关于学习了解模式识别技术报告

时间:2019-05-13 01:19:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于学习了解模式识别技术报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于学习了解模式识别技术报告》。

第一篇:关于学习了解模式识别技术报告

关于了解学习模式识别技术报告

谈起模式识别,我们首先想到的是人工智能。模式识别是人工智能的一个分支,是计算机应用内容的一部分。要想了解学习模式识别,首先要懂得人工智能。

第一篇 人工智能

什么是人工智能呢?人工智能主要用人工的方法和技术,模仿,延伸和扩展人的智能,实现机器智能。人工智能的长期目标是实现达到人类智力水平的人工智能。(摘自《人工智能》史忠植编著,第一章 绪论)

简单来说就是使机器拥有类人行为方法,类人思维方法和理性行为方法。让机器像人一样拥有自主思维的能力,拥有人的生存技能,甚至在某方面超过人类,用所拥有的技能,更好的为人类服务,解放人类的双手。

简单了解了人工智能的概念,接下来将介绍人工智能的起源与发展历史。说到历史,很多人可能有点不大相信。人类对智能机器的梦想和追求可以追溯到三千多年前。也许你会有疑问,三千多年前,人类文明发展都不算成熟,怎么可能会有人对机器有概念。当然,那时候的机器并非现在的机器概念。在我国,早在西周时代(公元前1066~公元前771年),就流传有关巧匠偃师献给周穆王艺伎的故事。东汉(公元25~公元220年)张衡发明的指南车是世界上最早的机器人雏形。(摘自《人工智能》史忠植编著,第一章 绪论)现在你也许已经笑掉大牙了。那样一个简易工具竟然说是机器人雏形。但是事实就是这样,现在对机器人的概念依旧模糊,有些人觉得机器人必须先有像人一样的外形。其次是有人一样的思维。这个描述是没有错的,但是有点片面了,只顾及到字面意思了。机器人的概念是自动执行工作的机器装置。所以机器可以自动执行工作都叫机器人。在国外也有案例:古希腊斯吉塔拉人亚里士多德(公元前384年~公元前322年)的《工具论》,为形式逻辑奠定了基础。布尔创立的逻辑代数系统,用符号语言描述了思维活动中推理的基本法则,被后世称为“布尔代数”。这些理论基础对人工智能的创立发挥了重要作用。(摘自《人工智能》史忠植编著,第一章 绪论)人工智能的发展历史,可大致分为孕育期,形成期,基于知识的系统,神经网络的复兴和智能体的兴起。具体时期的主要内容在此不必赘述。

人工智能究竟是研究什么的呢?知道了概念,起源,我想更想知道的应该是它对我们自己究竟有什么用。

人工智能是一门新兴的边缘科学,是自然科学和社会科学的交叉学科,它吸取了自然科学和社会科学的最新成果,以只能为核心,形成了具有自身研究特点的新的体系。人工智能的研究涉及广泛的领域,包括知识表示,搜索技术,机器学习,求解数据和知识不确定问题的各种方法等。人工智能的应用领域包括专家系统,博弈,定理证明,自然语言理解,图像理解和机器人等。人工智能也是一门综合性的学科,它是在控制论,信息论和系统论的基础上诞生的,涉及哲学,心理学,认知科学,计算机科学,数学以及各种工程学方法,这些学科为人工智能的研究提供了丰富的知识和研究方法。(摘自《人工智能》史忠植编著,第一章 绪论)具体内容为: 1.认知建模,人类的认知过程是非常复杂的,建立认知模型和技术常称为认知建模,目的是为了从某些方面探索和研究人的思维机制,特别是人的信息处理机制,同时也为设计相应的人工智能系统提供新的体系结构和技术方法;

2.知识表示,人类的智能活动过程主要是一个获得并运用知识的过程,知识是智能的基础。人们通过实践,认识到客观世界的规律性,经过加工整理,解释,挑选和改造而形成知识。为了使计算机具有智能功能,使它能模拟人类的智能行为,就必须使他具有适当形式表示的知识。知识表示是人工智能中一个十分重要的研究领域。

3.自动推理,从一个或几个已知的判断(前提)逻辑地推论出一个新的判断(结论)的思维形式称为推理,这是事物的客观联系在意识中的反映。自动推理是知识的使用过程,人解决问题就是利用以往的知识,通过推理得出结论。自动推理是人工智能研究的核心问题之一。

4.机器学习,机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。只有让计算机系统具有类似人的学习能力,才有可能实现人类水平的人工智能。机器学习是人工智能研究的核心问题之一,是当前人工智能理论研究和实际应用非常活跃的研究领域。

在人工智能研究方面,不仅仅有众多的类别,同时有不同的研究学派。其中有:符号主义学派,连接主义学派,行为主义学派。

符号主义学派,亦称为功能模拟学派。主要观点认为智能活动的基础是物理符号系统,思维过程是符号模式的处理过程。该学派指出:展现一般智能行为的物理系统其充要条件是它是一个物理符号系统。充分性表明智能可以通过任意合理组织的物理符号系统来得到。必要性表明一个由一般智能的主体必须是一个物理符号系统的一个实例。物理符号系统假设的必要性要求一个智能体,不管它是人,外星人还是计算机,都必须通过在符号结构上操作的物理实现来获得智能。

连接主义学派,亦称为结构模拟学派,基于神经元和神经网络的连接机制和学习算法。这种研究方法能够进行非程序的,可适应环境变化的,类似人类大脑风格的信息处理方法的本质和能力,这种学派的主要观点认为,大脑是一切智能活动的基础,因而从大脑神经元及其连接机制出发进行研究,搞清楚大脑的结构以及它进行信息处理的过程和机理,渴望揭示人类智能的奥秘,从而真正实现人类智能在机器上的模拟。

行为主义学派,亦称为模拟学派,认为智能行为的基础是“感知-行动”的反应机制。基于智能控制系统的理论,方法和技术,研究拟人的智能控制行为。

上述三种研究方法从不同的侧面研究了人的自然智能,与人脑的思维模型有着对应的关系。粗略额的划分,可以认为符号主义研究抽象思维,连接主义研究形象思维,而行为主义研究感知思维。研究人工智能的三大学派,三条途径各有所长,要取长补短,综合集成。

最为重要的莫过于人工智能的应用,当前,几乎所有的科学与技术的分支都在共享着人工智能领域所提供的理论和技术。在这里将列举一些人工智能经典的,有代表性和有重要影响的应用领域。

1.专家系统

专家系统是一类具有专门知识和经验的计算机智能程序系统通过对人类专家的问题求解能力的建模,采用人工智能中的知识表示和知识推理技术来模拟通常有专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。(摘自《人工智能》史忠植编著,第一章 绪论)

2.数据挖掘

数据挖掘是人工智能领域中一个令人激动的成功应用它能够满足人们从大量数据中挖掘出隐含的,未知的,有潜在价值的信息和知识的要求。对数据而言,在他的特定工作或生活环境里,自动发现隐藏在数据内部的,可被利用的信息和知识。要实现这些目标,需要有大量的原始数据,明确的挖掘目标,相应的领域知识,友善的人-机界面,以及寻找合适的开发方式。挖掘结果共数据拥有者决策使用,必须得到拥有者的支持,认可和参与。(摘自《人工智能》史忠植编著,第一章

绪论)

3.自然语言处理

自然语言处理研究计算机通过人类熟悉的自然语言与用户进行听,说,读,写,等交流技术,是一门与语言学,计算机科学,数学,心理学和声学等学科相联系的交叉性学科。自然语言处理研究内容主要包括:语言计算(语音与音位,词法,句法,语义和语用等各个层面上的计算),语言资源建设(计算机词汇学,术语学,电子词典,语料库和知识本体等),机器翻译或机器辅助翻译,汉语和少数民族语言文字输入输出及其只能处理,中文手写和印刷体识别,中文语音识别及文语转换,信息检索,信息抽取与过滤,文本分类,中文搜索引擎和以自然语言为枢纽的多媒体检索等。

4.智能机器人

智能机器人是一种自动化时代的机器,具有相当大的“大脑”,具备一些人或生物相似的智能能力,如感知能力,规划能力,动作能力和协同能力,是一种具有高度灵活性的自动化机器。随着人们对机器人技术智能化本质的认识的加深,机器人技术开始向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知,决策,行动和交互能力的特种机器人和各种智能机器。(摘自《人工智能》史忠植编著,第一章 绪论)

5.模式识别

模式识别是指对表征事物或现象的各种形式的信息进行处理和分析,以便对事物或现象进行描述,辨认,分类和解释过程。模式是信息赖以存在和传递形式,诸如波普信号,图形,文字,物体的形状,行为的方式和过程的状态等都属于模式的范畴。人们通过模式感知外部世界的各种事物或现象,这是获取知识,形成概念和作出反应的基础。(摘自《人工智能》史忠植编著,第一章 绪论)

6.分布式人工智能

分布式人工智能研究一组分布的,松散耦合的智能体如何运用他们的知识,技能和信息,为实现各自的或全局的目标协同工作。20世纪90年代以来,互联网的迅速发展为新的信息系统,决策系统和知识系统的发展提供了极好的条件,它们在规模,范围和复杂程度上增加极快,分布式人工智能技术的开发与应用越来越成为这些系统成功的关键。(摘自《人工智能》史忠植编著,第一章 绪论)

7.互联网智能

如果说计算机的出现为人工智能的实现提供了物质基础,那么互联网的产生和发展则成为人工智能提供了更加广阔的空间,成为当今人类社会信息化的标志。互联网已经成为越来越多的“数字图书馆”,人们普遍使用Google,百度等搜索引擎,为自己的日常工作和生活服务。(摘自《人工智能》史忠植编著,第一章 绪论)

8.博弈

博弈是人类社会和自然界中普遍存在的一种现象,如下棋,打牌,战争等。博弈的双方可以是个人,群体,也可以是生物群或智能机器,各方都力图用自己的智慧获取成功或击败对方。博弈过程可能产生惊人庞大的搜索空间。要搜索这些庞大而且复杂的空间需要使用强大的技术来判断备择状态,探索问题空间,这些技术被称为启发式搜索。博弈为人工智能提供了一个很好的实验场所,可以对人工智能的技术进行检验,以促进这些技术的发展。(摘自《人工智能》史忠植编著,第一章 绪论)

人工智能大的方面介绍暂且到此为止。接下来重点介绍模式识别技术。

第二篇 模式识别

模式识别已经成为当代高科技研究的重要领域之一,它已发展成为一门独立的新科学。模式识别技术迅速扩展,已经应用在人工智能,机器人,系统控制,遥感数据分析,生物医学工程,军事目标识别等领域,几乎遍及各个学科领域,在国民经济,国防建设,社会发展的各个方面得到广泛应用,产生了深远的影响。像前一篇一样我们先来介绍模式识别的概念。

模式识别就是机器识别,计算机识别或机器自动识别,目的在于让机器自动识别事物。(摘自《模式识别与智能计算——MATLAB著 第1章 模式识别概述)

技术实现》杨淑莹识别是对各种事物或现象的分析,描述,判断。模式识别是指在某些一定量度或观测基础上,把待识别模式划分到各自的模式中去,即根据模式的特性,将其判断为某一类。(摘自《模式识别技术及其应用》杨帮华著 第1章 模式识别简介)

例如手写数字的识别,结果就是将手写的数字分到具体的数字类别中;智能交通管理系统的识别,就是判断是否有汽车闯红灯,闯红灯的汽车车牌号码;还有文字识别,语音识别,图像中物体识别,等等。该学科研究的内容是使机器能做以前只能由人类才能做的事,具备人所具有对各种事物与现象进行分析,描述与判断的部分能力。模式识别是直观的,无所不在的,实际上人类在日常生活的每个环节,都从事着模式识别的活动。人和动物较用意做到的模式识别,但对计算机来说确实非常困难的。让机器能识别,分类,就需要研究识别的方法,这就是这门科学的任务。

模式识别的基本组成:(1)数据获取;

用计算机可以运算的符号来表示所研究的对象,这些可表示的符号包括:二维图像,如文字,指纹,地图,照片等;一维波形,如脑电图,心电图,机械振动波形等;物理参量和逻辑值,如体温,化验数据,参量正常与否的描述。

(2)预处理;

去除信号中噪声,提取有用信息,使信息纯化,或者是对输入测量仪器或其他因素所造成的退化现象进行复原。预处理这个环节内容很广泛,与要解决的具体问题有关,例如,从图像中汽车车牌的号码识别出来,就需要先将车牌从图像中找出来,再对车牌进行划分,将每个数字分别划分开。

(3)特征提取和选择;

要对预处理信号进行交换,得到最能反映分类本质的特征。同时,对特征进行必要的降维处理,将维数较高的测量空间转换到维数较低的特征空间,对所获取的信息实现从测量空间到特征空间的转换。

(4)分类器设计和决策。

分类器设计是指依据特定空间分布,设计及决定分类器的具体参数。主要是指对输入的训练样本,进行预处理,特征提取及选择,在样本训练基础上,确定某判决规划规则或判决函数,使得按这种规则对被识别对象进行分类,所造成的错误识别率最小或引起的损失最小,在设计阶段判决函数需要多次反复进行,直到误差达到一定条件。分类决策是指依据分类器设计阶段建立的预处理,特征提取与选择及判决函数模型,对获取的未知样本数据进行分类识别,把被识别对象归为某一类,输出分类结果

模式识别的特点:

(1)模式识别是用机器模仿大脑的识别过程,设计很大的数据集合,并自动地以高速度做出决策。

(2)模式识别不像纯数学,而是抽象加上实验的一个领域。他的这个性质常常导致不平凡的和比较成效的应用,而应用又促进进一步的研究和发展。由于它和应用的关系密切,因此它又被认为是一门工程学科。

(3)学习(自适应性)是模式识别的一个重要的过程和标志。但是,编制学习程序比较困难,而有效地消除这种程度中的错误更难,因为这种程序是有智能的。

(4)同人的能力相比,现有的模式识别能力仍然是相当薄弱的(对图案和颜色的识别除外),机器通常不能应付大多数困难问题。采用交互式别法可以在较大程度上克服这一困难,当机器不能做出一个可靠的决策时,它可以求助于操作人。(摘自《模式识别技术及其应用》杨帮华著 第1章 模式识别简介)

模式识别的主要方法: 1.统计决策法

(1)参数方法。主要以贝叶斯决策准则为指导。其中最小错误率和最小风险贝叶斯决策是最常用的两种方法。

(2)非参数方法。沿参数方法这条路走就要设法获取样本统计分布的资料,要知道先验概率,类分布概率密度函数等。然而在样本数目不足条件下要获取准确的统计也是困难的。这样一来人们考虑走另一条道路,即根据训练样本集提供的信息,直接进行分类器设计。这种方法绕过统计分布状况的分析和参数估计,而企图对特征空间实行划分,称为非参数判别分类法,即不依赖统计参数的分类法。这是当前模式识别中主要使用的方法,并且涉及人工神经元网络与统计学习理论等多方面。2.结构模式识别

结构模式识别是利用模式的结构描述与句法描述之间的相似性对模式进行分类。每个模式由它的各个子部分(称为子模式或模式基元)的组合来表示。对模式的识别常以句法分析的方式进行,即依据给定的一组句法规则来剖析模式的结构。当模式中每一个基元被辨认后,识别过程就可通过执行语法分析来实现。选择合适的基元是结构模式识别的关键。3.模糊模式识别

所谓的模糊模式识别就是解决模式识别问题时引入模糊逻辑的方法或思想。同一般的模式识别方法相比较,模糊模式识别具有客体信息表达更加合理,信息利用充分,各种算法简单灵巧,识别稳定性好,推理能力强的特点。4.人工神经网络模式识别

模拟动物神经系统的某些功能,采用软件或硬件的办法,建立了许多以大量处理单元为结点,处理单元间实现(加权值的)互联的拓扑网络,进行模拟,称之为人工神经网络。这种方法可以看作是对原始特征空间进行非线性变换,产生一个新的样本空间,使得变换后的特征线性可分。同传统统计方法相比,其分类器是与概率分布无关的。人工神经网络的主要特点在于其具有信息处理的并行性,自组织和自适应性,具有很强的学习能力和联想功能以及容错性能等,在解决一些复杂的模式识别问题中显示出其独特的优势。模式识别的典型应用和发展: 1.文字识别

目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写识别的难度高于印刷体识别,而在手写识别中,脱机手写体的难度又远远超过了联机手写识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。2.语音识别

语音识别技术所涉及的领域包括信号处理,模式识别,概率论和信息论,发声机理和听觉机理,人工智能等。3.指纹识别

指纹识别的方法有很多,大致可以分为四类:基于神经网路地方法,基于奇异点的方法,语法分析地方法和其他方法。4.细胞识别

基于图像区域特征,利用计算机技术对显微细胞图像进行自动识别越来越受到大家的关注,并且现在也获得了不错的效果。5.医学诊断

在癌细胞检测,X射线照片分析,血液化验,血液分析,染色体分析,心电图诊断和脑电图诊断等方面,模式识别已取得了成效。6.军用目的的自动识别 如雷达探测目标的自动识别,自动跟踪,卫星照片的自动识别等。7.生物认证技术

生物认证技术是21世纪最受关注的安全认证技术之一,它的发展是大势所趋。人们愿意忘掉所有的密码,扔掉所有的磁卡,凭借自身的唯一性标识身份与保密。8.数字水印技术

IDC预测,数字水印技术在未来的5年内全球市场规模超过80亿美元.模式识别的发展,模式识别是一个交叉,综合的科学技术领域,不仅与其他信息学科而且还包括数理科学,生命科学,地球科学,工程与材料科学,管理科学,环境科学的相互作用和渗透越来越高,其科学界限很可能随着发展而逐渐模糊。其发展离不开应用和工程,离不开国家目标。因此,其科学技术内涵与外延应该与时俱进,更新和扩展,研究的方向与内容应该更具有综合性,交叉性,更强调国家目标的实现,解决国家急需的重大问题,重大关键技术攻关和社会发展中的科学技术难题和基础理论问题。

模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把人工神经网络与各种已有技术以及人工智能中的专家系统,不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

模式识别是一项全新的高科技的技术,我们实践团队虽然在了解这个技术做了很多努力,但是毕竟了解到的也只是皮毛而已。在这个科技突飞猛进的时代,每天都更新着不同的技术,只有不断地去学习,才能适应这个社会,适应这个时代。模式识别的了解学习报告暂时告一段落,接下来我们将进入中科院,采访专业人士,来解决我们的困惑。

第二篇:模式识别课程报告

模式识别文献综述报告

一,文献综述报告

阅读至少5篇论文(最好包含1篇英文论文;自己去学校电子图书馆下载,考虑中国知网;IEEE,Elsevier等数据库),写一篇文献综述报告。

1.选题不限,可以是任何一种模式识别算法(例如k-means,kNN,bayes,SVM,PCA,LDA等),阅读所选题方面的相关文献(论文都是关于一个主题的,例如都是svm算法方面的)。

2.写一份文献综述报告,包括:每篇论文主要使用什么算法实现什么,论文有没有对算法做出改进(为什么改进,原算法存在什么问题,改进方法是什么),论文中做了什么对比试验,实验结论是什么?注意,尽量用自己的话总结,不要照抄原文。可以加入自己的分析和想法,例如这篇论文还存在什么问题或者缺点,这篇论文所作出的改进策略是否好,你自己对算法有没有什么改进的想法?

3.把阅读的参考文献写在报告后面。(包括:作者;论文名称;期刊名称;出版年,卷号(期号),页码。例如:[1] 赵银娣,张良培,李平湘,一种纹理特征融合分类算法,武汉大学学报,信息科学版,2006,31(3):278-281.)

二、写一下学习这门课的心得体会(占分数)。

学习这门课有什么收获?老师在教学中还应该加入些什么教学内容?或者有哪些教学内容需要删减?需要调整?对于作业(上机实验)内容有什么意见和建议?目前内容过多过难还是适中?你希望出什么样的上机题目(可以得到好的锻炼和能力的提高)?完成作业过程中有什么收获和体会?有没有对模式识别或者某种模式识别的算法比较感兴趣?有什么想法?

第三篇:模式识别报告格式1

模式识别报告格式

一、封皮的填写:实验课程名称 模式识别

二、实验名称:按顺序填写图像的贝叶斯分类、K均值聚类算法、神经网络模式识别

三、年月:2013年4月

四、纸张要求:统一采用A4大小纸张,左侧装订,装订顺序与实验顺序一致。

五、书写要求:

1、报告可以手写也可以打印。

2、实验图像及结果图像打印,图像均位于实验结果与分析部分,图像打印于纸张上部,下部为实验分析。

3、报告中图要有图序及名称,表要有表序及名称,每个实验的图序和表序单独标号,具体格式参照毕业设计手册。不合格者扣除相应分数。

4、每个实验均需另起一页书写。

六、关于雷同报告:报告上交后,如有雷同,则课程考核以不及格处理,不再另行通知修改。

实验

一、图像的贝叶斯分类

一、实验目的将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D538、MATLAB

三、实验原理

以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。

四、实验步骤及程序

实验步骤、程序流程、实验源程序齐全。

五、实验结果与分析

要求写明实验得到的分割阈值,附分割效果图。对实验结果进行分析,说明实验结果好或者不好的原因,提出改进措施。

(另起一页)

实验

二、K均值聚类算法

一、实验目的将模式识别方法与图像处理技术相结合,掌握利用K均值聚类算法进行图像分类的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D538、MATLAB、WIT

三、实验原理

以自己的语言结合课堂笔记进行总结,要求过程推导清晰明了。

四、实验步骤及程序

实验步骤、程序流程、MATLAB及WIT实验源程序齐全,WIT聚类程序可以图像形式

附于报告上。

五、实验结果与分析

以MATLAB和WIT分别实现K均值图像聚类算法,写明聚类类别数、聚类中心、迭代次数、运行时间,附原始图像和分类结果图像,并做实验分析。

(另起一页)

实验

三、神经网络模式识别

一、实验目的掌握利用感知器和BP网进行模式识别的基本方法,通过实验加深对基本概念的理解。

二、实验仪器设备及软件

HP D538、MATLAB

三、实验原理

以自己的语言结合课堂笔记及相关资料进行总结,要求过程推导清晰明了。

四、实验步骤及程序

感知器实验:

1、设计线性可分实验,要求训练样本10个以上

2、奇异样本对网络训练的影响

3、以线性不可分样本集训练分类器

BP网实验:利用BP网对上述线性不可分样本集进行分类

五、实验结果与分析

写明迭代次数、训练时间,附分类界面效果图,并讨论奇异样本对分类器训练的影响。

第四篇:人工智能-多种模式识别的调研报告

郑州科技学院

郑州科技学院

本科毕业设计(论文)

题 目 多种模式识别的调研报告 姓 名 闫 永 光 专 业 计算机科学与技术 学 号 201115025 指导教师

郑州科技学院信息工程系 二○一四年六月

郑州科技学院

摘 要

信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。

模式识别(Pattern Recognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理 的研究有交叉关系。模式识别的发展潜力巨大。

关键词:模式识别; 人工智能; 多种模式识别的应用; 模式识别技术的发展潜力

郑州科技学院

引言

随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展。人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知

1、模式识别

什么是模式和模式识别?

模式可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。

模式识别(Pattern Recognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(Supervised Classification)和无监督的分类(Unsupervised Classification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

郑州科技学院

2、人工智能

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

3、多种模式识别的应用

3.1文字识别

汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将

郑州科技学院

文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了连机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

3.2 语音识别

语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。

3.3 指纹识别

我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:left loop,right loop,twin loop,whorl,arch和tented arch,这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。

3.4 图像模式识别

图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色

郑州科技学院

彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。

从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。

3.5 句法模式识别

对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。

句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。

3.6 统计模式识别

统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如

郑州科技学院

图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

图2 统计模式识别模型

4、模式识别技术的发展潜力

模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。

3.1语音识别技术

语音识别技术正逐步成为信息技术中人机接口的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。

3.2生物认证技术

生物认证技术本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘

郑州科技学院

掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100美元的市场规模。

3.3数字水印技术

90年代以来才在国际上开始发展起来的数字水印技术是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。

结 语

综上所述,模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

参考文献 边肇祺,张学工等编著.模式识别(第二版).北京:清华大学出版社,2000.2 王碧泉,陈祖荫.模式识别理论、方法和应用.北京:地震出版社,1989.3 赵陵滋,甘云祥.统计模式识别算法的MATLAB语言实现.应用科技 4 语音识别 理想与现实的距离 人类形象思维模式识别与机器模式识别之探讨 6 指纹认证方法应注意的问题

第五篇:电影抠像技术了解

什么是抠像

抠像通俗地讲就是利用软件将视频素材中的人物保留,把背景替换成其他需要的背景。而具体的方法需要拍摄前准备和后期用软件处理。拍摄前的准备主要让主角在一个相对简单的北景下完成动作,当然比较理想的是在纯蓝色或绿色的北景下完成。这理解释一下为保要用纯蓝色或绿色,因为利用软件时行抠像时,一般是将整个视频素材画面中的某种颜色透明华,然后再合成到准备好的背影素材中。人的皮肤颜色与纯蓝色或绿色相差较大,故最好使用这两种颜色。

抠像的前期动作设计

一般比较专业的视频后期处理公司,都会在三维背景室中完成拍摄。也就是专门有一个房间,四周都用同一种颜色的布(一般为蓝色或绿色)覆盖或用纯色的油漆刷满所有墙面,然后电影中的人物可以手持道具在这个房间做各种电影中需要出现的动作。

抠像的后期处理

用过PR软件的朋友都知道PR也具有蓝屏抠像特效,具体方法是利用抠像特效使视频素材中的北景透明化,这时叠加在其视频素材下方的背景素材就可以显示出来了。在专业视频领域后期处理的软件很多,具备更强和更快的渲染速度,但往往需要与相应的视频后期处理设备配合使用。ULTIMATTE ADVANTEDGE就是一款比较专业的社频后期处理软件,利用它抠像完成的ALPHA通道

ALPHA通道是专门用于抠像合成的通道,其中的黑色代表完全透明,白色则正好相反。另外,利用DISCREET公司曾获得美国电影艺术科学院科学与工程最高奖的INFERNO软件,可以方便地将人物从纯色或比较复杂的背影中抠像出来。

《蜘蛛侠2》的飞身特反主要是利用在主角身上吊钢丝绳来完成的,对于钢丝绳的材质选择非常重要。而且钢丝绳几乎在很多电影中都会用到,那么最后钢丝绳是怎么消失的。

利用专业的高速摄像机拍摄完几组镜头,在后期处理时必须使用钢丝绳这个辅助工具完全从屏幕中消失。这同样需要利用专业的视频后期处理软件来实现,如NOTING REAL公司的shake软件,该软件中有七个类似抠像的工作,对支除背景中的细节处理有专一的工具,利用这些工具可顺利地将蜘蛛侠身上的钢丝绳去除。该软件完成大多数合成特技的帛作,前段时间场面宏大的《指环王》中的特效合成就是利用SHAKE来实现的。

打斗动作的设计

另外对于一些特殊的动作,如绚丽的武打动作,快速的跑步动作等,需要在人物身上安装相应有采集传感器,然后主角只要进行类似的工作即可。

当人物进行相应动作的同时,电脑已经通过人身上的多个迷你采集传感器将相应的运动点数据传输到磁盘中保存。然后在电脑中利用三维场景合成软件,如加拿大EYEON公司开发的基于PC平台的专业三维动画合成软件DIGITAL FUSION,将采集到的所有数据点自动建模,并在软件中完成真人角色动画的模拟,这样就可以制作出许多真人较难完成的动作。利用DIGITAL FUSION4.0合成场景的界面。

下载关于学习了解模式识别技术报告word格式文档
下载关于学习了解模式识别技术报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    现代教育技术学习报告

    现代教育技术学习报告 教育技术是通过创造、使用、管理适当的技术性的过程和资源,以促进学习和提高绩效的研究与符合伦理道德的实践。现代教育技术是指在教育理论的指导下,将......

    技术交流会学习情况报告

    赴烟台学习建筑业十项新技术(2010)宣贯及 施工技术交流会学习情况心得体会 尊敬的各位领导、各位同事大家好,我代表去烟台学习新技术的三位同志向大 家作简要的汇报: 首先感谢公......

    《计算机辅助设计技术基础》学习报告

    《计算机辅助设计技术基础》学习报告 卫其超200810301105机械工程及自动化081班 摘要:随着科学技术的迅猛发展,先进的电脑图形技术在设计当中得到了广泛的应用,相对于传统的徒......

    《常用急救技术》课程学习报告

    《常用急救技术》课程学习报告 在现实生活中我们可能会面对各种各样的突发状况,可能发生在别人身上,也可能发生在他人身上。通过这学期常用急救的学习,学得了一些日常的急救的......

    模式识别技术原理概述及其在刑事科学技术中的应用[推荐5篇]

    模式识别技术原理概述及其在刑事科学技术中的应用 李同 中国人民公安大学 北京 102623 摘要 随着现代科学技术的不断发展,模式识别技术成为以数学及计算机信息技术为基础的......

    【网页设计-最新经典技术文档-理念配色】学习网页制作你应该了解的

    如果只想建立一个自己的主页,事实上并不需要掌握太深奥的知识,因为笔者认为,网上有很多现成的资源可以利用,如果自己去花钱买书专门来学,恐怕有点“杀鸡用牛刀”,花大力气办小事情......

    诗歌学习——了解偶句

    这一节课我们将重点了解偶句的内容以及与偶句类似或相近的一些概念,我们首先说两个概念:一个是“偶句”,一个是“对仗”。相比于偶句,对仗,是大家更为熟悉的。现代的一些涉及到律......

    学习气功首先的了解

    学习气功首先要了解“炁”,“气”和“炁”是不同的概念,我们所知道的气功其实就是“炁功”,只是简化而已。 气,是气体、空气。炁,是自身的能量,天地的能量。而我们最初收集炁时,首......