平方差公式的运用

时间:2019-05-13 01:54:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《平方差公式的运用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《平方差公式的运用》。

第一篇:平方差公式的运用

浅谈平方差公式在初中数学中的运用

提要:平方差公式(ab)(ab)a2b2是初中阶段的一个重要的公式,应用也十分广泛,必须引起教师的高度重视。

关键词:平方差

整式乘法

因式分解

无理数

平方差公式在初中数学上占据了重要位置,在近几年的中考和期末测试中经常出现,所以要求学生掌握并运用好平方差公式。

一、平方差公式乘法中的运用

平方差公式:(ab)(ab)a2b2,其形式是:两项之和与这两项的差的乘积等于这个项的平方差,其中的a、b可以是具体数,也可以是单项式、多项式。可用公式的都有两个共同特点:前一个因式与后一个因式中各有一项是相同,剩下的两项是互为相反数。有些形式上不符合公式,但只要符合这个特点,可以根据公式的特点,应用加法加换律、结合律进行灵活变形,或者用提负号的方法把题转化成平方差公式。

(一)、整式乘法中的运用 例1.(2x3)(2x3)

分析:本题是整式乘法中的最简单的,是这两个项的和与这两个项的差的积等于这两项的平方差,可直接用公式进行计算。

(2x3)(2x3)(2x)2324x29例2.(3a2b)(3a2b)

分析:本类题是属于两个多项项式的乘积,这类题形首先要观察是否符合公式特点,看出前一个因式中与后一个因式中都是-2b,剩下的一个是-3a,一个3a,它们互为相反数,可以用公式。计算本题有两种方法(1)是利用加法加换律调整位置,把它转化为一般式;(2)提一个负号转化成一般式,再用公式计算。

解法

1、加法加换律进行调整其位置

解法

2、提取负号

(3a2b)(3a2b)

(3a2b)(3a2b)

2b3a(2b3a)

(3a2b)(3a2b)

(9a24b2)

22=2b3a

3、2xyz2xyz 4b29a9a4b

分析:本类题每一个因式中都是三个或三个以上的项,所以先利用加法结合律,把一个因式中的多项式转化成两个式子的和差形式,再观察是否符合公式特点。前一个因式中的2xyz结合成[(2xy)z],后一个因式2xyz结合成[(2xy)z],(2xy)与(2xy)为相等,z与-z互为相反数,可用公式进行计算。

2xyz2xyz

2xyz2xyz 2xyz2xyz

2xyz2 24x24xyy2z2

小结:注意平方差进行乘法运算时,经常出现的的误区有(1)对因式中各项的系数,符号要仔细观察、比较,不能误用公式,如(3a2b)(2a3b)、如(2)公式中的字母是多种形式(3a2b)(3a2b),此类题目不能运用平方差公式;的,所以当这个字母表示一个负数、或分数、或单项式与多项式,应加上括号,避免出现只把字母平方,而系数忘了平方的错误。

二、因式分解中的应用

因式分解我们一般采用的方法是:一提(提取公因式)、二套(套用公式)、三分组,其中套用平方差公式,也就是整式乘法中(ab)(ab)a2b2的逆用:a2b2(ab)(ab),其题可以是二项式,也可以是多项式。能用公式的共同特点:题目中都可以转化成一项或一式的平方减去一项或一式的平方。如有这种形式的都能用平方差公式进行了分解因式。分解因式时,要求掌握好逆用幂的运算法则,弄清楚多项式中可转化哪几个数组成平方差,清楚题形中的a、b各代表什么式。

1、分解因式x2y2

分析:本题与公式是一样的,可直接套用公式。

x2y2(xy)(xy)

2、分解因式x4y16y

分析:此题先提公因式y,所剩下的x416转化成(x2)242,其中a为x2、b为4,本题用平方差公式到各因式不能再分解为止。

x4y16yy(x416)

y(x24)(x24)

y(x24)(x2)(x2)例

3、因式分解x22xyy29

分析:本题我们先要进行分组成能转化成平方差公式,前三项分在一组里,最后一项为一组,把x22xyy2转化成(xy)2,从而形成(xy)232

x22xyy29(xy)232(xy3)(xy3)

小结:因式分解中的平方差公式的运用是必要的,有些题目只有用平方差公式才能分解因式,它的作用更大于整式乘法中的应用,整式乘法中如果不会用公式,也可以用一般的多项式乘以多项式的方法来计算,只是复杂而已。分解因式中时常的错误有:(1)各项没有转化为平方就用公式,如4x2y2(4xy)(4xy);(2)误用公式,如x2y2(xy)(xy)

三、平方差公式在一些特殊题中的运用

(一)、简便运算中的运用

如某两数的乘积,如果这两个数与另一个数都要都相差相同的一个数时,就可以把这两数的乘积转化成另外一个数与相同数的和与差的乘积,从而做到转化成平方差公式。

例1、98×102

分析:98与102都与100相差2,98转化成100-2,102转化成100+2。98×102 =(100-2)(100+2)=100222 =9996 例2、2563255256257

分析:本题的技巧在于三个连续的整数,我们可以将第一个数转化成中间数减1,第三个数可以转化中间数加1。

(3)2563255256257256325625612561 2563256(256212)25632563256256例3、10029929829722212

分析:本题中每两组都要可以转化成平方差公式,计算后会发现它是一个等差数列。

10029929829722212(10099)(10099)(9897)(9897)(21)(21)10099989721100(1001)25050小结:有关复杂的数字计算中,如能抓住数字特点,巧用平方差公式,可简化运算过程,提高运算效率,培养良好的数学素养。数字中的平方差公式的运算会出现错识有:98×102=(100-2)(100+2)=100222982

(二)、二次根式计算及分母有理化中的运用

用平方差公式进行二次根式计算及分母有理化,是初三二次根式计算和化简中的重点。它的方法在于分子分母同时乘以一个式子,使其分母转化成一平方差公式,从而做到分母去根号(有理化)的效果。

例1:(62)(62)

分析:本类题是二次根式的计算,是这两个数的和与这两个数的差的积等于这两个数的平方差,用公式6为a,2为b进行计算。

(62)(62)(6)2(2)2624

例2化简 452

分析:观察此题分母中含有二次根式,要进行有理化,分母本身是52,分子分母同时乘以52,使分母转化成平方差公式。

4524(52)(52)(52)45424542223(5)(2)

小结:这种类型题分母有理化中要抓住分母的特点,想办法使其转化为平方差公式,做题时切记,如果是单用完全平方去分母是起不到有理化的效果,所以要用平方差公式进行有理化。例如:

除了初中价段的应用外,以后的数学学科都有其有关的知识,可见平方差公式在数学领域中应用及其广泛,值得一提的是这个公式从初中到大学都有不同程度的应用,教学上初中至关重要,因此我们应该从不同的角度去掌握并运用平方差公式。

44216 252(52)52102

浅谈平方差公式在初中数学中的运用

玉龙县鲁甸中学

和祺剑

提要:平方差公式(ab)(ab)a2b2是初中阶段的一个重要的公式,应用也十分广泛,必须引起教师的高度重视。

关键词:平方差

整式乘法

因式分解

无理数

平方差公式在初中数学上占据了重要位置,在近几年的中考和期末测试中经常出现,所以要求学生掌握并运用好平方差公式。

一、平方差公式乘法中的运用

平方差公式:(ab)(ab)a2b2,其形式是:两项之和与这两项的差的乘积等于这个项的平方差,其中的a、b可以是具体数,也可以是单项式、多项式。可用公式的都有两个共同特点:前一个因式与后一个因式中各有一项是相同,剩下的两项是互为相反数。有些形式上不符合公式,但只要符合这个特点,可以根据公式的特点,应用加法加换律、结合律进行灵活变形,或者用提负号的方法把题转化成平方差公式。

(一)、整式乘法中的运用 例1.(2x3)(2x3)

分析:本题是整式乘法中的最简单的,是这两个项的和与这两个项的差的积等于这两项的平方差,可直接用公式进行计算。

(2x3)(2x3)(2x)2324x29例2.(3a2b)(3a2b)

分析:本类题是属于两个多项项式的乘积,这类题形首先要观察是否符合公式特点,看出前一个因式中与后一个因式中都是-2b,剩下的一个是-3a,一个3a,它们互为相反数,可以用公式。计算本题有两种方法(1)是利用加法加换律调整位置,把它转化为一般式;(2)提一个负号转化成一般式,再用公式计算。

解法

1、加法加换律进行调整其位置

解法

2、提取负号

(3a2b)(3a2b)

(3a2b)(3a2b)

2b3a(2b3a)

(3a2b)(3a2b)

(9a24b2)

22=2b3a

3、2xyz2xyz 4b29a9a4b

分析:本类题每一个因式中都是三个或三个以上的项,所以先利用加法结合律,把一个因式中的多项式转化成两个式子的和差形式,再观察是否符合公式特点。前一个因式中的2xyz结合成[(2xy)z],后一个因式2xyz结合成[(2xy)z],(2xy)与(2xy)为相等,z与-z互为相反数,可用公式进行计算。

2xyz2xyz

2xyz2xyz

2xyz2xyz

2xyz2 24x24xyy2z2

小结:注意平方差进行乘法运算时,经常出现的的误区有(1)对因式中各项的系数,符号要仔细观察、比较,不能误用公式,如(3a2b)(2a3b)、如(2)公式中的字母是多种形式(3a2b)(3a2b),此类题目不能运用平方差公式;的,所以当这个字母表示一个负数、或分数、或单项式与多项式,应加上括号,避免出现只把字母平方,而系数忘了平方的错误。

二、因式分解中的应用

因式分解我们一般采用的方法是:一提(提取公因式)、二套(套用公式)、三分组,其中套用平方差公式,也就是整式乘法中(ab)(ab)a2b2的逆用:a2b2(ab)(ab),其题可以是二项式,也可以是多项式。能用公式的共同特点:题目中都可以转化成一项或一式的平方减去一项或一式的平方。如有这种形式的都能用平方差公式进行了分解因式。分解因式时,要求掌握好逆用幂的运算法则,弄清楚多项式中可转化哪几个数组成平方差,清楚题形中的a、b各代表什么式。

1、分解因式x2y2

分析:本题与公式是一样的,可直接套用公式。

x2y2(xy)(xy)

2、分解因式x4y16y

分析:此题先提公因式y,所剩下的x416转化成(x2)242,其中a为x2、b为4,本题用平方差公式到各因式不能再分解为止。

x4y16yy(x416)

y(x24)(x24)

y(x24)(x2)(x2)例

3、因式分解x22xyy29

分析:本题我们先要进行分组成能转化成平方差公式,前三项分在一组里,最后一项为一组,把x22xyy2转化成(xy)2,从而形成(xy)232

x22xyy29(xy)232(xy3)(xy3)

小结:因式分解中的平方差公式的运用是必要的,有些题目只有用平方差公式才能分解因式,它的作用更大于整式乘法中的应用,整式乘法中如果不会用公式,也可以用一般的多项式乘以多项式的方法来计算,只是复杂而已。分解因式中时常的错误有:(1)各项没有转化为平方就用公式,如4x2y2(4xy)(4xy);(2)误用公式,如x2y2(xy)(xy)

三、平方差公式在一些特殊题中的运用

(一)、简便运算中的运用

如某两数的乘积,如果这两个数与另一个数都要都相差相同的一个数时,就可以把这两数的乘积转化成另外一个数与相同数的和与差的乘积,从而做到转化成平方差公式。

例1、98×102

分析:98与102都与100相差2,98转化成100-2,102转化成100+2。98×102 =(100-2)(100+2)=100222 =9996 例2、2563255256257

分析:本题的技巧在于三个连续的整数,我们可以将第一个数转化成中间数减1,第三个数可以转化中间数加1。

(3)2563255256257256325625612561 2563256(256212)25632563256256例3、10029929829722212

分析:本题中每两组都要可以转化成平方差公式,计算后会发现它是一个等差数列。

10029929829722212(10099)(10099)(9897)(9897)(21)(21)10099989721100(1001)25050小结:有关复杂的数字计算中,如能抓住数字特点,巧用平方差公式,可简化运算过程,提高运算效率,培养良好的数学素养。数字中的平方差公式的运算会出现错识有:98×102=(100-2)(100+2)=100222982

(二)、二次根式计算及分母有理化中的运用

用平方差公式进行二次根式计算及分母有理化,是初三二次根式计算和化简中的重点。它的方法在于分子分母同时乘以一个式子,使其分母转化成一平方差公式,从而做到分母去根号(有理化)的效果。

例1:(62)(62)

分析:本类题是二次根式的计算,是这两个数的和与这两个数的差的积等于这两个数的平方差,用公式6为a,2为b进行计算。

(62)(62)(6)2(2)2624

例2化简 452

分析:观察此题分母中含有二次根式,要进行有理化,分母本身是52,分子分母同时乘以52,使分母转化成平方差公式。

4524(52)(52)(52)45424542223(5)(2)

小结:这种类型题分母有理化中要抓住分母的特点,想办法使其转化为平方差公式,做题时切记,如果是单用完全平方去分母是起不到有理化的效果,所以要用平方差公式进行有理化。例如:

除了初中价段的应用外,以后的数学学科都有其有关的知识,可见平方差公式在数学领域中应用及其广泛,值得一提的是这个公式从初中到大学都有不同程度的应用,教学上初中至关重要,因此我们应该从不同的角度去掌握并运用平方差公式。

44216 252(52)52102

第二篇:运用平方差公式因式分解求值

运用平方差公式因式分解求值

【知识点】

利用平方差公式分解因式

整体代入求值

联立方程组,解方程组

【练习题】

1.已知,则

2.已知,则

3.已知,则

4.已知,则

5.已知,则

6.已知,则

7.已知,则,8.已知,则,9.已知,则,10.已知,则,11.已知,则,12.已知,则,13.已知,则

14.已知,则

15.已知,则

16.已知,则

17.已知,则

答案

1.2

2.3

3.4

4.2

5.4

6.3

7.2;

8.5;1

9.5;

10.4;

11.-1;2

12.2;1

13.21

14.7

15.2

16.4

17.4

第三篇:4.3《运用平方差公式因式分解》说课稿

4.3《运用平方差公式因式分解》说课稿

今天我说课的内容是九年义务教育北师大版八年级下册第四章——分解因式,第三节——“运用公式法”。本着以学生为主体,教师为主导的教学原则,我将从教材分析、学法与教法、教学设计、板书设计四个方面进行说明,教学设计是我阐叙的重点。首先我们来看 教材分析

教材的地位及作用分析: 它主要让学生经历通过整式乘法的平方差公式的逆向运用得出因式分解的平方差公式的过程,发展学生的观察能力和逆向思维能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.同时,本节课还体现了数学的众多思想,如:“类比”思想、“整体”思想、“换元”思想等。它既是对前面所学知识的应用,又是为后续学习作铺垫,因此本节课在教材中起到了承上启下的重要的作用。

为此我确定了以下本着课程标准,在吃透教材的基础上,我确立如下

【教学目标】

(1)使学生了解运用公式法分解因式的意义;

(2)会用平方差公式进行因式分解;

(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.

【教学重点】

会用平方差公式进行因式分解

【教学难点】

准确理解和掌握公式的结构特征

学生是学习的主体,只有学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。这节课,我主要采用以下 教法学法

教法分析:根据新《课标》的要求,结合本班学生的知识水平,本堂课主要采用观察、分析、启发、诱导的方法,引导学生把握平方差公式分解因式的基本思路,灵活地运用“换元”和“化归”思想把问题中的多项式转化成适当的公式形式。学法分析:

(1)、由于运用平方差公式分解因式,因此指导学生学会运用比较、类比的学习方法记忆、理解知识。

(2)指导学生采用练习法以达到巩固、熟练知识的目的。

(3)对于换元法要求较灵活,应该指导学生注意运用观察、分析、类比的学习方法。教学设计

(一)、创设情景,导入新课

看谁算得快: 1、992 —1= 2、10032—10022= 你想知道怎样算得快吗?(学生讨论)

我们知道(a+b)(a—b)=a2-b2,是否有结论a2-b2=(a+b)(a—b)?引出课题。

【设计意图】 调动学生的学习兴趣。

(二)、合作交流,探索新知

学生相互讨论下列问题:

1、公式有什么特点?

2、用语言叙述公式。

3、公式中的a,b可以表示什么?

4、根据你对公式的理解,请举出几个用平方差公式分解因式的例

子,并指出多项式中谁相当于公式中的a,谁相当于公式中的b?

以上问题,尽量让学生探索、发现。【设计意图】巩固平方差公式。

【说明】强调公式中的a和b,可以是数或代数式

(三)、指导运用,巩固知识。

1、判断正误:

(1)x2+y2=(x+y)(x–y)

()

(2)–x2+y2=–(x+y)(x–y)

()

(3)x2–y2=(x+y)(x–y)

()

(4)–x2–y2=–(x+y)(x–y)

()2.例题讲解

[例1]把下列各式分解因式:(1)25-16x2;

1(2)9a2-4b2.[例2]把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.(3)x4 –16

以上例题进一步让学生理解平方差公式中的字母a、b不仅可以表示数而且可以表示代数式,引导学生体会多项式中若含于公因式,就要先提取公因式,然后进一步分解,直至不能再分解为止。【分析】当多项式是二项式时,要考虑用平方差公式分解因式;如果多项式有公因式,要先提取公因式。抓住公式的特征,灵活应用公式。应用公式时要把问题中的数或式子看作公式中的a和b,这就是换元思想,而将问题中多项式转化为公式的形式,这就是化归思想。

【设计意图】让学生掌握分解因式的解题步骤和思路。

(四)、强化训练,深化知识。

利用学案,引导学生自主学习,完成习题

(五)、整理知识,形成结构。

从今天的课程中,你学到了哪些知识? 掌握了哪些方法?

(六)布置作业

课本习题2.4:1(1)(3)(5)(7)2(1)(3)(5)板书设计

§2.3 运用平方差公式因式分解 定义:

1、平方差公式

2、运用平方差公式分解因式 例1 把下列各式因式分解:

1b2(1)25–16x2

(2)9a2–4

例2 运用平方差公式分解因式

(1)9(x–y)2–(x+y)2(2)2x3–8x

(3)x4 –16

第四篇:运用公式法——平方差公式教案

运用公式法——平方差公式教案

教学目标

(一)知识认知要求

1.使学生了解运用公式法分解因式的意义; 2.使学生掌握用平方差公式分解因式.3.使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.(二)能力训练要求

1.通过对平方差公式特点的辨析,培养学生的观察能力.2.训练学生对平方差公式的运用能力.(三)情感与价值观要求

在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.教学重点

让学生掌握运用平方差公式分解因式.教学难点

将单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.教学过程

一、创设问题情境,引入新课

在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.二、新课讲解

1.请看乘法公式(a+b)(a-b)=a2-b2

(1)

左边是整式乘法,右边是一个多项式,把这个等式反过来就是 a2-b2=(a+b)(a-b)

(2)

左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?

符合因式分解的定义,因此是因式分解.对,是利用平方差公式进行的因式分解.第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.2.公式讲解

请大家观察式子a2-b2,找出它的特点.公式的特点

下面按公式分类,一一进行阐述.(1)平方差公式:

a2b2(ab)(ab)这里a,b可以表示数、单项式、多项式. 公式的特点是: ①左侧为两项; ②两项都是平方项; ③两项的符号相反.

(是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差.如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积.)

如x2-16=(x)2-42=(x+4)(x-4).9 m 2-4n2=(3 m)2-(2n)2 =(3 m +2n)(3 m -2n)3.例题讲解

例1 : 把下列各式分解因式:

(1)25-16x2;

(2)9a2-解:(1)25-16x2=52-(4x)2 =(5+4x)(5-4x);

2b.4121b=(3a)2-(b)2 4211=(3a+b)(3a-b).22(2)9a2-例2 : 把下列各式分解因式:(1)9(m+n)2-(m-n)2;(2)2x3-8x.解:(1)9(m +n)2-(m-n)2 =[3(m +n)]2-(m-n)2 =[3(m +n)+(m-n)][3(m +n)-(m-n)] =(3 m +3n+ m-n)(3 m +3n-m +n)=(4 m +2n)(2 m +4n)=4(2 m +n)(m +2n)(2)2x3-8x=2x(x2-4)=2x(x+2)(x-2)

说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.补充例题3:判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)·(a2-1).解:(1)不正确.本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1)中还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解.(2)不正确.错误原因是因式分解不到底,因为a2-1还能继续分解成(a+1)(a-1).应为a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).例4 : 把下列各式分解因式:

22(1)9ab;

(2)4nm;

2212a9b2;

(4)16a225b2c4; 16122(5)xy0.09。

4(3)思路分析

(这是平方差公式的特征)

通过变形,二项都是完全平方形式,且符号相反。解:(1)9a2b2(3a)2b2(3ab)(3ab);

(2)4n2m2m2(2n)2

(加法交换律)

=(m+2n)(m-2n);

1a(3)a29b2(3b)2

164aa3b3b; 44(比较两种分解方法)

2121a9b2(a2144b2)16161[a2(12b)2] 161(a12b)(a12b); 16(与aa3b3b相等吗?)44224222(4)16a25bc(4a)(5bc)(注意变形)

(4a5bc2)(4a5bc2);

11(5)x2y20.09(0.3)2xy

42(加法交换律)

2110.3xy0.3xy。

22 点评:平方差公式的特征。

①公式左边的多项式形式上是二项式,且两项的符号相反; ②第一项都可化成某个数或某式的平方的形式;

③右边是这两个数或两个式子的和与它们的差的积,相当于分解为两个一次二项式的积;

④公式中所说的两个数或两个式子是指a、b,不是a,b,其中a、b可以是数字,是字母,也可以是单项式、多项式。

应用平方差公式分解多项式关键是把多项式构建成符合公式特征的形式,然后明确多项 式和公式中的字母如何对应。例5 : 把下列各式分解因式:

(1)(mn)21;

(2)(a1)29(a2)2;(3)(ab)2(ab)2;

(4)4x2(xy)2;(5)116x;

思路分析

通过观察,都符合平方差公式的特征。

解:(1)(mn)21(mn)21(把m-n看做一个整体)

=(m-n+1)(m-n-1);

(2)(a1)9(a2)[3(a2)](a1)

(加法交换律)

=[3(a-2)+(a+1)][3(a-2)-(a+1)]

=(3a-6+a+1)(3a-6-a-1)

(必须化简)=(4a-5)(2a-7);

(不要跳步,以免出错)

(3)(ab)(ab)(ab)(ab)

=[(a-b)+(a+b)][(a-b)-(a+b)] =2a·(-2b)

(不要跳步)=-4ab;

(4)4x(xy)(2x)(xy)

=(2x+x-y)(2x-x+y)=(3x-y)(x+y)。

(5)116x16x1 ***22(4x2)21

(4x21)(4x21)

(4x21符合平方差公式,还能再分解)(4x21)(2x1)(2x1); 例6: 计算:(1)11111; 11122222341001111111 2232421002解:(1)1111111111111 223310010031425310199 ***1101; 2100200例7

若(2481)可以被60与70之间的两个数整除,求这两个数. 点悟:将(2481)分解成几个整数的积的形式,然后分析对照条件即得. 解:2481(2241)(2241)

(2241)(2121)(2121)(2241)(2121)(261)(261),∵

2165,2163,∴

这两个数分别为65和63.

三、课堂练习

(一)随堂练习1.判断正误

(1)x2+y2=(x+y)(x-y);

(3)-x2+y2=(-x+y)(-x-y);

2.把下列各式分解因式

解:(1)a2b2-m2(2)(m-a)2-(n+b)2(3)x2-(a+b-c)2(4)-16x4+81y4

(二)补充练习:把下列各式分解因式(1)36(x+y)2-49(x-y)2;(2)(x-1)+b2(1-x);(3)(x2+x+1)2-1.66(2)x2-y2=(x+y)(x-y);

(4)-x2-y2=-(x+y)(x-y).四.课时小结

我们已学习过的因式分解方法有提公因式法和运用平方差公式法.如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行.第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止.五.课后作业

习题2.4 六.活动与探究

把(a+b+c)(bc+ca+ab)-abc分解因式 解:(a+b+c)(bc+ca+ab)-abc =[a+(b+c)][bc+a(b+c)]-abc

2=abc+a(b+c)+bc(b+c)+a(b+c)2-abc=a2(b+c)+bc(b+c)+a(b+c)2 =(b+c)[a2+bc+a(b+c)] =(b+c)[a2+bc+ab+ac] =(b+c)[a(a+b)+c(a+b)] =(b+c)(a+b)(a+c)

七、板书设计

运用公式法——平方差公式

一、1.由整式乘法中的平方差公式推导因式分解中的平方差公式.2.公式讲解 3.例题讲解

补充例题

第五篇:平方差公式教案

灰太狼开了租地公司,一天他把一边长为a米的正方形土地租给懒羊羊种植.有一年,他对懒羊羊说:“我把这块地的一边增加5米,另一边减少5米,继续租给你, 你也没吃亏,你看如何?”懒羊羊一听觉得没有吃亏,就答应了.同学们,你们觉得懒羊羊有没有吃亏?

一、知识回顾:

多项式与多项式怎样相乘的? 和学生拉近距离,引起学生的兴趣。

二、自主探究:

1、计算下列多项式的积:

1、(x+1)(x-1)

2、(m+2)(m-2)=

= =

=

3、(2x+1)(2x-1)

4、(x+5y)(x-5y)=

= =

=

2、归纳: 观察算式结构,你发现了什么规律? ①算式中每个因式都有 项。

②算式都是两个数的 与 的 _____ 的积。即两个因式中,有一项 ,另一项。计算结果后,你又发现了什么规律? 计算结果都是前项的 减去后项的。

三、合作交流:

1、猜想:

2、验证:

3、得出:

(a+b)(a-b)= 两个数的和与这两个数的差的积等于这两个数的平方差。

四、例题精析

1、判断下列式子是否可用平方差公式 :(1)(-a+b)(a+b)(2)(-2a+b)(-2a-b)(3)(-a+b)(a-b)(4)(a+b)(a-c)

2、参照(a+b)(a-b)= a2-b2填空

3、运用平方差公式计算:(1)(2)

4、计算:(1)

(2)

巩固提升(根据时间的变化而定)

1、下列多项式乘法中,能用平方差公式计算的是()A.(x+1)(1+x);B.(2x-5)(2x+5)C.(-a+b)(a-b);D.(x2-y)(x+y2)

2、运用平方差公式进行计算:(1)(3x+4)(3x-4)(2)(3a+2b)(2b-3a)(3)(-4x-3y)(-4x+3y)

3、你能用简便方法计算下列各题吗?(1)51×49(2)998×1002 4.判断对错,如果有错,如何改正? ⑴;⑵;⑶;

五、小结:平方差公式的特征:(1)左边是两个二项式相乘,这两项中有一项

相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)先平方,后相减。

公式中的可以表示单项式(数字,字母), 也可以表示多项式(如x+y)。

六、作业

教科书156页-----1 小组交流、讨论

让学生通过计算,观察每个算式的特点和结果的特点,挖掘题目之间的共性,发现规律,猜想公式,从而经历从-般到特殊、从具体到抽象的过程,体会归纳这-数学思想方法准确地运用数学语言表述公式以剖析a、b为目的,对于帮助学生认清公式的结构特征起到事半功倍的作用,在接下来的公式运用中,相信学生会更加得心应手.尝试、交流、教师点拨进一步强化学生的知识对学生经常出现的错误进行预设,防微杜渐.

下载平方差公式的运用word格式文档
下载平方差公式的运用.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    平方差公式教案

    《平方差公式》教学设计 牟平实验中学 隋玲 一、教材分析 《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程、整式的加减及整式乘法等知识的基础上,在学生已经......

    平方差公式教案

    公开课教案 课题:平方差公式 授课:张福仁 教学目标: 1、 知识与技能目标:会用平方差公式进行多项式乘法运算 2、 过程与方法目标:通过问题情境,引导学生自行得出平方差公式,再通过......

    平方差公式 说课稿[全文5篇]

    平方差公式 说课稿 大家好!今天我说课的内容是人教版八年级上册十四章第二节的平方差公式。本节课,我是以新课程标准为指导,根据教学内容、教学方法、教学理念来设计教学思路。......

    平方差公式教学反思

    平方差公式教学反思 第四中学孙磊 作为年轻教师的我,今年很荣幸在开学初参加学校数学教研组的讲课活动,我讲课的内容是北师大版七年级下册第一章第七节平方差公式,《平方差公式......

    平方差公式教学反思

    12.1.平方差公式教学反思 1.平方差公式的代数形式学生能够利用乘法法则马上推导出来,但是它的几何意义学生较难掌握.因此,在课堂上应该给学生更多的时间,让学生自己动手,亲手拼一......

    平方差公式教学设计

    第一章 整式的乘除 5平方差公式(第1课时) 旧莫初级中学校 陆延艳 教学目标: 1.知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的计算,进一步发展符......

    《平方差公式》教学设计

    《平方差公式》的教学设计 一、教学目标: 1、使学生理解和掌握平方差公式,并会用公式进行计算; 2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识; 在紧张......

    平方差公式教学反思

    平方差公式教学反思平方差公式教学反思1 指导学生用语言描述,两数和与两数差的积等于它们的平方差。这个公式叫做平方差公式。指导学生发现公式的特点:1、左边为两数的和乘以......