据技术下,这些都可以得到专业、系统的解决,由云端对学生的上网行为进行监管,为学生创造一个干净、健康、安全的网络环境。

4、云计算及大数据对学生身心发展的可预见性。大数据技术还可以通过对各种相关因素的分析,找到外界因素与学生行为之间的相关性,为学校管理、学生管理提供准确、科学的依据。教育是按既定目标对人进行德、智、体、美、全面培养的活动过程。它的内涵是依据培养目标塑造一个人。因此,学生在校期间不仅仅要学习知识,更要树立学生正确、积极的人生观、价值观,使之成为一个文明、开放、积极的公民。运用云计算及大数据技术,特别是在长期数据采集、挖掘、分析的基础上,可以为教师在学生各方面发展方面给出指导性、预见性的意见。例如:初中阶段,学生逐步进入青春期,其自我意识开始觉醒,身体、心理方面发生巨大的变化。在这个阶段教师往往疲于应付各种突发状况,处理的方式往往依据教师的主观意愿或者经验,有很大的不确定性。大数据技术根据长期对学生该阶段各种行为及各种网络痕迹的积累,可以预测出哪些学生身上可能会出现某些情况,为教师的提前介入提供建议。二.虽然云计算及大数据技术在教育领域的运用有着非常光明的前景,但是客观地讲,目前,我国在云计算及大数据技术在教育领域方面的运用才刚刚开始,各方面还不完善,主要存在以下几个问题:

1、缺乏变革的动力和决断。

学校作为一种典型的教育组织形式,诞生于工业革命时期,为满足工业化大生产迅速扩张造成的技术人才需求猛增,学校作为一种“批量生产”人才的“工厂”应运而生。在过去的400年发展过程中,学校作为教学组织形式、班级作为授课模式基本上没有发生改变,这与人类社会在其他领域的不断进步和变革形成强烈的对比。21世纪人类进入信息时代,对人才的需求发生了重大改变,教育也应该随之发生改变。可惜的是,很多人对于教育的理解还是老师教好书、学生读好书的阶段,没有意识到以云计算、大数据为代表的新技术为教育工作提高效率,实现学生的个性化发展提供了强大的支持。特别是目前学校管理很大程度上还是沿袭自上而下的方式,新技术的引入、应用,教学模式的转变还缺乏动力和决断力。很多人安于现状,不敢大胆尝试,这是阻碍新技术在教育领域中运用的主要问题。

2、云计算、大数据技术的本土化不够。

云计算、大数据技术的概念及发展基本上由Googel、IBM等国际IT业巨头掌握,其在教育领域的运用也多基于国外的教育模式。目前国内用于教学试验的几个平台如Google101等上面的各种应用还有着浓重的欧美风格,没有贴合国内教学环境,在这方面,应该通过政策扶持、教育资金投入等方式,培养一批专业的应用服务提供商,为中国孩子设计和制作各种教学运用及数据分析、挖掘软件。

3、云技术、大数据技术在教育领域的运用,还缺乏规范和法律支撑。

新技术的运用,涉及到学生的个人隐私、个人数据,学校的敏感数据等保护问题,目前国内还缺乏对于个人、企业敏感数据在云技术应用背景下的规范和法律支撑。很多人都担心自己的数据如果交给云端会不会受到侵害,这是阻碍云计算、大数据技术大规模应用的一个重要问题。结束语:

我国要在21世纪的中期实现中华民族的伟大复兴,实现中国梦,离不开大批掌握先进技术、人格完整、精神奋发的人才。作为一名教育工作者,我承担着为祖国培养新世纪合格人才的重任,在多年的教学过程中,深感教育工作也必须从一本书、一支粉笔、一个讲台的传统低效率模式转入利用多媒体移动终端多层次、形象化、立体化、趣味化、多样化教学。云计算与大数据技术在教育领域的应用,给我们带来的不仅仅是丰富的资源,还有思维方式的转变,更是一种跨越式的变革。未来我们必须以更开放的心态对待新技术在教学领域的应用,不断努力尝试开发更多的贴近中国学生实际的云计算教育应用,充分发挥云计算、大数据技术在教育领域的特点和优势,真正实现教育与时代发展的共振,不辱教师使命!

第二篇:大数据与云计算论文

大数据与云计算

摘 要:大数据(Big Data)这个概念近年来在越来越多的场合、被越来越多的人提及,并且经常和云计算联系在一起,云计算与大数据之间到底是什么关系成为热点话题。本

专题报告包含以下四个方面内容:1.大数据的价值;2.大数据带来的挑战;3.大数据研究成果;4.云计算是大数据挖掘的主流方式。通过本报告阐述我们对大数据的理解,以及对大数据的价值的认识,探讨大数据处理与挖掘技术,大数据主要着眼于“数据”,提供数据采集、挖掘、分析的技术和方法;云计算技术主要关注“计算”,提供IT 解决方案。大数据、云计算技术可以促进持续审计方式的发展、总体审计模式的应用、审计成果的综合应用、相关关系证据的应用、高效数据审计的发展和大数据审计师的发展。强化大数据、云计算技术审计应用的措施包括制定长远发展战略、加快审计法规建设、建立行业平台、加强研发和提高利用能力。关键词:大数据 云计算 数据挖掘 对审计影响 政策建议 引言

目前,大数据伴随着云计算技术的发展,正在对全球经济社会生活产生巨大的影响。大数据、云计算技术给现代审计提供了新的技术和方法,要求审计组织和审计人员把握大数据、云计算技术的内容与特征,促进现代审计技术和方法的进一步发展。

一、大数据、云计算的涵义与特征

随着云计算技术的出现,大数据吸引了全世界越来越多的关注。哈佛大学社会学教授加里·金(2012)说: “这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”(一)大数据的涵义与特征

“数据”(data)这个词在拉丁文里是“已知”的意思,也可以理解为“事实”。2009 年,“大数据”概念才逐渐开始在社会上传播。而“大数据”概念真正变得火爆,却是因为美国奥巴马政府在2012 年高调宣布了其“大数据研究和开发计划”。这标志着“大数据”时代真正开始进入社会经济生活中来了。“大数据”(big data),或称巨量资料,指的是所涉及的数据量规模大到无法利用现行主流软件工具,在一定的时间内实现收集、分析、处理或转化成为帮助决策者决策的可用信息。互联网数据中心(IDC)认为“大数据”是为了更经济、更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。大数据具有4 个特点: 第一,数据体量巨大(Volume),从TB 级别跃升到PB 级别。第二,处理速度快(Velocity),这与传统的数据挖掘技术有着本质的不同。第三,数据种类多(Variety),有图片、地理位置信息、视频、网络日志等多种形式。第四,价值密度低,商业价值高(Value)。存在单一数据的价值并不大,但将相关数据聚集在一起,就会有很高的商业价值(金良,2012)。大数据时代,不仅改变了传统的数据采集、处理和应用技术与方法,还促使人们思维方式的改变。大数据的精髓在于促使人们在采集、处理和使用数据时思维的转变,这些转变将改变人们理解和研究社会经济现象的技术和方法。

(1)是在大数据时代,不依赖抽样分析,而可以采集和处理事物整体的全部数据。19 世纪以来,当面临大的样本量时,人们都主要依靠抽样来分析总体。但是,抽样技术是在数据缺乏和取得数据受限制的条件下不得不采用的一种方法,这其实是一种人为的限制。过去,因为记录、储存和分析数据的工具不够科学,只能收集少量数据进行分析。如今,科学技术条件已经有了很大的提高,虽然人类可以处理的数据依然是有限的,但是可以处理的数据量已经大量增加,而且未来会越来越多。随着大数据分析取代抽样分析,社会科学不再单纯依赖于抽样调查和分析实证数据,现在可以收集过去无法收集到的数据,更重要的是,现在可以不再依赖抽样分析。

(2)是在大数据时代,不再热衷于追求数据的精确度,而是追求利用数据的效率。当测量事物的能力受限制时,关注的是获取最精确的结果。但是,在大数据时代,追求精确度已经既无必要又不可行,甚至变得不受欢迎。大数据纷繁多样,优劣掺杂,精准度已不再是分析事物总体的主要手段。拥有了大数据,不再需要对一个事物的现象深究,只要掌握事物的大致发展趋势即可,更重要的是追求数据的及时性和使用效率。与依赖于小数据和精确性的时代相比较,大数据更注重数据的完整性和混杂性,帮助人们进一步认识事物的全貌和真相。

(3)是在大数据时代,人们难以寻求事物直接的因果关系,而是深入认识和利用事物的相关关系。长期以来,寻找因果关系是人类发展过程中形成的传统习惯。寻求因果关系即使很困难且用途不大,但人们无法摆脱认识的传统思维。在大数据时代,人们不必将主要精力放在事物之间因果关系的分析上,而是将主要精力放在寻找事物之间的相关关系上。事物之间的相关关系可能不会准确地告知事物发生的内在原因,但是它会提醒人们事情之间的相互联系。人们可以通过找到一个事物的良好相关关系,帮助其捕捉到事物的现在和预测未来。(二)云计算的涵义与特征

“云计算”概念产生于谷歌和IBM 等大型互联网公司处理海量数据的实践。2006 年8 月9 日,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会首次提出“云计算”的概念。2007 年10 月,Google 与IBM 开始在美国大学校园推广云计算技术的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(Michael Mille,2009)。目前全世界关于“云计算”的定义有很多。“云计算”是基于互联网的相关服务的增加、使用和交付模式,是通过互联网来提供动态易扩展且经常是虚拟化的资源。美国国家标准技术研究院(NIST)2009年关于云计算的定义是: “云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务等),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。”根据这一定义,云计算的特征主要表现为: 首先,云计算是一种计算模式,具有时间和网络存储的功能。其次,云计算是一条接入路径,通过广泛接入网络以获取计算能力,通过标准机制进行访问。第三,云计算是一个资源池,云计算服务提供商的计算资源,通过多租户模式为不同用户提供服务,并根据用户的需求动态提供不同的物理的或虚拟的资源。第四,云计算是一系列伸缩技术,在信息化和互联网环境下的计算规模可以快速扩大或缩小,计算能力可以快速、弹性获得。第五,云计算是一项可计量的服务,云计算资源的使用情况可以通过云计算系统检测、控制、计量,以自动控制和优化资源使用。(三)大数据与云计算的关系

从整体上看,大数据与云计算是相辅相成的。大数据主要专注实际业务,着眼于“数据”,提供数据采集、挖掘、分析的技术和方法,强调的是数据存储能力。云计算主要关注“计算”,关注IT 架构,提供IT 解决方案,强调的是计算能力,即数据处理能力。如果没有大数据的数据存储,那么云计算的计算能力再强大,也难以找到用武之地;如果没有云计算的数据处理能力,则大数据的数据存储再丰富,也终究难以用于实践中去。

从技术上看,大数据依赖于云计算。海量数据存储技术、海量数据管理技术、MapReduce 编程模型都是云计算的关键技术,也都是大数据的技术基础。而数据之所以会变“大”,最重要的便是云计算提供的技术平台。数据被放到“云”上之后,打破了过去那种各自分割的数据存储,更容易被收集和获得,大数据才能呈现在人们眼前。而巨量的数据也只能依靠云计算强大的数据处理能力,才能够“淘尽黄沙始得金”。

从侧重点看,大数据与云计算的侧重点不同。大数据的侧重点是各种数据,广泛、深入挖掘巨量数据,发现数据中的价值,迫使企业从“业务驱动”转变为“数据驱动”。而云计算主要通过互联网广泛获取、扩展和管理计算及存储资源和能力,其侧重点是IT 资源、处理能力和各种应用,以帮助企业节省IT部署成本。云计算使企业的IT 部门受益,而大数据使企业的业务管理部门受益。

从结果看,大数据与云计算带来不同的变化。大数据对社会经济带来的变化是巨大的,涉及到各个领域。大数据已经与资本、人力一起作为生产的主要因素影响着社会经济的发展。数据创造价值,而挖掘数据价值、利用数据的“推动力”就是云计算。云计算将信息存储、分享和挖掘能力极大提高,更经济、高效地将巨量、高速、多变的终端数据存储下来,并随时进行计算与分析。通过云计算对大数据进行分析、总结与预测,会使得决策更可靠,释放出更多大数据的内在价值。

二、大数据、云计算技术对审计的影响分析

审计技术和方法的发展是随着科学和管理技术的发展而发展的。现代审计技术和方法体系是在原始的查账基础上从低级向高级、从不完备到比较完备发展起来的。在业务和会计处理手工操作阶段,审计实施的是账表导向的审计技术和方法;当内部控制理论和方法全面应用于业务和会计处理时,审计实施的是系统导向的审计技术和方法;当风险管理理论和方法全面应用于业务和财务管理时,审计实施的是风险导向审计技术和方法;与风险导向审计技术和方法并行的是,计算机技术广泛应用于业务和会计处理时,审计实施的是IT 审计技术和方法。目前,面对大数据、云计算技术的产生和发展,审计人员需要应时而变来适应由此而带来的变化,分析大数据、云计算技术对审计方式、审计抽样技术、审计报告模式、审计证据搜集等技术和方法的影响。(一)大数据、云计算技术促进持续审计方式的发展

传统审计中,审计人员只是在被审计单位业务完成后才进行审计,而且审计过程中并不是审计所有的数据和信息,只是抽取其中有的一部分进行审计。这种事后和有限的审计对被审计单位复杂的生产经营和管理系统来说很难及时做出正确的评价,而且对于评价日益频繁和复杂的经营管理活动的真实性和合法性则显得过于迟缓。随着信息技术迅速发展,越来越多的审计组织对被审计单位开始实施持续审计方式,以解决审计结果与经济活动的时差问题。但是,审计人员实施持续审计时,往往受目前业务条件和信息化手段的限制,取得的非结构化数据无法数据化,或者无法取得相关的明细数据,致使对问题的判断也难以进一步具体和深入。而大数据、云计算技术可以促进持续审计方式的发展,使信息技术与大数据、云计算技术较好交叉融合,尤其对业务数据和风险控制“实时性”要求较高的特定行业,如银行、证券、保险等行业,在这些行业中实施持续审计迫在眉睫。如审计组织对商业银行的审计,实行与商业银行建立业务和数据系统的接口,在开发的持续审计系统中固化了非结构化数据结构化和数据分析模块,该模块可以在海量贷款客户中挖掘、分析出行业性和区域性贷款风险趋势,实现在线的风险预警,并将发现的风险数据、超预警值指标及问题登记为疑点,并建立实时审计工作底稿,按照重要程度进行归类、核实或下发给现场审计人员进行现场核实,以较好处理非结构化数据的利用和数据的实时分析利用问题。(二)大数据、云计算技术促进总体审计模式的应用

现时的审计模式是在评价被审计单位风险基础上实施抽样审计。在不可能收集和分析被审计单位全部经济业务数据的情况下,现时的审计模式主要依赖于审计抽样,从局部入手推断整体,即从抽取的样本着手进行审计,再据此推断审计对象的整体情况。这种抽样审计模式,由于抽取样本的有限性,而忽视了大量和具体的业务活动,使审计人员无法完全发现和揭示被审计单位的重大舞弊行为,隐藏着重大的审计风险。而大数据、云计算技术对审计人员而言,不仅仅是一种可供采用的技术手段,这些技术和方法将给审计人员提供实施总体审计模式的可行性。利用大数据、云计算技术,对数据的跨行业、跨企业搜集和分析,可以不用随机抽样方法,而采用搜集和分析被审计单位所有数据的总体审计模式。利用大数据、云计算技术的总体审计模式是要分析与审计对象相关的所有数据,使得审计人员可以建立总体审计的思维模式,可以使现代审计获得革命性的变化。审计人员实施总体审计模式,可以规避审计抽样风险。如果能够收集总体的所有数据,就能看到更细微、深入的信息,对数据进行多角度的深层次分析,从而发现隐藏在细节数据中的对审计问题更具价值的信息。同时,审计人员实施总体审计模式,能发现从审计抽样模式所不能发现的问题。大数据、云计算技术给审计人员提供了一种能够从总体把握审计对象的技术手段,从而帮助审计人员能从总体的视角发现以前难以发现的问题。

(三)大数据、云计算技术促进审计成果的综合应用

目前,审计人员的审计成果主要是提供给被审计单位的审计报告,其格式固定,内容单一,包含的信息量较少。随着大数据、云计算技术在审计中广泛应用,审计人员的审计成果除了审计报告外,还有在审计过程中采集、挖掘、分析和处理的大量的资料和数据,可以提供给被审计单位用于改进经营管理,促进审计成果的综合应用,提高审计成果的综合应用效果。首先,审计人员通过对审计中获取的大量数据和相关情况资料的汇总、归纳,从中找出财务、业务和经营管理等方面的内在规律、共性问题和发展趋势,通过汇总归纳宏观性和综合性较强的审计信息,为被审计单位投资者和其他利益相关者提供数据证明、关联分析和决策建议,从而促进被审计单位管理水平的提高。其次,审计人员通过应用大数据、云计算技术,可以将同一问题归入不同的类别进行分析和处理,从不同的角度、不同的层面整合提炼以满足不同层次的需求。再次,审计人员将审计成果进行智能化留存,通过大数据、云计算技术,将问题规则化并固化到系统中,以便于计算或判断问题发展趋势,向被审计单位进行预警。最后。审计人员将审计成果、被审计单位与审计问题进行关联,并进行信息化处理,在进行下次审计时,减少实地审计的时间和工作量,提高审计工作的效率。(四)大数据、云计算技术促进相关关系证据的应用

审计人员在审计过程中,应根据充分、适当的审计证据发表审计意见,出具审计报告。但是,在大数据、云计算环境下,审计人员既面临巨量数据筛选的考验,又面临搜集适当审计证据的挑战。审计人员在搜集审计证据时,传统的思维路径都是基于因果关系来搜集审计证据,而大数据分析将会更多地运用相关关系分析来搜集和发现审计证据。但从审计证据发现的角度来看,由于大数据技术提供了前所未有的跨领域、可供量化的维度,使得审计问题大量的相关信息能够得以记录和计算分析。大数据、云计算技术没有改变事物间的因果关系,但在大数据、云计算技术中对相关关系的开发和利用,使得数据分析对因果逻辑关系的依赖降低了,甚至更多地倾向于应用基于相关关系的数据分析,以相关关系分析为基础的验证是大数据、云计算技术的一项重要特征。在大数据、云计算技术环境下,审计人员能搜集到的审计证据大多是电子证据(秦荣生,2013)。电子证据本身就非常复杂,云计算技术使获取有因果关系的证据更加困难。审计人员应从长期依赖因果关系来搜集和发现审计证据,转变成为利用相关关系来搜集和发现审计证据。(五)大数据、云计算技术促进高效数据审计的发展

直到今天,审计人员的数字审计技术依然建立在精准的基础上。这种思维方式适用于掌握“小数据量”的情况,因为需要分析的数据很少,所以审计人员必须尽可能精准地量化被审计单位的业务。随着大数据、云计算技术成为日常生活中的一部分,审计人员应开始从一个比以前更大、更全面的角度来理解被审计单位,将“样本= 总体”植入审计人员的思维中。相比依赖于小数据和精确性的时代,大数据更强调数据的完整性和混杂性,帮助审计人员进一步接近事情的真相,“局部”和“精确”将不再是审计人员追求的目标,审计人员追求的是事物的“全貌”和“高效”。围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现。在实施审计时,审计人员应利用大数据、云计算技术,使用分布式拓朴结构、云数据库、联网审计、数据挖掘等新型的技术手段和工具,以提高审计的效率。

(六)大数据、云计算技术促进大数据审计师的发展

大数据、云计算时代,数据的真实、可靠是大数据发挥作用的前提。这客观上要求专业人员来对大数据的真实性、可靠性进行鉴证,审计人员可以扮演这种角色,或者称为数据审计师。能对大数据真实性、可靠性进行鉴证的数据审计师应该是计算机科学、数学、统计学和审计学领域的专家,他们应有大数据分析和预测的评估能力。数据审计师应恪守公正的立场和严守保密的原则,面对海量的数据和纷繁复杂的相关关系,选取分析和预测工具,以及解读数据及数据计算结果是否真实、可靠。一旦出现争议,数据审计师有权审查与分析结果相关的运算法则、统计方法以及数据采集、挖掘和处理过程。数据审计师的出现是为满足以市场为导向来解决数据真实性、可靠性问题的需求,这与20 世纪初期为了处理财务信息虚假而出现的审计人员一样,都是为了满足新需求而出现的。

三、大数据挖掘

数据的价值只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。在业界,全球著名的Google、EMC、惠普、IBM、微软等互联网公司都已经意识到大数据挖掘的重要意义。上述IT 巨头们纷纷通过收购大数据分析公司,进行技术整合,希望从大数据中挖掘更多的商业价值。数据挖掘通常需要遍历训练数据获得相关的统计信息,用于求解或优化模型参数,在大规模数据上进行频繁的数据访问需要耗费大量运算时间。数据挖掘领域长期受益于并行算法和架构的使用,使得性能逐渐提升。过去15 年来,效果尤其显著。试图将这些进步结合起来,并且提炼。GPU平台从并行上得到的性能提升十分显著。这些GPU平台由于采用并行架构,使用并行编程方法,使得计算能力呈几何级数增长。即便是图形处理、游戏编程是公认的复杂,它们也从并行化受益颇多。研究显示数据挖掘、图遍历、有限状态机是并行化未来的热门方向。MapReduce 框架已经被证明是提升GPU 运行数据挖掘算法性能的重要工具。D.Luo 等提出一种非平凡的策略用来并行一系列数据挖掘与数据挖掘问题,包括一类分类SVM 和两类分类SVM,非负最小二乘问题,及L1 正则化回归(lasso)问题。由此得到的乘法算法,可以被直截了当地在如MapReduce 和CUDA 的并行计算环境中实现。K.Shim 在MapReduce 框架下,讨论如何设计高MapReduce 算法,对当前一些基于MapReduce 的数据挖掘和数据挖掘算法进行归纳总结,以便进行大数据的分析。Junbo Zhang 等提出一种新的大数据挖掘技术,即利用MapRedue 实现并行的基于粗糙集的知识获取算法,还提出了下一步的研究方向,即集中于用基于并行技术的粗糙集算法处理非结构化数据。F.Gao 提出了一种新的近似算法使基于核的数据挖掘算法可以有效的处理大规模数据集。当前的基于核的数据挖掘算法由于需要计算核矩阵面临着可伸缩性问题,计算核矩阵需要O(N2)的时间和空间复杂度来计算和存储。该算法计算核矩阵时大幅度降低计算和内存开销,而且并没有明显影响结果的精确度。此外,通过折中结果的一些精度可以控制近似水平。它独立于随后使用的数据挖掘算法并且可以被它们使用。为了阐明近似算法的效果,在其上开发了一个变种的谱聚类算法,此外设计了一个所提出算法的基于MapReduce 的实现。在合成和真实数据集上的实验结果显示,所提出的算法可以获得显著的时间和空间节省。Christian Kaiser 等还利用MapReduce 框架分布式实现了训练一系列核函数学习机,该方法适用于基于核的分类和回归。Christian Kaiser 还介绍了一种扩展版的区域到点建模方法,来适应来自空间区域的大量数据。Yael Ben-Haim 研究了三种MapReduce 实现架构下并行决策树分类算法的设计, 并在Phoenix 共享内存架构上对SPRINT 算法进行了具体的并行实现。F.Yan 考虑了潜在狄利克雷分配(LDA)的两种推理方法——塌缩吉布斯采样(collapsed Gibbssampling,CGS)和塌缩变分贝叶斯推理(collapsedvariational Bayesian,CVB)在GPU 上的并行化问题。为解决GPU 上的有限内存限制问题,F.Yan 提出一种能有效降低内存开销的新颖数据划分方案。这种划分方案也能平衡多重处理器的计算开销,并能容易地避免内存访问冲突。他们使用数据流来处理超大的数据集。大量实验表明F.Yan 的并行推理方法得到的LDA 模型一贯地具有与串行推理方法相同的预测能力;但在一个有30 个多核处理器的GPU 上,CGS 方法得到了26倍的加速,CVB 方法得到了196 倍的加速。他们提出的划分方案和数据流方式使他们的方法在有更多多重处理器时可伸缩,而且可被作为通用技术来并行其它数据挖掘模型。Bao-Liang Lu 提出了一种并行的支持向量机,称为最小最大模块化网络(M3),它是基“分而治之”的思想解决大规模问题的有效的学习算法。针对异构云中进行大数据分析服务的并行化问题G.Jung 提出了最大覆盖装箱算法来决定系统中多少节点、哪些节点应该应用于大数据分析的并行执行。这种方法可以使大数据进行分配使得各个计算节点可以同步的结束计算,并且使数据块的传输可以和上一个块的计算进行重叠来节省时间。实验表明,这种方法比其他的方法可以提高大约60% 的性能。在分布式系统方面,Cheng 等人 提出一个面向大规模可伸缩数据分析的可伸缩的分布式系统——GLADE。GLADE 通过用户自定义聚合(UDA)接口并且在输入数据上有效地运行来进行数据分析。文章从两个方面来论证了系统的有效性。第一,文章展示了如何使用一系列分析功能来完成数据处理。第二,文章将GLADE 与两种不同类型的系统进行比较:一个用UDA 进行改良的关系型数据库(PostgreSQL)和MapReduce(Hadoop)。然后从运行结果、伸缩性以及运行时间上对不同类型的系统进行了比较。

四、总结 大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通

过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。

参考文献

秦荣生.大数据、云计算技术对审计的影响研究 何清.大数据与云计算

张为民.云计算: 深刻改变未来

文峰.云计算与云审计———关于未来审计的概念与框架的一些思考

Big data and cloud computing Big Data(Big Data)in recent years, more and more occasions, the concept is mentioned more and more people, And often, and cloud computing together, what is the relationship between cloud computing and big data become a hot topic.this Special report contains the following four aspects: 1.The value of big data;2.Big data challenge;3.Big data research;4.Cloud computing is the mainstream way of data mining.Through this report on our understanding of big data, as well as the understanding of the value of big data, large data processing and mining technology, large data mainly focus on “data”, provide the technology and methods of data collection, mining and analysis;Cloud computing technology focusing on “computing”, providing IT solutions.Big data and cloud computing technology can promote the development of continuous audit mode, the overall audit mode of application, the audit results of comprehensive application, the application of related evidence, the development of efficient data audit and the development of large data auditor.Strengthen big data and cloud computing technology measures of audit applications include set up long-term development strategy, accelerate the construction of the audit regulations, establish a platform, to strengthen research and development and improve the utilization ability.Keywords: big data cloud computing data mining impact on the audit policy Suggestions

第三篇:新技术—云计算与大数据

云计算与大数据

大数据时代已经悄然到来,如何应对大数据时代所带来的挑战与机遇,是我们当代大学生特别是我们计算机专业学生的一个必须面对的严峻课题。在这次课上通过陶老师的讲解以及在课后查阅相关资料,我了解到什么是大数据,什么是云计算,它们都有什么用处,有什么关系。

近几年,云计算和大数据的概念受到了学术界、商界、甚至政府的热传,一时间云计算无处不在。秉承着“按需服务”理念的云计算正高速发展,“数据即资源”的“大数据”时代已经来临。大数据利用对数据处理的实时性、有效性提出来更高要求,需要根据大数据特点对传统的常规数据处理技术进行变革,形成适用于大数据收集、存储、管理、处理、分析、共享和可视化的技术。大数据的规模效应给数据存储和管理以及数据分析带来了极大的挑战。

一、云计算概念

在课后,经过翻阅各种资料,了解到狭义的云计算是指IT基础设施的交付和使用模式。指通过网络以按需、易扩展的方式获得所需的资源;广义的云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务,这种服务可以是IT和软件、互联网相关的,也可以是任意其他的服务,它具有超大规模、虚拟化、可靠安全等独特功能。通俗的理解是,云计算的“云”就是存在于互联网上的服务器集群上的资源,它包括硬件资源和软件资源,本地计算机只需要通过互联网发送一个需求信息,远端就会有成千上万的计算机为你提供需要的资源并将结果返回到本地计算机。这样,本地计算机几乎不需要做什么,所有的处理都在云计算提供商所提供的计算机群体来完成。

Kevin Hartig:云是一个庞大的资源地,你按需购买;云是虚拟化的;云可以像自来水、电、煤气那样计费。

Jan Pritzker:云计算是用户友好的网络计算。

云计算,它是基于数据中心,强调性价比、效率、可行性的服务运营模式,这是提高高端计算利用率,同时提升低端计算事物处理能力,我们不关注本身计算机的能力,更多提供给后台,由于后台强大的处理能力完成。

二、云计算部署模式

根据云计算服务对象范围的不同,云计算有四种部署模式:私有云、社区云、公有云和混合云。私有云是由一个用户组织(例如政府、军队、企业)建立运维的云计算平台,专供组织内部人员使用,不提供对外服务。社区云也称机构云,云基础设施由多个组织共同提供,平台由多个组织共同管理。社区云被一些组织共享,为一个有共同关注点的社区或大机构提供服务。公有云的基础设施由一个提供云计算服务的大型运营商组织建立和运维,该运营组织一般是拥有大量计算资源的IT巨头,这些IT公司将云计算服务以“按需购买”的方式销售给一般用户或中小企业群体。用户只需将请求提交给云计算系统,付费租用所需的资源和服务。混合云的云基础设施是由两种或两种以上的云组成,每种云仍然保持独立,但用标准的或专用的技术将它们组合起来,具有数据和应用程序的可移植性。

三、云计算服务模式

计算就要有就算环境,一般计算环境都有硬件的一层,资源组合调度的一层即操作层,以及计算任务的应用业务的软件层。云计算提供的三种服务模式对应了计算环境的三个层面。这三种服务模式分别是基础设施即服务IaaS、软件即服务SaaS、平台即服务PaaS。

IaaS即把厂商的由多台服务器组成的“云端”基础设施,作为计量服务提供给客户。它的优点是用户只需低成本硬件,按需租用相应计算能力和存储能力,大大降低了用户在硬件上的开销。目前以Google云应用最具代表性,例如GoogleDocs、GoogleApps、Googlesites。SaaS服务提供商将应用软件统一部署在自己的服务器上,用户根据需求通过互联网向厂商订购应用软件服务,服务提供商根据客户所定软件的数量、时间的长短等因素收费,并且通过浏览器像客户提供软件的模式。对于小型企业来说,SaaS是采用先进技术的最好途径。PaaS把开发环境作为一种服务来提供。PaaS能够给企业或个人提供研发的中间件平台,提供应用程序开发、数据库、应用服务器、试验、托管及应用服务。

四、大数据

大数据(big data),或称巨量资料,就是对全球各种大规模数据资料进行深度挖掘,并进行高速度及多样式计算后,整理出来的高价值的分析结果;重点应用在国防领域建设,未来发展方向在人工智能领域,可以让计算机自主地从经验中进行学习和反馈。个人总结,大数据的特点主要有如下4点:

一是大量。存储大,计算量大。

二是数据类型多样。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据,个性化数据占绝对多数。三是处理速度快。增长速度快,处理速度要求快。四是价值密度低。浪里淘沙却弥足珍贵,数据没有办法在可忍受的时间下使用常规软件方法完成存储、管理和处理任务。

大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获得很多智能的,深入的,有价值的信息。大数据分析普遍存在的方法理论有:可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量和数据管理。

五、云计算与大数据关系

云计算和大数据是这个时代的两个王者,是一个硬币的两面,云计算是大数据的IT基础,而大数据是云计算的一个杀手级应用。张亚勤说,云计算是大数据的驱动力,而另一方面,由于数据越来越多,越来越复杂,越来越实时,这就更加需要云计算去处理,所以二者之间是相辅相成的。

本质上,云计算和大数据的关系是静与动的关系;云计算强调的是计算,这是动的概念;数据则是计算的对象,是静的概念。在实际的应用中,前者强调的是计算能力,或者看重的是存储能力;但是这样说,并不意味着两个概念如此泾渭分明。大数据需要处理大数据的能力如数据获取、清洁、转换、统计等,其实就是需要强大的计算能力,另一方面,云计算的动也好是相对而言,比如基础设施即服务中存储设备提供的主要是数据能力,所以可谓是动中有静。

如果数据是财富,那么大数据就是宝藏,而云计算就是挖掘和利用宝藏的利器。没有强大的计算能力,数据宝藏终究是镜中花,没有大数据的积淀,云计算也只能是杀鸡用的宰牛刀。

六、心得体会

通过这次课程的学习,了解到在如此快速到来的大数据革命时代,我们还有很多知识需要学习,许多思维需要转变,许多技术需要研究。职业规划中,也需要充分考虑到大数据对于自身职业的未来发展所带来的机遇和挑战。

第四篇:云计算与大数据学习报告

“大数据与云计算”学习报告 题目:谈谈对“大数据与云计算”技术的理解,及这两项技术对商业活动、社会进步带来哪些影响.首先我想简单谈谈何为云计算,何为大数据。云计算,是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源,其侧重的是计算,而大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产,本质就是利用计算机集群来处理大批量的数据,大数据的技术关注点在于如何将数据分发给不同的计算机进行存储和处理。其侧重的是计算的对象。

其次说说云计算与大数据的关系.可以说,大数据相当于海量数据的“数据库”,而云计算作为计算资源的底层,支撑着上层的大数据处理,前者强调的是计算能力,或者看重的存储能力。大数据需要处理大数据的能力,大数据技术是云计算技术的延伸。大数据技术涵盖了从数据的海量存储、处理到应用多方面的技术。

最后说说云计算与大数据对商业活动、社会发展的作用.云计算和大数据的出现,正在引发全球范围内深刻的技术与商业变革。技术革新对信息化发展的引领与推动作用已经毋庸置疑,而新一波以云计算和大数据为代表的新技术对我国信息化的拉动作用也正日益显现,随着云计算服务的互联,移动互联网、智慧城市等领域的渗透相互促进,形成了市场需求与技术进步双拉动的态势,对电信运营商而言,在当前智能手机、智能设备快速增长、移动互联网流量迅猛增加的情况下,大数据技术可以为运营商带来新的机会。大数据在运营商中的应用可以涵盖多个方面,包括企业管理分析如战略分析、竞争分析,运营分析如用户分析、业务分析、流量经营分析,网络管理维护优化如网络信令监测、网络运行质量分析,营销分析如精准营销、个性化推荐等计算量越来越大、数据越来越多、越来越动态、越来越实时的需求背景下被催生出来的一种基础架构和商业模式。

第五篇:大数据与云计算的安全

云计算和大数据结合的安全问题

摘要:云计算的浪潮还没有过去,大数据时代已经到来。在对大数据的含义、特征、影响和意义进行系统总结的基础上,分析了大数据与云计算的关系,论述大数据和云计算的安全将给消费者和电商带来更加高效的转型。

关键字:云计算,大数据,电商

所谓通信,最简单的理解,也是最基本的理解,就是人与人沟通的方法。无论是现在的电话,还是网络,解决的最基本的问题,实际还是人与人的沟通。现代通信技术,就是随着科技的不断发展,如何采用最新的技术来不断优化通信的各种方式,让人与人的沟通变得更为便捷,有效。随着计算机技术的广泛普及与计算机远程信息处理应用的发展,云计算和大数据应运而生。、一、大数据的介绍

大数据(Big Data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法)。大数据可分成大数据技术、大数据工程、大数据科学和大数据应用等领域,目前人们谈论最多的是大数据技术和大数据应用。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和或虚拟化技术。

二、云计算的介绍

云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需求提供给计算机和其他设备。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。几年之内,云计算已从新兴技术发展成为当今的热点技术。云计算从节约成本的工具到盈利的推动器,从ISP(网络服务提供商)到电信企业,已然成功地从内置的IT 系统演变成公共的服务。然而人们担心他们在云端的数据安全。正因为此,用户应该期待看到更安全的应用程序和技术上来。许多新的加密技术,安全协议,在未来会越来越多的呈现出来。其中的安全性和遵从性的问题仍然是阻碍云计算发展的重要原因。三、二者联系和安全策略

近几年由于科技的不断发展,3G网络视频通话,移动互联网、物联网、智能手机,这些科技产品都一一涌现,充斥着我们的生活,确实互联网给我们的生活带来了方便,但同时恶意软件,黑客入侵电脑,这些人为的破坏,也影响着个人或者企业的信息安全。在这个时候新技术云计算的出现,就给传统互联网信息安全带来了希望,但同时也面临解决新的安全挑战。

多种方式应对云计算安全挑战—云计算给信息安全带来的挑战包括:第一,传统安全产品无法应对云计算环境下的网络结构和协议。在云计算环境中,可能前端的Web服务器和后端的数据库都处在一个物理服务器上,这样它们之间的网络交互直接用虚拟交换机就可以了,数据根本不经过物理交换机,如果不到物理交换机,则信息安全设备拿不到它的数据,导致对其访问控制、审计、攻击的检测,都没办法实现。第二,云计算技术特性带来一些新的安全需求。云安全架构的一个关键特点是云服务提供商所在的等级越低,云服务用户自己所要承担的安全能力和管理职责就越多。数据安全包括:数据传输、数据隔离、数据残留。应用安全包括:终端用户安全、SaaS安全、PaaS安全、IaaS安全。虚拟化安全包括:虚拟化软件、虚拟服务器等。第三,云计算环境对安全产品的计算性能提出了非常大的挑战。目前保护信息安全产品的性能已经远远落后于网络设备。大数据将会化解APT(高级持续威胁)危机—近一两年,APT攻击是非常热门的话题。简单的说就是黑客组织针对一个有价值的目标,进行长期、缓慢的,但是非常有技术含量的攻击。我们知道未来大数据和云计算将推动下一代安全数据的创新。大数据和云计算扩展了整个IT领域的计算和存储资源,给信息安全提供了信息平台和大数据处理的技术支撑,为整个信息安全产品的革新创造了一个更大的可能性。其中数据加密就是对数据信息的重新组合,只有在收发双方的基础上才能够还原网络信息,数据加密技术能够确保校园网内部信息数据的安全性与完整性,并具有一定的保密作用,从某种意义上来说它是其他安全技术的基本保证,经过加密的网络数据能够确保数据在收录、传输、使用及转换中不被第三方得知数据信息内容。

综上所述:大数据是本,云计算是术,移动互联网是用。三者紧密结合在一起才能让整个信息安全系统更有效的服务现代人们的生活。在大数据环境下,即高流量、巨大海量数据、高可靠性。更多需要通过检测、分析、发现及预警的安全保障体系,实现可靠性、可用性与安全性的完美结合;利用大数据分析,可提前、精确、有效地发现已知或未知的安全威胁;可实现数据访问的记录、分析及取证;可实现有效、精确地发现隐私数据的检测分析与防护。安全检测与大数据技术结合,利用云计算能力及大数据处理机制实现信息访问和审计,安全威胁智能的发现,隐私数据的保护。

参考文献:《大数据时代》--[英]维克托·迈尔-舍恩伯格(ViktorMayer-Schönberger)--浙江人民出版社

电子图书:《云计算安全指南》--Ronald L.Krutz,Russell Dean Vines(著)张立强(译)

姓名:孙飞龙

学号:12901337

学院:信息工程学院

下载大数据与云计算在教学运用的可行性探究word格式文档
下载大数据与云计算在教学运用的可行性探究.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高校邦大数据与云计算测试答案

    首页 课程广场 我的学习帮助中心 3 杨望 返回 大数据与云计算„ >测验 >结课测验 >结课测验 结课测验 (共40道题,满分100.00分) 测验截止时间 2016-12-12 23:59 有效提交次......

    云计算和大数据下在线教育研究

    云计算和大数据环境下的在线教育研究 1. 引言 当前云计算和大数据技术的出现,面对在线教育交互中产生的大量复杂数据,可以实现识别、分析、挖掘并组织隐含在学习者交互过程中......

    云计算实验室建设方案探究[范文]

    云计算实验室建设方案探究 【摘 要】本文分析云计算优势及在教学领域的发展趋势,提出“虚拟云实验室”建设方案,采用瘦客户端模式,构建虚拟云实验室的总体框架和相关功能设计。......

    大数据与云计算在职研究生就业前景分析

    从最新的盖特纳咨询公司预测结果显示,大数据将为全球带来440万个IT新岗位和上千万个非IT岗位。大数据与云计算,已成为时代焦点热门在职研究生专业。未来的大数据与云计算工作,......

    在职研究生专业:大数据与云计算凶猛来袭

    或许很多在职人员对大数据专业表现出一种陌生感,但却不能否认大数据时代已渐成气候。中国人民大学在职研究生教育,应时代发展要求,特开设计算机应用技术大数据与云计算在职研究......

    陕西省大数据与云计算产业示范工程实施方案

    陕西省大数据与云计算产业示范工程实施方案 为贯彻落实《国务院关于印发促进大数据发展行动纲要的通知》(国发〔2015〕50号),结合《陕西省大数据与云计算产业五年行动计划》(陕......

    未来五年,大数据将与云计算更加融合

    国内最具权威的市场调研门户网站之一 未来五年,大数据将与云计算更加融合 云端的大数据就像科幻小说里对未来的描绘一样:它在这,只是不是很均匀地分布罢了。 高调的厂商,比如AWS......

    云计算与IT产业发展

    云计算与IT产业发展摘要:随着计算机技术的迅速发展,云计算和微型化也在不断地进步,社会对计算机的需求已不在仅仅限于上网、计算和聊天了,而是更大更复杂化的计算,就是正在发展的......