第一篇:平行四边形面积的练习教学反思
《平行四边形面积计算的练习》
教 学 反 思
解东二小 辛爱芳
本节课是平行四边形面积的练习课,是在第一课时学生已经探索出平行四边形面积公式的基础上进行教学的。根据学生的知识基础、学习经验以及教材编排的学习内容我确定了三个学习目标:
1、在平行四边形面积公式中我能根据已知的两个量求第三个量,并能解决实际问题。
2、通过操作、探究我知道把长方形框拉成平行四边形后面积的变化规律。
3、我知道等底等高的平行四边形面积相等。围绕这三个学习目标由浅入深、由易到难展开了三个层次的教学:基本练习-探究练习-拓展练习。下面就本节课我的设计思路、学生的学习形式以及自己的一些想法做以下反思:
首先本节课我注重激发学生的学习积极性。练习课为了调动学生学习的积极性,避免单调枯燥乏味的学习形式,课伊始我创设了有效教学的情景,以《阿凡提智斗巴依老爷》的故事引入,激发学生的学习兴趣,调动了学生探究知识的欲望。
其次在教学过程中,我注重学生数学思维的发展,注重学生学习方法的指导,注重细节的培养。比如说探究的每一个问题在导学案上我都有旁注与留白,“旁注”引导学生认真地分析题意,找准数量间的关系,做到心中有数,也以此培养学生良好的审题习惯和思考习惯;“留白”尽量为学生提供更多的交流机会、尝试机会。新课标强调:要让学生经历和他人合作交流解决问题的过程,尝试解释自己的思考过程。教学过程中我创设了与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识,加深数学与生活之间的联系,同时也调动起学生学习数学的积极性。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”因此在本课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。比如:在这节课中,我设计了拉一拉、看一看等学习活动,逐步引导学生观察思考:把长方形的木框拉成平行四边形的过程中什么变了?什么没有变?然后再把平行四边形拉成长方形,周长、面积又是怎样变化的?什么时候面积最大?充分利用多媒体课件演示,形象、直观,使学生得出结论。
再之注重优化练习设计。拓展思维练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。第一环节的练习有告诉学生底和高,直接求平行四边形面积,规范格式,运用公式,解决实际问题。接着出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。第三层次知道面积和高如何求底,知道面积和底如何求高。一环连一环,训练思维,解决问题。第二环节探究长方形框拉成平行四边形的过程中面积与周长的变化规律。同时与课开始的故事呼应,解开故事谜底,明白阿凡提的智慧所在,体现知识的力量,数学的价值,同时解决生活中的实际问题,让学生体验成功,愉快学习。第三环节探究等底等高的平行四边形的面积相等的规律。现不要学生计算,引导学生观察探究两个平行四边形底和高之间的关系,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等,发现面积也相等的规律。再通过练习练习让学生理解规律、掌握规律、运用规律解决问题。
在学生的学习方式上,我主要让学生课前先独立完成导学案,课上小组交流自己的疑点和自己学习思路和成果,最后把自己这些题的解题思路在全班展示,并强调易错点避免下次再错,同时提出疑惑全班解决。多放手让学生自主思考、动手,即重视学生的自主探索和合作学习,这样效果比较好。动手实践,自主探索与合作交流是学生学习数学的重要方式。尽量为学生创设了一种民主、宽松、和谐的学习氛围,给学生充分的思考问题的时间与空间,在课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生能在课堂中自由地思考、猜想、实践、验证„„
最后说一下我的一些想法,我在这节课中讲解题目的方式太单一了,每题的步骤都差不多都是让学生自主思考解题,在这方面应该多去研究,想办法能够做到形式多样,使课堂不至于让学生感到枯燥。在实际的教学过程中,应该积极地鼓励学生进行大胆的猜想,提出自己的问题,一道题还可以有多种的解法。对于他们提出的问题不管对错尽量多鼓励。再者本节课知识的容量还不够大,一些语言的组织过于罗嗦等。那么练习课到底应该怎么上呢,一直是我很困惑的问题,我还是应该不断地思考、不断地总结经验。这次教学节之所以展示一节练习课,就是为了与各位同仁共同探讨练习课更好的教学方式教学模式,望多提宝贵意见,共同提高。
第二篇:平行四边形面积教学反思
《平行四边形面积》的教学反思
张熊火 2010.9.28 有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上;学生的数学学习内容应该是现实的、有趣的、富有挑战性的;动手实践、自主探索与合作交流,是学生学习的重要方式。这节课中,我在学生想想、剪剪、拼拼等活动中,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。让学生有理有据地思维,即达到了“平行四边形面积”的主动构建。调动了学生已有的知识和经验,去解决问题,“创造”知识。使他们将接受知识的过程转变为能动参与过程,成为真正的探索者、发现者、创造者。有利于学生创新意识与实践能力的培养。主要体现在以下几个方面:
(一)从旧知识出发,为学生探究学习作铺垫。
小学数学内容来源于生活实际。创设与学生的知识背景密切相关的,又是学生感兴趣的学习情境,有利于让学生积极主动地投入到数学活动中去。回归生活,让课堂与生活紧密相联。只有植根于生活世界并为生活世界服务的课堂,才是具有强盛生命力的课堂。新课程强调把课堂变成学生探索世界的窗口,学生活中的数学,获得合作的乐趣,生活融入甚至成为课堂教学,课堂教学本身就是生活,经历、体验、探究、感悟,构成了教学目标最为重要的行为动词。
(二)重视学生的自主探索和合作学习
“学习任何知识最佳的途径都是由学生自己去发现,因为这种发现才是最深刻、也最容易掌握其中内在规律性质与联系”。经过学生动手、动脑、交流,把求平行四边形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。动手实践,自主探索与合作交流是学生学习数学的重要方式。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”在教学中,在这节课中教师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证„„这样才能迸发出学生创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
总之,本节课学生亲身经历了探索的过程,在头脑中建构了新的数学模型,使学生体验到成功的喜悦。教学成功的关键在于关注了学生的学习过程,不是让学生机械地重复历史中的“原始创造”,而是让他们根据自己的体验并用自己的思维方式重新去创造出有关的数学知识;不是盲目接受和被动记忆课本或教师传授的知识,而是让学生主动运用已有的知识和经验进行自我探索,自我建构。创设了一个有利于学生生动活泼、主动发展的教育氛围,教师要真正成为教学的组织者、引导者和合作者。
本节课的教学设计很好,但是最终落实拼拼剪剪这个环节中,没有让学生充分发挥的自主探究的权利,学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。
第三篇:《平行四边形面积》教学反思
《平行四边形面积》教学反思
怀安县柴沟堡镇实验小学
景惠英
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生通过自己的活动去获取知识。在《平行四边形的面积》这一课的教学中,我充分调动学生的学习积极性,让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了以下几点:
一、注重数学思想方法的渗透
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。在数学教学中,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中我先利用求不规则图形的面积向学生渗透转化的思想,从而引出用转化的方法求平行四边形面积的计算方法。在整个探究过程中,“转化”的方法为学生提供了解决问题的途径,学生通过把新知“求平行四边形的面积”转化为旧知“求长方形的面积”,从而达到解决问题的目的。这一方法在数学学习中,具有普遍应用的意义,同时它也是求其他图形面积的重要方法。
二、注重学生自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。因为学习任何知识的最佳途径是通过自己的实践活动去发现,这样发现理解最深,也最容易掌握。学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。本节课我放手让学生从自己的思维实际出发,让学生在独立思考的基础上进行合作交流,这样既能满足学生展示自我的心理需要,又使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
三、注重了学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?接着,充分运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形转化为长方形的过程,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调平行四边形底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
四、注重练习的优化设计
练习是课堂教学中的重要环节之一,是巩固知识、运用知识、训练技能技巧的必要手段,是检查教学效果的有效途径。因此,练习设计必须紧扣教学内容和目标,必须注意基础性、针对性、应用性,练习的形式应具有趣味性、层次性、开放性,从而达到有效的练习。本课教学过程中,我注重练习设计,做到学练结合,体现出以下几点:一是抓住重点,练习注意基础性和针对性。第一题告诉学生底和高,直接求平行四边形面积,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,让学习上更高一个层次。二是动手操作,练习应注意实践性与应用性。第三题出示把一个长方形的木条框拉住它的两个对角,使它变成一个平行四边形,发现周长和面积有什么变化?三是循序渐进,练习注意层次性。在这个练习的设计中,把练习设计的有层次,由易到难,不能一下子就出现很难的题目,否则把学生难倒了,从而也检测不到本节课的教学效果。四是训练思维,练习注意开放性。设计练习时,有意识地设计一些能开拓学生思路的开放题。第四题比较同底等高的平行四边形的面积,意在提升学生对平行四边形特征的认识和加深对面积计算公式的理解。
总之,本节课为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境和探索解决问题的过程,在学生活动的过程中为学生提供充分的活动条件和活动空间,使学生的数学学习成了一个不断感受、体验、探索、交流和应用数学的过程。当然在课堂上也出现了很多不足的地方,但只要我用心去思考,不断反思,相信自己能在不断的自我反思中成长,在不断的自我实践中发展,在不断的自我成长中创新。
第四篇:《平行四边形面积》教学反思
《平行四边形面积》教学反思
口前镇中心小学校叶双
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习习近平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”
《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。我设立的教学目标是(1)通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算;(2)让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。培养学生观察、分析、概括、推导和解决实际问题的能力。(3)使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、注重数学思想方法的渗透,让所积累的经验为新知服务,渗透“转化”思想
在教学设计方面,我先是让学生大胆猜测两个花坛(等底等高的长方形与平行四边形)的面积哪一个大,再让学生通过动手操作、验证平行四边形的面积,其实它们的面积是一样大的。“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
二、注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三、注重了师生互动、生生互动新课程标准提倡学生的自主学习,在课堂教学中主张以学生为主体,注重师生互动和生生互动。师生应该互有问答,学生与学生之间要互有问答。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。
四、遗憾之处
课前预设学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生大部分都拼出第一种,后两种学生没拼出来,如果在下一次试教中,我想尝试着通过我的引导让学生动手实践,剪出第二、三种剪法。
本课中我以学生为主体,教师主导,较好地完成了教学目标,但课中有些地方不够完善,需改进。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩注重学法的指导,将“转化”思想进行了有效的渗透,让学生学会用以前的知识来解决现有的问题。因此,开始,出示比眼力,让学生将不规则图形转化为长方形,实现知识的迁移。“转化”方法是研究和解决数学问题的一种有效的思考方法。在本课的重点就在于将平行四边形转化成长方形,进而推导出平行四边形面积的计算公式。在求平行四边形面积的大小这一教学环节中,学生用了数方格方法。学生上台汇报时充分利用投影仪演示操作,突出怎样去数方格(先数满格,不满一格的要通过平移把它合成为一格)为以后学习不规则图形面积埋下伏笔。学生有非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经学的图形来研究。学生比较容易掌握把新的、陌生的问题转化成学生相对熟悉的问题的方法。
先让学生大胆猜测,再通过小组合作剪一剪,拼一拼互相交流总结,得到平行四边形的面积公式。完成了本节课的知识目标教学。给学生提供了充分的从事数学活动的机会,帮助他们在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,努力使学生的主体性得以体现。
第五篇:《平行四边形的面积》教学反思
《平行四边形的面积》教学反思1
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的'什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
《平行四边形的面积》教学反思2
按昨天学习的体会我在自己班里实践了一下,课堂上收获了惊喜与平淡,现记录如下。
1、准备学习材料,有点小困难。
课前准备,我都会考虑材料尽可能简单,但效益要达到最大化。本节课就给学生准备一个平行四边行,供学生探究用。
在word上画平行四边形时,遇到了困难。底与高都要取厘米数的平行四边形我不知道怎么设置,急中生智,用了一条参考线段就完成了。但邻边就没办法了,结果做出来的邻边长2。3厘米。不过这样的学习材料并不影响学生的研究。
2、尝试也出现三种思路。
课始,我开门见山就让孩子们量出平行四边形的相关数据,计算平行四边形的面积。(边指周长与面积的环节都省了,这个环节有必要吗?)大部分学生能按自己的理解进行测量并计算,十来名学生三分钟的探究不知道如何下手。这是我始料未及的,课前的准备还是不太充分。下次是不是给那些没办法研究的小朋友准备个研究提示?提示该怎么提示才有效?提示会不会影响那些本来有自己研究思路的学生的思路?或者会不会呈现的材料不够丰富?……有太多的疑问了。
我的课堂上也出现了三种解决平行四边形的面积的思路。
方法一:求周长。
方法二:底乘邻边;
方法三,底乘高。
讲评时,我先展示求周长的思路,学生一看就知道这是不对的。再出示底乘邻边的方法,安琦说:“因为长方形是特殊的平行四边形,长方形面积是长乘宽,所以平行四边形也是长乘宽”。居然与案例呈现的.孩子回答的一模一样,难道这是孩子们应然出现的思路吗?当我出示教具把平行四边形拉成长方形时,绝大多数的孩子都赞同了这种方法。“把平行四边形拉成长方形,面积没变化吗?”我急着抛出研究的关键点。连续问了三遍,等了一分钟,终于有人举手了。侠宋上台把原来的平行四边形进行害虫补成长方形,跟拉成的长方形一比较,孩子们这才发现,把平行四边形拉成长方形,面积变大了。第三种方法的得出极其自然。真佩服名师,这个环节的设计,割补法应然而出,不过既是为了验证“拉”的方法的不正确,又为正确方法埋了伏笔,高!
3、基本练习。
我采用了两道题,一道只呈现对应底和高的平行四边形,一道有多余邻边的平行四边形,结果还是有人掉进陷阱。是不是太早出现干扰因素了?如果第二课时再出现这个,会不会好一点儿?
4、变式练习。
画面积是12平方厘米的平行四边形,孩子们觉得有些简单。怎样把这个环节设计精彩,成为本堂课的第二个高潮点?有待下次继续思考。
5、课尾。
我也采用了朱老师的那三道题,“一个底是8米,高是6分米的平行四边形,面积是多少?”“把它分成两个大小一样的三角形,一个三角形的面积是多少?”“把它分成两个大小一样的梯形,一个梯形的面积是多少?”就让学生答吧,处理有些简单,继续深入,会不会扯得太多?学生一开始力挺的底乘邻边的方法,是不是在这时给个回就比较好?
遗憾与惊喜并存,上课,真有意思!
《平行四边形的面积》教学反思3
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习习近平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
一、重在每个孩子都参与
本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
二、渗透“转化”思想,让所积累的经验为新知服务
“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的.两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!
《平行四边形的面积》教学反思4
这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。
一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?
平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。
二、注重学生数学思维的发展
在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的`发展。
三、不足之处
本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。
虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。
《平行四边形的面积》教学反思5
本节课是在孩子们已经掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学习的平行四边形的面积的计算的,所以,我在立足学生已有知识储备的基础上开展教学活动。
本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。
根据课堂教学实际反思如下:
一、教学设计要合理,不能出现误导学生的环节。
课堂开始时我出示了一个长方形教具,让学生回忆长方形的长和宽,面积公式,然后通过把长方形拉伸变成平行四边形,让学生观察长和宽,面积有没有变化,利用麻吉星信息技术进行投票,然后留下疑问导入情境图。在学生通过数格子和剪拼活动推导出平行四边形的面积公式后回到这个问题,还是有一部分学生认为面积没有变化,认为平行四边形的底就是长方形的长,高就是长方形的宽,而不知道拉成平行四边形后它的高就不是原来的宽了。
在比较两个花坛的大小这一环节,课本上用数方格的方法,全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,然后加上满格的就得到了面积。也有学生思考后发现沿着平行四边形的高剪下一个直角三角形然后平移转化成长方形,这两种方格都是很好的,让学生上台表达自己的想法时需要注意培养孩子的语言表达能力,并注意要面向学生来表达。当然数格子的方法也可以分别把不满一格的平移到右边拼成满格的然后再数,这种方法老师也可以向学生介绍,开拓学生的思维。
二、渗透“转化思想,让所积累的经验为新知服务。
“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化的思想,再数完格子后让学生说说自己的发现,再引导学生大胆猜想平行四边形的面积可能是什么,该怎样计算,接着引出将平行四边形转化成已学的什么图形来推导它的'面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)只有几个学生拼出来。根据教参中的建议“如果学生除教材外的其他拼接方法,给予肯定”,其实是在提示我们不必追求拼接方法的多样化,而是应追求拼接之后的等量关系的研究与发现。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,让孩子们讨论比较,转化后的图形和原图形有哪些等量关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。这个环节在让学生动手操作前应该先给学生思考怎样操作,而不是直接动手操作。在学生剪拼完成之后学生应该在组内交流自己的操作方法和过程并对比图形说说自己的发现,这个环节学生参与度不够,不够积极认知,不会表达自己的方法,教师应该平时注意小组合作的规范性训练,要求每个学生在动手操作前先独立思考如何操作,然后再动手操作,并让小组长组织每个成员积极发言,小组长进行总结,每个环节都要有时间控制,合理、有序安排。
三、练习的设计要突出层次性,注意数学的严谨。
① 在设计下面这道习题时,我原本是把选项给出来让学生去选,这样就给学生思考的空间不够大,应该让学生自己思考后选出答案,然后利用麻吉星来投票,教师根据投票结果有针对性的用抽人功能来让学生说说他理由,加深学生对平行四边形面积的理解与运用。
②在让学生画一个面积为12平方厘米的平行四边形这个问题时,应该先让学生思考:面积为12平方厘米的平行四边形它的底和高应该是多少?学生自然能够想到有2×6=12、3×4=12和1×12=12这三种情况(底和高为整数情况下),每种情况有两种画法,共6种画法,而不是3种。在学生动手画图形时应该寻找并拍照学生的作品并通过上传图片来展示,这样操作可能效果会比较理想。
《平行四边形的面积》教学反思6
听了梁教师的这一节课,我的脑海中浮现了两个字,那就是“和谐”,到达如此境界,都归功于梁教师巧搭了数学与生活之桥。
首先是,“数学化”与“生活化”的和谐统一
梁教师在这节“平行四边形的面积”一课中,对数学教师如何在课堂教学中到达“数学化”与“生活化”的和谐统一,给了我们一个很好的诠释。整节课经过普罗旺斯这一现实生活中的数学素材,如停车位的大小比较,花圃的面积,草地的温馨提示牌等,经过精心的教学设计,既让学生感受到数学与生活的密切联系,对数学产生亲切感,又让他们学会用数学的思维思考生活,体味数学的价值。课的各个环节连接自然,如行云流水,可谓清清楚楚一条线!
其次是,数学与德育的和谐统一
在数学课中怎样做到把品德教育溶于数学课堂,这是我们数学教师经常思考的一个问题。在这节课上,我也得到了满意的答案。梁教师巧妙地设计了李明家和张海家礼让车位,爱护小草的温馨提示语,让学生在学习数学的`同时受到了礼貌礼仪的教育,这种教育如春风细雨润物无声。
再次是,教师指导与学生探究的和谐统一
梁教师虽然很年轻,教学经验尚未丰富,但课堂上却不乏沉着与干练。她总能给学生足够的探究时间和空间,充分发挥学生的主体作用。如在平行四边形面积公式的推导过程中,我们都明白公式是刻板的,而公式的再创造过程却是鲜活、生动而趣味的。在这一探究发现的过程中,学生的多种感官参与了学习活动,学生主动参与,积极探究,而教师只是进行适时的指导,帮忙,让学生探索过程中获得了平行四边形面积的计算方法。这使学生最大限度地投入到观察、思考、操作、探究的活动中,使学生亲历“做数学”的过程,体现《课标》中倡导的“动手实践,自主探索,合作交流”的学习方式,使学生体验到学习成功的喜悦。
《平行四边形的面积》教学反思7
在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。这节课我设立的教学目标是:(1)使学生通过探索、理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积;(2)通过操作,观察和比较的活动初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、可取之处:
1、注重数学学习方法的渗透 在数学教学中,要注重数学思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知 ,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。
2﹑充分给足学生自主探索的时间。
本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底 ,长方形的宽相当于平行四边形的`高,因为长方形的面积= 长 × 宽 ,所以平行四边形的面积= 底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所悟。
二、还需要改进的地方:
1、在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,由于担心时间不够也省了,忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了学生对平行四边形面积推导过程茫然的情况。
2、学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。例如,平行四边形不但可已转化成长方形,如果是一个菱形(也就是四边相等的平行四边形),通过割补、平移是可以转化成正方形的,因为担心自己不能很好的把握课堂节奏,完不成教学任务,所以这节课我只处理了将平行四边形转化成长方形的一种情况,这样就限制了学生的思维,没有给学生思维的空间和机会。所以我在讲梯形和三角形的面积时便吸取了这次的经验教训。给学生思维的空间和机会,让他们从众多的方法中找到最适合自己的,加深学生对新知识的理解和掌握。
教学是一门有着缺憾的艺术。我相信做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
《平行四边形的面积》教学反思8
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《平行四边形的面积》来谈一谈?
1、把数学知识的`教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、平移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在平行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把平行四边形转化成长方形,推导出平行四边形的计算方法,在平等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
《平行四边形的面积》教学反思9
今天我教了平行四边形的认识,课前让同学们进行了以下预习:
(1)说说生活中那些地方看到过平行四边形?
(2)自己做一个平行四边形。
(3)根据自己做的平行四边形探究一下平行四边形有什么特点?
(4)有兴趣的可以做做后面的练习题。
一上课我就交流了预习作业,同学们兴致很浓,做的平行四边形材料不一,有的用吸管做的正好为研究后面的第6题作准备,有的用钉子板围的,有的在纸上画了个平行四边形……做的好的得到了老师的表扬,看他们的表情好神气哟!在探究平行四边形的特征时,有的学生竟然说到了对角是相等的。看来四年级的学生不可小看他们。
尤其是在讨论长方形和平行四边形的`相同点和不同点时,杨家豪大胆的说出当把长方形变成平行四边形时面积变小了,周长没有发生变化。当时我呆了,问他为什么呀?他还为同学们演示了一番。这节课我上得好开心,可能由于预习的缘故,学生的思维比较活跃,有时生成的知识也是我始料未及的。
《平行四边形的面积》教学反思10
在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的数学思想方法,培养了学生观察、分析、概括和能力。
我认为本节课的'不足之处是:
(1)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。
(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。
(3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。
《平行四边形的面积》教学反思11
《平行四边形的面积》这一课是在学生掌握了平行四边形、三角形、梯形这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。通过本节课的学习要使学生掌握平行四边形的面积公式,能准确计算平行四边形的面积。通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的`空间观念。在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。于是,我尝试放手让学生自主探索发现平行四边形面积的计算。
通过工作室专家们的鼓励与指导,通过反思,我将坚定朝着以下几个方面努力。
一、注重师生互动、生生互动。最好的教学是最适合学生发展的教学,了解学生、研究学生、分析学生、激励学生,是教师永远的工作,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时获得广泛的数学活动经验。互动是一种师生之间双向沟通的教学方法,就是把教学活动看作是师生之间进行的一种真诚,和谐的交往沟通。通过优化“师生互动”的方式,即可以调节师生关系及其相互作用,形成和谐的师生互动、生生互动,学习个体与教学中介的互动,更能提升学生人际交往能力强化人与社会的相互影响;还可以产生教学共振,让教学效果达到潜移默化的提高。
二、注重语言的变化,学会放手。在课堂中,教师的一个表情、一个动作、一个手势可以改变很多,可以控制或调节课堂气氛节奏,增强教学效果,还可以促进师生间、生生间的情感交流。在本节课中我没有完全放开,语言、动作、课堂,今后也要加强自身的学习增强数学素养。在课堂当中也要学会放手,我们工作室古主任一直强调“三让”让出讲台、让出话筒、让出黑板,就是要让学生多说,让出课堂,多让孩子发言,自主发言,充分发挥学生的主体作用。练习要有梯度性,提升学生的数学思维能力。
三、关注学生个体,注重融错教学。培养学生的数感,注重学生应用题的解决能力。落实三维目标,关注全体学生,用好课本,认认真真钻研教师用书等教参。当堂巩固,收集学生的信息。学生完成的怎么样?要有所了解,教师心里要有数。特别是对于学生做错了的题多去反思,思考,鼓励学生积极地去探索,深化他们对数学知识的理解,发展学生的反思力,培育学生直面错误、纠正错误的勇气与习惯,让课堂因融错而精彩!
四、体现先学后教,感受数学之美。教育就是一个灵魂唤醒另一个灵魂,在今后课堂教学中,抓住主线。注重预习“先学后教”培养好学生的学习习惯,并持之以恒的抓下去。沉下心认真思考,让孩子们在玩中学、乐中学,让孩子们在获取知识、形成技能的同时感受数学的美,学生爱上了数学这门学科。
“路漫漫其修远兮,吾将上下而求索”,在今后探索的路上,不忘初心,诠释潜心育人内涵。
《平行四边形的面积》教学反思12
苏霍姆林斯基说过:在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。
在本节的平行四边形面积公式的推导过种中我就努力让学生得到这种需要。以小组为单位我先让学生尝试自己通过动手操作寻找出求平行四边形面积的方法。在学生汇报的过程中每个同学都很兴奋,我也尽可能让他们大胆地表达自己的想法,对于学生的想法,我均给予鼓励。在众多的想法中有个同学提出:平行四边形面积等于两条相邻边的乘积。理由是长方形和正方形面积公式猜想而得。基于此我让学生再展开想像的翅膀,大胆设想,验证这一想法的准确性。再一次探究的火花被燃起。虽然第一个猜想的结果是错误的,但就猜想本身而言却是合理的,而创新思维的火花往往在猜想的瞬间被点燃,不同的猜想结果又激发起学生进行验证的需要,需要同学们作进一步的探索。
因为老师为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的思考问题的`时间与空间,在这样的课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,在这样的课堂学习中学生乐想、善思、敢说,他们可以自由地思考、猜想、实践、验证 因而得以灵感。而平行四边形转化成长方形的各种方法正是集体智慧的结晶。学生只有在相互讨论,各种不同观点相互碰撞的过程中才能迸发出创造性思维的火花,发现问题、提出问题、解决问题的能力才能不断得到增强。
《平行四边形的面积》教学反思13
本节课内容是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学思想。
一、渗透“转化”思想,引导探究
通过本节课的学习,要能够为推导三角形、梯形面积的计算公式提供方法迁移。“转化”是数学学习和研究的一种重要思想方法。
我在教学本节课时采用了“转化”的思想,先通过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的.面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。
接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展能力
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。
这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。
第二题出示含有多余条件的图形题,强调底和高必须对应,学习上更上一个层次。
第三题考察学生灵活运用公式求平行四边形的底和高。
第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
《平行四边形的面积》教学反思14
平行四边形面积的计算,是学习习近平面几何初步知识的基础。尤其是平行四边形面积公式的推导,蕴含着转化的数学思想。对学生以后学习推导三角形、梯形面积公式有着非常重要的意义。总结本节课的教学,有以下体会:
一、遵循“猜想——验证——推导——应用”教学过程。
在推导平行四边形的面积公式以前,我先出示了“变、变、变”的游戏,渗透转化的数学思想,然后让学生猜想:平行四边形的面积怎样计算?学生脱口而出,我问他们根据是什么?学生回答:“是猜的”。数学结论必须通过验证才有它运用的价值,才能让人心服口服。接着,我让学生动手量、剪、拼、摆去研究,发现它的普遍规律。学生先用面积测量器量,然后又利用手中的材料,沿平行四边形的高剪开,再拼成长方形,由此研究发现拼成后长方形与平行四边形的关系,充分体现转化的数学思想,归纳、验证得出公式。整个过程由学生参与,验证猜想公式的正确性。使学生得到一种直观上的证明。进一步加深学生对公式的认识。学生在运用公式时既知其当然,又知其所以然,对知识的应用达到了认识过程的`最高境界。
二、注重合作交流,追异求新。
本节课教师尽量为学生说、想、做创造恰当的氛围,创设必要的情境、空间,让学生在主动参与学习活动的过程中学到知识,合作交流,增长才干,提高能力。学生在剪、拼的过程中,有的沿高剪下一个三角形,有的是剪下一个直角梯形,拼成长方形,方法之多样,令老师惊讶。在小组讨论中,学生能说出自己的“奇思妙想”,既开阔了学生的视野,又扩展了学生的思维空间,也体现了集体的智慧。
三、课堂教学中,教师应加大“放”的力度。
学生在拼摆的过程中,方法虽然多种多样,但语言表达不够完整,教师有些着急,“导”得过细,以至限制了学生的思维。也使一些想法不太成熟的学生,不敢说出自己的意见。另外,在教学中,教师还应着重培养学生会“倾听”的习惯,会倾听老师布置了哪些学习任务,会倾听同伴发出了哪些见解,这样才能在倾听与交流中学会新知,感受乐趣。教师在课堂上根据本班学生实际,尽可能加大“放”的力度,这样才能更好地创设一个民主、宽松的学习环境。
《平行四边形的面积》教学反思15
本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
成功之处:
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的'面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
不足之处:
学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
再教设计:
加强学生的语言表述能力,做到规范、严谨。