新客站基坑监测技术总结报告

时间:2019-05-13 18:36:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新客站基坑监测技术总结报告》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新客站基坑监测技术总结报告》。

第一篇:新客站基坑监测技术总结报告

基坑变形监测技术总结

一、工程概况

1、本工程主体结构:本项目主体由办公塔楼、SOHO办公塔楼和裙楼以及地下车库组成。其中办公塔楼高41层,建筑高度200米,采用框架-核心筒结构;SOHO办公塔楼高19层,建筑高度80米,采用框架-剪力墙结构;裙楼高5层,建筑高度24米,采用框架结构;底部设3层满堂地下车库。

二、2、基坑规模:基坑面积约17800平米,周长约533米。

三、3、基坑开挖深度:本工程±0.00相对于吴淞绝对高程+9.45m,所注标高均为相对标高,本工程场地自然地面平均标高为-0.45m~-2.25m,基坑底标高为-17.10m,基坑开挖深度为14.85~16.65m,局部主楼超挖深度2m。

四、二、工程地质概况

五、1、拟建场地位于南京市河西地区,金沙江东街以北,庐山路以西,原有建筑物已全部拆除,现多为荒地,场地地形南高北低,地面吴淞高程为6.61~14.05米,最大高差达7.44米。

六、2、按揭露的先后顺序将各分层地基土岩性特征及分布规律自上而下分述如下:

七、①填土(Q4ml):杂~灰色,松散,由粉质粘土夹大量的碎石、砖块及混凝土桩头等建筑垃圾组成,硬质物含量10~60%不等,分布不均匀,局部富集。厚度不均,场地西南侧及南侧层厚较大。堆填时间为近3~5年不等。层厚2.30~11.40米。

八、②粉质粘土(Q4al):灰黄色,灰色,饱和,可塑,局部软塑,中偏高压缩性。无摇振反应,刀切面稍有光泽,干强度与韧性中等,仅见于部分钻孔。层顶埋深2.30~11.40米,层顶标高2.58~5.20米,层厚0.40~2.30米。

九、③1淤泥质粉质粘土(Q4al):灰色,饱和,流塑,高压缩性。无摇振反应,刀切面有光泽,干强度与韧性低。局部可见少量的腐植物,具淤臭味。偶夹薄层稍密状薄层粉土,单层厚1~2mm,分布不均。该层全场分布。顶板埋深2.50~12.00米,层顶标高0.97~5.23米,层厚4.30~14.00米。

十、③2粉砂夹粉土(Q4al):灰色、青灰色,饱和,稍密~中密,中压缩性,其成份主要由长石、石英云母组成,颗粒级配良好。局部夹有薄层稍密状粉土和软~流塑状粉质粘土,单层厚1~10mm,分布不均匀。该层主要分布于③1淤泥质粉质粘土和④1粉细砂之间,属过渡性层位,全场分布。层顶埋深10.30~23.90m,层顶标高-11.27~-1.41米,层厚1.80~6.80m。

十一、④1粉细砂(Q4al):青灰色,饱和,中密,局部稍密,中压缩性。矿物成份以长石、石英云母组成,颗粒级配良好。具水平沉积层理。局部夹薄层稍~中密状粉土和中砂,单层厚1~2cm,分布不均,局部富集。该层全场分布。顶板埋深13.90~28.30米,层顶标高-15.67~-4.14米,层厚8.00~18.60米。

十二、④2粉细砂(Q4al):青灰色,饱和,密实,中低压缩性。矿物成份以长石、石英云母组成。颗粒级配良好。具水平沉积层理。局部夹薄层密实状

粉土,单层厚1~2mm,分布不均。顶板埋深27.10~36.40米,层顶标高-23.77~-19.22米,层厚17.10~25.20米。

十三、④3a粉质粘土(Q4al):灰色,饱和,流塑,局部软塑,中偏高压缩性,刀切面稍有光泽,干强度与韧性中等。局部夹有薄层中密状粉细砂及粉土,单层厚1~5mm,分布不均。该层主要呈透镜状分布于④3含砾中细砂中或分布其顶部,局部缺失。顶板埋深47.80~56.20米,层顶标高-45.92~-39.69米,层厚0.70~3.10米。

十四、④3含砾中粗砂(Q3al):灰色、青灰色,饱和,密实,中压缩性。矿物成份以长石、石英云母组成。颗粒级配不均。具水平沉积层理。局部夹砾石和细砂,砾石成分多为硅质,呈椭圆状~次圆状,含量约5~10%,直径0.50~8.00cm,分布不均,局部富集,自上而下砾石直径逐渐增大。该层全场分布。顶板埋深48.60~58.80米,层顶标高-46.82~-39.63米,层厚0.40~10.80米。

十五、⑤1强风化粉砂质泥岩(K2P):棕红色、褐红色,岩石风化强烈,结构已破坏,上部坚硬土状,下部呈碎石状,手捏易碎,水冲易散。顶板埋深59.70~65.20米,层顶标高-52.55~-50.54米,揭露层厚1.10~6.60米。

十六、⑤2中风化粉砂质泥岩(K2P):棕红色、褐红色,岩石风化较弱,结构基本未破坏,岩体呈块状结构~整体状结构,完整性好,岩芯呈柱状~长柱状,岩芯表面有光泽,岩石节理裂隙较发育,多有灰白色方解石充填,遇水易软化,风干后易崩解。在J29号钻孔71.30~77.00m处分布有粉砂岩,强度较低,手捏易散,风干后极易崩解。顶板埋深62.00~70.70米,层顶标高-58.07~-54.45米,最大揭露层厚16.00米。十七、三、水文地质概况

十八、1、场地地表水

十九、场地位于长江漫滩上,场地东侧紧邻庐山路分布有一条南北向排水渠(人工河道),宽约8.00米,水深1.50~2.00米。场地西部为长江(距场地约4公里),距离场地很远。根据水文地质资料,长江南京下关站最高水位为10.22m(1954年),最大洪峰流量为92600方/秒,最低水位为1.56m(1956年)。

二十、2、场地地下水

二十一、拟建场地位于长江漫滩之上,根据勘探揭示的地层结构,勘探深度范围内的地下水可分为浅层潜水和下部弱承压水。二

十二、(1)浅层潜水

二十三、潜水含水层由①层人工填土构成。场地人工填土厚度普遍较大,由于密实度差,其间的大孔隙往往成为地下水的赋存空间,且连通性较好,富水性及透水性较好,属弱透水层,雨季水量较丰富。新近沉积的②层粉质粘土和③1层淤泥质粉质粘土,属饱水地层,但给水性较差、透水性弱,属微~弱透水地层。

二十四、南京地下水最高水位一般在7~8月份,最低水位多出现在旱季12月份至翌年3月份。根据调查和勘察揭示,长江漫滩属地下水丰富的地貌单元,其水位变化与季节性关系密切,同时与地形条件亦有关。雨季或暴雨天,在地势低洼处,地下水位很高,甚至溢出地面,但旱季地下水位可以在地面下1.5m左右,甚至更低。

二十五、野外勘探时间为2010年11月底,勘探期间天气晴好(已连续3月左右

未下雨)。勘探期间,在钻孔中量测的地下水初见水位埋深1.40~6.50m,地下水稳定水位埋深2.06~8.96m(受孔口高程影响),吴淞高程为4.80~5.20m。

二十六、水位变化主要受季节性大气降水,周围工程施工降水等因素影响,以蒸发和侧向迳流为主要排泄方式,正常情况下雨季上升,旱季水位下降,年变化幅度约1.50m左右。二

十七、(2)弱承压水

二十八、弱承压含水层由中下部的③2层粉砂夹粉土、④1层、④2层粉细砂和④3层含砾中粗砂构成。层顶的③1层淤泥质粉质粘土由于透水性弱,与砂土层渗透性差异性大,为相对隔水层,可视为隔水层顶板;隔水层底板为下伏基岩。该含水层富水性好,透水性强,厚度大,埋藏较浅,水量丰富,属透水层~强透水层。勘察期间采用隔水方法测得的弱承压水水位3.50~4.20米(吴淞高程),与场地周边工程测得的弱承压水相比略偏低,主要原因是周围有多个工程施工降水。若承压水水位变化主要受侧向迳流补给影响,补给来源主要为长江。

二十九、拟建场地表层为①层填土,土质松散,透水性好,②层粉质粘土、③1层淤泥质粉质粘土,透水性差,可视为相对隔水层,③2层粉砂夹粉土、④1层粉细砂和④2层粉细砂及④3层含砾中粗砂,含水量丰富,透水性好。三

十、地下水、土对混凝土、钢筋混凝土结构中钢筋有微腐蚀。

二、测量执行标准及依据

1、《建筑基坑支护技术规程》101120-99;

2、《建筑基坑工程监测技术规范》0850497-2009;

3、《工程测量规范》0850026-2007;

4、《精密工程测量规范》08/715314-94;

5、《建筑变形测量规范》101/78-97;

6、《城市测量规范》0118-99;

7、《岩土工程试验监测手册》;

8、《建筑地基基础设计规范》0850007-2002;

9、基坑周边构筑物、道路、地下管线等环境条件使用状况;

10、行政主管部门对管线及构筑物的具体要求。

三、监测范围与对象

1、基坑开挖影响范围内的相邻环境(房屋、道路、管线)以及围护结构本身均需进行监测。

2、基坑变形观测基准点必须位于基坑变形范围之外(距基坑边不小于3倍基 坑

挖深),并便于长期保存的稳定位置。每-个测区不少于3个测量基准点。

3、在基坑土方开挖前对各测试项目进行不少于3次初始数据的采集,保证初始数据准确、连续、可靠。

四、监测要求

⑴所有测试点、测试设置需加强保护,以防损坏。⑶ 测周期:基坑土方开挖到地下室侧壁回填.⑶监测单位需要及时向设计人员、业主、监理和施工单位提供监测结果.⑷ 土体开挖前,需对周边环境做全面调查,掌握监测象的初始状况。(5)埋入测斜管应保持垂直,沉降标点应埋在坚实的土体中,并做好保护措施。(6)深层位移、沉降等观靡目在基坑开挖期间一般每1-2天观测-次,开挖期间如变化较大时应增加观测频度、每次观测数据要及时填入规定的记录表格,绘制成相关曲线图,并根据已有的数据对其作出发展趋势分析,对基坑是否安全作出评估,编制即时报告。

(7)当监测项目数值出现急剧变化时,应向有关各方报警,提出处理建议,以保证基坑安全。

(8)基坑监测单位应根据设计要去编写施工组织方案,监测单位制定的具体监测方案需经设计人员认可后方可实施。

五、、基坑监测内容和要求

深基坑开挖是一项复杂的地下工程。由于地质条件的复杂性、多变性及地下工程施工质量受多种因素影响又难以准确判别的特殊性,深基坑工程的安全及其对周围环境的影响尚难于准确预测,施工阶段的安全监测对保证基坑及周围建筑物的安全、保证施工顺利进行具有重要意义。

1、基坑监测内容及监测点布置要求: ⑴基坑及支护结构监测:

①围护墙或基坑边坡顶部的水平位移、竖向位移监测:水平和竖向位移监测点宜 为共用点,每边监测点不宜少于3个,应沿基坑周边布置,周边中部、阳角处应 布置监测点。

②围护墙或土体深层水平位移监测:在支护结构或外侧土体中每隔20m-50m设置一个深层水平位移监测点;监测点宜布置在基坑周边的中部、阳角处及有代表性的部位,每边监测点不应少于1个,埋设在土体中的测斜管长不宜小于基坑

开挖深度的1.5倍,并应超过支护结构桩长3^(2)基坑周边环境监测:

① 边建筑筑竖向位移监测:监测点应布置在建筑四角,沿外墙每10m-15m处或每隔2~3根柱基础上,且 每侧不少于3个监测点;不同地基或基麯分界处,不同结构的分界处,变形缝、抗震缝或严重开裂处的两侧,新旧建筑或高、低建筑交接处的两侧,鱗构筑物基雜线的对称部位,每-构筑物不应少于4点.②周边建筑水平位移监测:监测点宜布置在建筑的外墙墙角、外墙中间部位的墙上或柱上、裂缝两侧以 及其他有代表性的部位,监测点间距视具体情况而定,一侧墙体的监测点不宜少于3点。

③周边建筑倾斜监测:监测点应布置在建筑角点、变形缝两侧的承重柱或墙上;、监测点应沿主体顶部、底部上下对应布设,上下监测点应布置在同一竖直线上。

④周边建筑、地表裂缝监测:监测点应选择有代表性的裂缝进行布置,当原有裂缝增大或出现新裂缝时,应及时增设监测点、。对对需要观测的裂缝。每条裂缝的监测点至少应设2个,且设置在裂缝的最宽处或裂缝末端。

⑤周边管线变形监测:监测点宜为15m-25m,并延伸至基坑边缘以外1-3倍基坑开挖深度范围内的管线;供水、煤气、暖气等压力管线宜设置直接监测点,在无法直接监测点的部位,可设置间接监测点。⑥周边地表竖向位移检测:监测点按监测剖面设置,在坑边中部或其他有代表性的部位;监测剖面应与坑边垂直,数量视具体情况确定;每个监测剖面上的监测点数量不宜少于5个。

根据该基坑支护设计及基坑周围环境状况,基坑监测方案包括六项内容:①、围护桩桩顶(冠梁)水平位移及桩体水平位移(测斜)监测;②、土体侧向变形(测斜)监测;③桩体内力监测;④水平钢支撑轴力监测;⑤地下水位监测。⑥沉降监测

1、支护结构内部深层侧向位移监测(测斜)

桩顶(冠梁)水平位移观测及桩体水平位移观测直接反映支护结构变形特性,是支护结构安全状况的重要指标。桩顶(冠梁)水平位移反映支护结构的顶部变形情况,是支护系统变形的重要内容,且其测点安装布置方便,易于观测,可布置较多测点,在有需要时可以方便地增加新测点。围护桩桩体水平位移观测完整地反映了围护桩的变形。在有支撑作用的情况下,围护桩变形最大、最危险的部

位不一定在桩顶。高精度的桩身水平位移观测(测斜)不但能全面反映围护桩的实际变形,且其测量受外界影响小,数据结果稳定,是基坑开挖观测的重点项目。其测斜管安装相对复杂。一般来说两种方法结合使用,测量结果可相互校核,测量数据有点有面,以全面了解整个基坑位移状况。

围护结构的内部位移使用测斜仪进行监测。

测点分别布设在主体结构的墙体中。将测管固定在墙体的钢筋笼内,在绑扎时一定要牢固可靠,以免浇筑混凝土时使其发生上浮或侧向位移,影响监测数据的准确性。密封测斜管底部以及各处的接头,在安装测斜管时随时检查其内部的一对导槽,使其始终与坑壁走向垂直。然后将测斜管同钢筋笼一起沉入挖好的桩体中。根据主体全长在两侧分别合理布设相同的测点。量测时将探头插入测斜管,使滚轮卡在两道槽上缓慢下至孔底处,自下而上沿导槽全长每隔0.5m测读一次,为提高测量结果的可靠性,在每一次测量步骤中均须一定的时间延迟,以确保读数系统与温度及其他条件平稳。

测量完毕后将探头旋转180°插入同一对导槽中,按以上方法重复测量。前后两次测量时各测点应在同一位置上,在这种情况下,两次测量同一测点的读数绝对值之差小于10%,两次结果符号相反,否则应重测本组数据。

2、基坑周边土体深层侧向位移监测(测斜)

监测土体侧向位移可掌握土体的运动规律及预测对地面的影响,据以研究减小施工扰动的施工措施,以保护地面建筑物和地下管线。

①监测仪器

RST自动化测斜仪,PVC测斜管。②监测实施方法

A、测点埋设:对于土体测斜孔,先用地质钻机成孔,孔径应等于或大于89mm。然后将预先将连接好的测斜管放入孔中。管底应埋置在预计发生倾斜部位的之下,一般管底标高低于基坑底部标高2~3m,测斜管与钻孔之间空隙内密实充填水泥砂浆。测斜管应竖直,埋置时应确保其中一组导向槽垂直于基坑边线,管口配保护盖。

B、量测与计算:测试时,联接测头和测斜仪,检查密封装置,电池充电量,仪器是否工作正常。将测头放入测斜管,测试应从孔底开始,自下而上沿导管全 5

长每一个测段固定位置测读一次,测段长度为0.5m,每个测段测试一次读数后,将测头提转180°,插入同一对导槽重复测试,两次读数应接近,符号相反,取数字平均值,作为该次监测值。在基坑开挖前,以连续三次测试无明显差异读数的平均值作为初始值。

应在正式测读前5天以前安装完毕,并在3~5天内重复测量2次以上,当测斜稳定之后,开始正式测量工作。首先测试时沿预先埋好的测斜管沿垂直于车站一轴线方向(A向)导槽(自下而上每隔2米测读一次直至孔口,得各测点位置上读数Ai(+)、Ai(-),其中“+”向与“-”向为探头绕导管轴旋转180°位置。然后以同样方法测平行于车站该轴线方向的位移。

③数据分析与处理

每次量测后应绘制位移—历时曲线,孔深—位移曲线。当水平位移速率突然过分增大是一种报警信号,收到报警信号后,应立即对各种量测信息进行综合分析,判断施工中出现了什么问题,并及时采取保证施工安全的对策。

④注意事项

ⅰ采用测斜仪在埋设的测斜管内进行测试; ⅱ测斜管采用钻孔埋设;

ⅲ测斜管的上下管间应对接良好,无缝隙,接头牢固固定、密封; ⅳ测斜管安放就位后调正方向,使管内的一对测槽垂直于测量面(即平行于位移方向);

ⅴ调整方向后盖上顶盖,保持测斜管内部的干净、通畅和平直。管顶宜高出地面约10~15mm;

ⅵ进行钻孔和测斜管之间的回填。回填宜用中粗砂缓慢进行,注意采取措施避免塞孔使回填料无法下降形成空洞。回填后通过灌水和间隔一定时间后的检查,在发现回填料有下沉时,进行回填。回填工作要确保测斜管与土体同步变形;

ⅶ埋设时间应在基坑开挖或降水之前,并至少提前两周完成; ⅷ做好清晰的标示和可靠的保护措施。

3、地下水位监测

由于场地地下水丰富,围护结构设计中采用了单管旋喷桩止水帷幕。若止水结构漏水,将会影响基坑及主体结构的底板施工,使基坑开挖难以顺利进行。为 6

此应对基坑外地下水位进行监测。另外,水压力是作用在支护结构上的主要荷载,通过对地下水位的监测可以掌握水压力荷载的状况。

基坑外距基坑2m的距离处布设水位观测井,将水位管预埋在观测井内对水位进行监测以了解其变化过程。在车站的两侧和轴线位置各布设一个观测井,观测井为小型钻孔机成孔,观测井深度在20m左右的透水层中,然后将水位管放入孔中,从管外回填净砂至地表50cm,管口设必要的保护装置。用水位计量测到水位管顶的距离,测出水位管的高程,推算出水位的标高。通过对水位的监测,可以进一步得到基坑内降水、开挖对基坑外部地下水的影响。地表和建筑物的沉降,基本上都是因为大面积降水引起的,因此要严格控制地下水位,必要时加强观测频率。

4、支撑轴力监测 ①监测仪器

FLJ-40型振弦式反力计(轴力计)及频率接收仪。②监测实施方法

A、测点布设:钢支撑选用端头轴力计(反力计)进行轴力测试,将轴力计焊接在钢支撑的非加力端的中心,在钢支撑和轴力计之间焊接一块250×250×25mm的加强垫板。安装过程必须注意轴力计和钢支撑轴线在一直线上,各接触面平整,确保钢支撑受力状态通过轴力计(反力计)正常传递到支护结构上。混凝土支撑采用钢筋应变计进行测试,绑扎钢筋笼时进行埋设,并牢固固定。

B、现场量测:仪器在埋设前进行标定,支撑轴受力前进行初始值的测量,监测两次的结果平均后作为轴力初始值,在钢支撑承受荷载的过程中按设计和规范要求的频率进行监测,监测时应记录数据稳定后的频率值,填写监测报表,现场检查监测数据是否正确,监测时所记录的数据为频率值。

C、数据计算:钢支撑轴力计算—般公式为: P=K△F十B 式中:P——所受荷载值(KN)K——仪器标定系数(KN/F)△F——输出频率模数实时测量值相对于基准值的变化量(F)B——仪器的计算修正值(KN)。

③数据分析与处理

根据仪器的标定公式代入标定常数,计算轴力值,并绘制轴力-时间变化曲线图;根据轴力-时间变化曲线图和设计规定的轴力限值分析钢支撑内力是否处于安全范围,在监测简报中提出监测分析和建议。

④注意事项

ⅰ钢支撑宜选用端轴力计(反力计)进行轴力测试;

ⅱ将轴力计安装架与钢支撑端头对中并牢固焊接。在拟安装轴力计位置的墙体钢板上焊接一块250×250×25mm的加强钢板,作为垫板,防止钢支撑受力后轴力陷入钢板,影响测试结果;

ⅲ待焊接温度冷却后,将轴力、计推入安装架并用螺丝固定好;

ⅳ安装过程必须注意轴力计和见报支撑轴线在同一直线上,各接触面平整; ⅴ轴力计的量程需要满足设计轴力的要求。在需要埋设轴力计的钢支撑架设前,将轴力计焊接在支撑的非加力端的中心,在轴力计与钢围囹、钢支撑之间要垫设钢板,以免轴力过大使围囹变形,导致支撑失去作用。支撑加力后,即可进行监测。

5、沉降监测(1)支撑立柱沉降监测 ①监测仪器

徕卡N3水准仪、铟钢尺等。②监测实施方法

a、沉降测点埋设:用冲击钻在立柱钻孔,然后放入长200~300mm,直径20~30mm的圆头钢筋,四周用水泥砂浆填实(或直接打入膨胀螺栓),检测点埋设如图2所示。

素混凝土11原地面P88原地面特制膨胀螺丝监测点埋设平面示意图图2 监测点埋设方法示意图(单位:mm)b、测量方法:观测方法采用精密水准测量方法。基点和附近水准点联测取得初始高程。观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,超过时应重读后视点读数,以作核对。首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。

c、沉降值计算:在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,然后按照测站进行平差,求得各点高程。施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。则高差△H=Hn-H0即为沉降值。

③数据分析与处理

沉降监测随施工进度进行,并将各沉降测点沉降值随时间变化量绘制成沉降变化曲线图。计算累计沉降量,与容许沉降控制值比较,以此判定挡土墙的安全可靠性。

剖面图

六、监测频率和监测结果反馈

1、支护桩水平位移、支护桩深层位移、基坑外侧水位监测频率:

(1)基坑开挖初期(抱深小于5.0米),每 隔 1-2天监测-次。如出现异常现象加密监测.(2)基坑挖深超过5.0米时,每隔1天监测-次,如出现异常现象每天监测-次。(3)基坑开挖超过10m至接近坑底及挖到底标高后-周内,每天监测-次。如出现异常加密监测,甚至24 小时连续监测。

⑷基础底板施工期间,每隔1天监测-次,如出现异常每天监测-次.(5)基础底板浇筑完毕后,每隔2~3天监测-次.⑷当超过报警值时,应根据具体情况及时调整监测时间间隔,加密监测频率,甚至跟踪监测。

2、周边建筑物沉降、周边道路及坡顶土体沉降、周边管鋪沉降水平位移监测频率:(1)支护结构施工期间,每隔2~3天监测-次。(2)土方开挖到主题结构施工至±0.00期间,监测频率与位移检测频率一致。(3)支护结构施工到主体结构施工至±0.00期间,建筑物倾斜与裂缝监测每周测1~2次中出现异常加密监测。

七、监测反馈程序及信息管理

专业监测小组及时整理分析监测数据,将实际测值与允许值进行比较,绘制各种变形~时间关系曲线,预测变形发展趋向,及时向业主及监理工程师汇报,为实现信息化施工提供依据。

在监测过程中,若发现监测值变化较大,立即向业主及监理工程师汇报,并提供报表;测量结果正常,则在测量结束后3天内提供报表。测量工作结束后提交完整的观测报告。

监测数据必须完整、可靠,对施工工况应有详细的描述,起到施工监控的作用。为设计和施工提供依据。尤其要做好初始数据记录,监测组根据该车站的施工进度,对各项监测点进行了埋设,并于当日对埋设好的监测点连续进行了两次监测,取平均值作为监测初始值。每次监测工作结束后,均须及时整理监测资料,以便发现数据有误时,及时改正和补测。当发现测值有明显异常时,应迅速通知施工主管和监理单位,以便采取相应措施。并定期向建设、监理和设计提供一份量测报告。每次监测得到的原始数据经过审核、消除错误和取舍之后,方可计算

分析。根据计算结果,绘出各观测项目观测值与施工工序、施工进度、及开挖过程的关系曲线。在此基础上,对各观测资料进行综合分析,以说明围护结构支撑体系和建筑物在观测期间的工作状态与其变化规律和发展趋势,判断其工作状态是否正常或找出问题的原因,并提出处理措施的建议,供研究解决问题提供参考。监测以获得定量数据的专门仪器测量或专用测试元件监测为主,以现场目测检查为辅。

根据信息化施工要求,监测后应及时整理分析各项量测数据资料,判别监测对象的安全等级状态,并将监测结果及时反馈到施工中去,发挥监测信息对施工的指导作用。

本工程监测信息按《监测信息反馈流程框图》进行反馈。

资料调研监测设计监测量测数据、分析、处理施工、监理、设计监测量测NO工程施工安全判别结束YES监测信息反馈流程框图

各监测项目变形统计情况分别如下

八、资料整理

每日所监测的项目完成后,则要把所测的数据进行归类计算,并绘制出相应的速率变化曲线,并上报监理。资料经审批返还后,由专人负责统计、管理,做到资料齐全,分类清晰。

第二篇:新客站基坑监测技术总结报告

广州轨道交通二、八号线延长线10标段

新客站基坑变形监测技术总结

梁 维 健

中交四航局第一工程公司

一、工程概况

新客站位于番禺区广州国铁新客站内,车站设于国铁一层中心区地面下,社会车场、公交站、出租车场皆在国铁一层,地铁入口与国铁各出入通道充分联系,换乘方便。地下一层为站厅,地下二层为站台。站台内二号线、七号线、佛山三号线形成换乘。线路走向,二号线与佛山三号线对接,七号线与二号线平行,二号线在一端设置了折返线。线路与国铁形成“十”字交叉换乘;同时在地下一层站厅预留换乘地铁十二号线的通道。地铁车站和国铁车站同期建设。

广州新客站设计起点里程YDKO+216.5,设计终点里程为YDKO+840,全长623.5m,包括广州新客站主体及广州新客站~石壁站明挖区间两部分。其中广州新客站车站主体里程范围YDKO+216.5~YDKO+747.9,车站主体基坑宽55.5~84m,基坑深约10m ; 广州新客站~石壁站明挖区间里程范围YDKO+747.9~YDKO+840。车站预留广州地铁七号线区间接口。

目前车站主体结构已施工完毕。

二、测量执行标准及依据

1)、《地下铁道工程施工及验收规范》(GB50299-1999)2)、《地下铁道、轨道交通岩土工程勘察规范》(GB50307-1999)3)、《城市轨道交通工程测量规范》(GB 50308-2008)4)、《建筑地基基础设计规范》(GBJ7-89)5)、《建筑变形测量规程》(JGJ/T8-97)6)、《城市地下水动态观测规程》CJJ/T76-98 7)、《建筑基坑支护技术规程》(JGJ120-99)

三、监测项目及其内容 深基坑开挖是一项复杂的地下工程。由于地质条件的复杂性、多变性及地下工程施工质量受多种因素影响又难以准确判别的特殊性,深基坑工程的安全及其对周围环境的影响尚难于准确预测,施工阶段的安全监测对保证基坑及周围建筑物的安全、保证施工顺利进行具有重要意义。

根据该基坑支护设计及基坑周围环境状况,基坑监测方案包括六项内容:①、围护桩桩顶(冠梁)水平位移及桩体水平位移(测斜)监测;②、土体侧向变形(测斜)监测;③桩体内力监测;④水平钢支撑轴力监测;⑤地下水位监测。⑥沉降监测

1、支护结构内部深层侧向位移监测(测斜)

桩顶(冠梁)水平位移观测及桩体水平位移观测直接反映支护结构变形特性,是支护结构安全状况的重要指标。桩顶(冠梁)水平位移反映支护结构的顶部变形情况,是支护系统变形的重要内容,且其测点安装布置方便,易于观测,可布置较多测点,在有需要时可以方便地增加新测点。围护桩桩体水平位移观测完整地反映了围护桩的变形。在有支撑作用的情况下,围护桩变形最大、最危险的部位不一定在桩顶。高精度的桩身水平位移观测(测斜)不但能全面反映围护桩的实际变形,且其测量受外界影响小,数据结果稳定,是基坑开挖观测的重点项目。其测斜管安装相对复杂。一般来说两种方法结合使用,测量结果可相互校核,测量数据有点有面,以全面了解整个基坑位移状况。

围护结构的内部位移使用测斜仪进行监测。

测点分别布设在主体结构的墙体中。将测管固定在墙体的钢筋笼内,在绑扎时一定要牢固可靠,以免浇筑混凝土时使其发生上浮或侧向位移,影响监测数据的准确性。密封测斜管底部以及各处的接头,在安装测斜管时随时检查其内部的一对导槽,使其始终与坑壁走向垂直。然后将测斜管同钢筋笼一起沉入挖好的桩体中。根据主体全长在两侧分别合理布设相同的测点。量测时将探头插入测斜管,使滚轮卡在两道槽上缓慢下至孔底处,自下而上沿导槽全长每隔0.5m测读一次,为提高测量结果的可靠性,在每一次测量步骤中均须一定的时间延迟,以确保读数系统与温度及其他条件平稳。

测量完毕后将探头旋转180°插入同一对导槽中,按以上方法重复测量。前后两次测量时各测点应在同一位置上,在这种情况下,两次测量同一测点的读数 1 绝对值之差小于10%,两次结果符号相反,否则应重测本组数据。

2、基坑周边土体深层侧向位移监测(测斜)

监测土体侧向位移可掌握土体的运动规律及预测对地面的影响,据以研究减小施工扰动的施工措施,以保护地面建筑物和地下管线。

①监测仪器

RST自动化测斜仪,PVC测斜管。②监测实施方法

A、测点埋设:对于土体测斜孔,先用地质钻机成孔,孔径应等于或大于89mm。然后将预先将连接好的测斜管放入孔中。管底应埋置在预计发生倾斜部位的之下,一般管底标高低于基坑底部标高2~3m,测斜管与钻孔之间空隙内密实充填水泥砂浆。测斜管应竖直,埋置时应确保其中一组导向槽垂直于基坑边线,管口配保护盖。

B、量测与计算:测试时,联接测头和测斜仪,检查密封装置,电池充电量,仪器是否工作正常。将测头放入测斜管,测试应从孔底开始,自下而上沿导管全长每一个测段固定位置测读一次,测段长度为0.5m,每个测段测试一次读数后,将测头提转180°,插入同一对导槽重复测试,两次读数应接近,符号相反,取数字平均值,作为该次监测值。在基坑开挖前,以连续三次测试无明显差异读数的平均值作为初始值。

应在正式测读前5天以前安装完毕,并在3~5天内重复测量2次以上,当测斜稳定之后,开始正式测量工作。首先测试时沿预先埋好的测斜管沿垂直于车站一轴线方向(A向)导槽(自下而上每隔2米测读一次直至孔口,得各测点位置上读数Ai(+)、Ai(-),其中“+”向与“-”向为探头绕导管轴旋转180°位置。然后以同样方法测平行于车站该轴线方向的位移。

③数据分析与处理

每次量测后应绘制位移—历时曲线,孔深—位移曲线。当水平位移速率突然过分增大是一种报警信号,收到报警信号后,应立即对各种量测信息进行综合分析,判断施工中出现了什么问题,并及时采取保证施工安全的对策。

④注意事项

ⅰ采用测斜仪在埋设的测斜管内进行测试;

ⅱ测斜管采用钻孔埋设;

ⅲ测斜管的上下管间应对接良好,无缝隙,接头牢固固定、密封; ⅳ测斜管安放就位后调正方向,使管内的一对测槽垂直于测量面(即平行于位移方向);

ⅴ调整方向后盖上顶盖,保持测斜管内部的干净、通畅和平直。管顶宜高出地面约10~15mm;

ⅵ进行钻孔和测斜管之间的回填。回填宜用中粗砂缓慢进行,注意采取措施避免塞孔使回填料无法下降形成空洞。回填后通过灌水和间隔一定时间后的检查,在发现回填料有下沉时,进行回填。回填工作要确保测斜管与土体同步变形;

ⅶ埋设时间应在基坑开挖或降水之前,并至少提前两周完成; ⅷ做好清晰的标示和可靠的保护措施。

3、地下水位监测

由于场地地下水丰富,围护结构设计中采用了单管旋喷桩止水帷幕。若止水结构漏水,将会影响基坑及主体结构的底板施工,使基坑开挖难以顺利进行。为此应对基坑外地下水位进行监测。另外,水压力是作用在支护结构上的主要荷载,通过对地下水位的监测可以掌握水压力荷载的状况。

基坑外距基坑2m的距离处布设水位观测井,将水位管预埋在观测井内对水位进行监测以了解其变化过程。在车站的两侧和轴线位置各布设一个观测井,观测井为小型钻孔机成孔,观测井深度在20m左右的透水层中,然后将水位管放入孔中,从管外回填净砂至地表50cm,管口设必要的保护装置。用水位计量测到水位管顶的距离,测出水位管的高程,推算出水位的标高。通过对水位的监测,可以进一步得到基坑内降水、开挖对基坑外部地下水的影响。地表和建筑物的沉降,基本上都是因为大面积降水引起的,因此要严格控制地下水位,必要时加强观测频率。

4、支撑轴力监测 ①监测仪器

FLJ-40型振弦式反力计(轴力计)及频率接收仪。②监测实施方法

A、测点布设:钢支撑选用端头轴力计(反力计)进行轴力测试,将轴力计 3 焊接在钢支撑的非加力端的中心,在钢支撑和轴力计之间焊接一块250×250×25mm的加强垫板。安装过程必须注意轴力计和钢支撑轴线在一直线上,各接触面平整,确保钢支撑受力状态通过轴力计(反力计)正常传递到支护结构上。混凝土支撑采用钢筋应变计进行测试,绑扎钢筋笼时进行埋设,并牢固固定。

B、现场量测:仪器在埋设前进行标定,支撑轴受力前进行初始值的测量,监测两次的结果平均后作为轴力初始值,在钢支撑承受荷载的过程中按设计和规范要求的频率进行监测,监测时应记录数据稳定后的频率值,填写监测报表,现场检查监测数据是否正确,监测时所记录的数据为频率值。

C、数据计算:钢支撑轴力计算—般公式为: P=K△F十B 式中:P——所受荷载值(KN)K——仪器标定系数(KN/F)△F——输出频率模数实时测量值相对于基准值的变化量(F)B——仪器的计算修正值(KN)。③数据分析与处理

根据仪器的标定公式代入标定常数,计算轴力值,并绘制轴力-时间变化曲线图;根据轴力-时间变化曲线图和设计规定的轴力限值分析钢支撑内力是否处于安全范围,在监测简报中提出监测分析和建议。

④注意事项

ⅰ钢支撑宜选用端轴力计(反力计)进行轴力测试;

ⅱ将轴力计安装架与钢支撑端头对中并牢固焊接。在拟安装轴力计位置的墙体钢板上焊接一块250×250×25mm的加强钢板,作为垫板,防止钢支撑受力后轴力陷入钢板,影响测试结果;

ⅲ待焊接温度冷却后,将轴力、计推入安装架并用螺丝固定好;

ⅳ安装过程必须注意轴力计和见报支撑轴线在同一直线上,各接触面平整; ⅴ轴力计的量程需要满足设计轴力的要求。在需要埋设轴力计的钢支撑架设前,将轴力计焊接在支撑的非加力端的中心,在轴力计与钢围囹、钢支撑之间要垫设钢板,以免轴力过大使围囹变形,导致支撑失去作用。支撑加力后,即可进行监测。

5、沉降监测(1)支撑立柱沉降监测 ①监测仪器

徕卡N3水准仪、铟钢尺等。②监测实施方法

a、沉降测点埋设:用冲击钻在立柱钻孔,然后放入长200~300mm,直径20~30mm的圆头钢筋,四周用水泥砂浆填实(或直接打入膨胀螺栓),检测点埋设如图2所示。

素混凝土11原地面P88原地面特制膨胀螺丝监测点埋设平面示意图图2 监测点埋设方法示意图(单位:mm)b、测量方法:观测方法采用精密水准测量方法。基点和附近水准点联测取得初始高程。观测时各项限差宜严格控制,每测点读数高差不宜超过0.3mm,对不在水准路线上的观测点,一个测站不宜超过3个,超过时应重读后视点读数,以作核对。首次观测应对测点进行连续两次观测,两次高程之差应小于±1.0mm,取平均值作为初始值。

c、沉降值计算:在条件许可的情况下,尽可能的布设导线网,以便进行平差处理,提高观测精度,然后按照测站进行平差,求得各点高程。施工前,由基点通过水准测量测出隆陷观测点的初始高程H0,在施工过程中测出的高程为Hn。则高差△H=Hn-H0即为沉降值。

③数据分析与处理

沉降监测随施工进度进行,并将各沉降测点沉降值随时间变化量绘制成沉降变化曲线图。计算累计沉降量,与容许沉降控制值比较,以此判定挡土墙的安全可靠性。

6、连续墙顶水平位移量测

剖面图①仪器设备

徕卡TC702全站仪。②监测实施方法

a、测点布置:连续墙墙顶水平位移测点布置在连续墙顶面上,沿车站纵向30米置一个,测点埋设方法同地表沉降观测点埋设,所不同的是在桩顶刻有观测十字丝。观测基点的埋设同地表沉降监测。

b、测量方法:在基坑开挖前,建立导线网,通过导线计算、坐标平差得出观测基点平面坐标(横纵轴沿基坑方向的相对坐标),用徕卡TC702全站仪直接测得观测点的初始相对坐标(X0,Y0),其中X方向为车站南面增大方向,设为纵轴;Y方向为车站西面增大方向,设为横轴。每次监测时直接测出各观测点坐标(Xn,Yn)。

c、位移计算:将每次测得的坐标(Xn,Yn)与初始坐标(X0,Y0)相减,既得观测点相对纵横轴的位移变化量,既X= Xn-X0,Y= Yn-Y0,观测点位移仅为面向基坑的一个方向,实际计算时位移值仅为横纵方向的一个变化量。

③数据分析与处理

墙顶水平位移随基坑开挖进行,将开挖位置处墙顶各点位移量统计并填入位移量表格,墙顶位移量表格反映了该点在某一时间点内的位移量和整个时间段内的总位移量,根据位移量判定基坑开挖过程中维护结构的安全性以及变化量较大时采取相应的对策及措施。

四、监测频率和监测结果反馈

1)、监测频率及测次

观测周期、次数确定的原则:①.各项目在基坑开挖前测初值;②.在开挖卸载急剧阶段,间隔时间不超过3天,当变形超过有关标准或场地条件变化较大时,则加密观测;③.当大雨、暴雨或基坑荷载条件改变时应及时监测;④.当有危险事故征兆时,应连续观测。

根据本工程的工期安排,基坑的监测频率如下:

(1)围护桩桩顶水平位移、地面地下管线及周围建筑物沉降观测、水位监测:①基坑开挖前测初始值;②基坑开挖期间每天一次;③底板完成前1次/3天;④底板完成后结构施工1次/半月。

(2)桩身水平位移及土体侧向变形(测斜)监测:①.基坑开挖前测初始值;②.开挖至高程0.50m(挖深约3.0m)测一次;③.开挖至高程-2.5m(挖深约6.0m)测一次,3天后再测一次;④.开挖至-5.5m高程(挖深约9.0m)测一次;⑤开挖至基坑底高程约-6.487m测一次,3天后再测一次;⑦底板完成前按1次/(3~7)天;⑧底板完成后结构施工过程按1次/半月~1次/月。

(3)桩身内力监测:基坑每开挖其深度1/5~1/4,测读2~3次,挖至设计深度后,每周测1~2次,一直测到地下底板混凝土浇筑完毕。

4)水平钢支撑轴力监测:①支撑安装完成后测初始值;②基坑开挖期间每天一次;③底板完成前1次/(3~7)天;④底板完成后结构施工1次/半月~1次/月。

由于工地现场施工情况不同,具体测量次数、测量时间可根据监理及业主要求、现场工程进度和测量反馈作相应调整。

2)、各监测项目的报警值如下: 1)、倾斜测量

累计位移量≤±30mm,单次位移变化量≤±1~2.0mm/d; 2)、水位测量

单次变化量≤±500mm/d; 3)、砼支撑轴力测量 频率变化≤±30~50Hz/d; 4)、钢支撑轴力测量

累计量≤±各自的设计量程,单次轴力变化量≤±300kN/d; 5)、水平位移测量

累计位移量≤±30mm,单次位移变化量≤±1~2.0mm/d; 6)沉降测量

累计位移量≤±30mm,单次位移变化量≤±1~2.0mm/d。

五、监测反馈程序及信息管理

专业监测小组及时整理分析监测数据,将实际测值与允许值进行比较,绘制各种变形~时间关系曲线,预测变形发展趋向,及时向业主及监理工程师汇报,为实现信息化施工提供依据。

在监测过程中,若发现监测值变化较大,立即向业主及监理工程师汇报,并提供报表;测量结果正常,则在测量结束后3天内提供报表。测量工作结束后提交完整的观测报告。

监测数据必须完整、可靠,对施工工况应有详细的描述,起到施工监控的作 用。为设计和施工提供依据。尤其要做好初始数据记录,监测组根据该车站的施工进度,对各项监测点进行了埋设,并于当日对埋设好的监测点连续进行了两次监测,取平均值作为监测初始值。每次监测工作结束后,均须及时整理监测资料,以便发现数据有误时,及时改正和补测。当发现测值有明显异常时,应迅速通知施工主管和监理单位,以便采取相应措施。并定期向建设、监理和设计提供一份量测报告。每次监测得到的原始数据经过审核、消除错误和取舍之后,方可计算分析。根据计算结果,绘出各观测项目观测值与施工工序、施工进度、及开挖过程的关系曲线。在此基础上,对各观测资料进行综合分析,以说明围护结构支撑体系和建筑物在观测期间的工作状态与其变化规律和发展趋势,判断其工作状态是否正常或找出问题的原因,并提出处理措施的建议,供研究解决问题提供参考。监测以获得定量数据的专门仪器测量或专用测试元件监测为主,以现场目测检查为辅。

根据信息化施工要求,监测后应及时整理分析各项量测数据资料,判别监测对象的安全等级状态,并将监测结果及时反馈到施工中去,发挥监测信息对施工的指导作用。

本工程监测信息按《监测信息反馈流程框图》进行反馈。

资料调研监测设计监测量测数据、分析、处理施工、监理、设计监测量测NO工程施工安全判别结束YES监测信息反馈流程框图

各监测项目变形统计情况分别如下

1、倾斜监测

累计变化量:3.01mm(cx38)~9.52mm(cx5);

2、水位监测

累计变化量:6.21m(SW3)~6.03m(SW2);

3、砼支撑轴力监测

累计变化量:54.2kN(Z3)~-738.4kN(Z8)

4、钢支撑轴力监测

累计变化量:-274.7kN(N2)~-358.4(N3);

5、沉降监测

累计变化量:-2.5mm(J4)~-10.3mm(J33);

6、水平位移监测

X方向累计变化量:1.4mm(S26)~11.3mm(S9); Y方向累计变化量:3.8mm(S4)~11.1mm(S22);

六、资料整理

每日所监测的项目完成后,则要把所测的数据进行归类计算,并绘制出相应的速率变化曲线,并上报监理。资料经审批返还后,由专人负责统计、管理,做到资料齐全,分类清晰。

第三篇:基坑监测报告

XXX市 XXXX 基 坑 工 程

监测报告

XXXXXX(单位)

2012年X月

XXX市XXXXX基坑工程

监测报告

工程名称:XXX

市XXXXX基坑工程

监测内容:基坑支护结构及周边建(构)建筑物安全

工程地点:XXXXX

监测日期:2010年X月X日~2012年X月X日

XXXXXXXXXXXXX 2012年X月

委托单位:

建设单位:

勘察单位:

设计单位:

施工单位:

监理单位:

监测单位:

项目负责人:

试验人员:

报告编写:

核:

定:

报告总页数:x页

目 录

一、工程概况......................................................................................1

二、监测依据......................................................................................1

三、监测内容......................................................................................1

四、监测点布置和监测方法..............................................................2

五、监测工序和测点保护..................................................................4

六、报警值..........................................................................................5

七、监测时长和频率..........................................................................5

八、监测成果及分析..........................................................................6

九、附表、附图....................................................................................11

一、工程概况

XX市XXXX工程位于XXX市旧城区核心商业区内,南西面邻XX商场,东面邻XX市百货大楼,东南面为XX街,北西面为XX路。广场长约162 m,宽约35 m,占地面积约4943.96㎡,建筑占地面积约3052.0㎡,总建筑面积约40260.0㎡,拟建建筑物主楼高9~10层,骑楼1~4层,底层架空,地面以下三层,地下室底板标高约63.4 m,靠近XXX路一侧深约10 m,靠近XX街一侧深约14.5 m(场地现状呈西北低南东高的缓坡状);上部结构采用框架结构,设计室内±0.00标高为78.00 m。基础采用钻孔灌注桩基础,桩端进入砂质泥岩层不少于2.0m。基坑支护结构采用钢筋混凝土地下连续墙,深约20m,完成基坑支护作用后作为地下室外墙,建筑设计使用年限:50年,基坑工程安全等级为一级。基坑开挖及地下室施工采取分三幅进行,第一幅于2011年X月X日完成地下室主体结构施工,第二幅于2011年X月X日完成地下室主体结构施工,第三幅于2012年X月X日完成地下室主体结构施工。

二、监测依据

(1)《建筑基坑工程监测技术规范》(GB 50497-2009);(2)《建筑地基基础设计规范》(GB 50007-2002);(3)《建筑变形测量规范》(JGJ 8-2007);(4)《工程测量规范》(GB 50026-2007);(5)《建筑基坑支护技术规程》(JGJ 120-99);(6)《混凝土结构试验方法标准》(GB 50152-92);(7)委托方提供的相关设计图纸。

三、监测内容 根据《建筑基坑工程监测技术规范》(GB 50497-2009)的要求及xxx工程的实际情况,具体监测内容如下:

(1)地下连续墙墙顶沉降监测;

(2)地下连续墙深层水平位移(测斜)监测;

(3)地下连续墙纵筋应力监测;

(4)水平支撑内力监测;

(5)基坑外地下水位监测;

(6)周边建(构)筑物变形监测。

四、监测点布置和监测方法 1.周边建筑物沉降

(1)测点布置 按规范规定,从基坑边缘以外1~3倍开挖深度范围内需要保护的建(构)筑物、地下管线等均应作为监控对象。本工程需要保护的建筑有:xxx百货大楼、xx大厦、xxx行、xxxx商场、xxxx商厦。现有有效测点34个,具体测点布置见附图1所示。

(2)监测方法 在周边建筑物的测点部位将L型测钉打入或埋入待测结构内,测点头部磨成凸球型,测钉与待测结构结合要可靠,不允许松动,并用(红色)油漆标明点号和保护标记,随时检查,保证测点在施工期间绝对不遭到破坏。用水准仪观测设在建筑物上的测点的高程变化情况。2.地下连续墙墙顶沉降监测

(1)测点布置 围护墙顶部沉降监测点埋设于连续墙圈梁上,连续墙墙顶中部、阳角处布置监测点。本工程现有有效测点11个,具体埋设位置见附图2。

(2)监测方法 在连续墙墙顶监测点部位将膨胀钉埋入圈梁内,测点头部磨成凸球型,测钉与待测结构结合要可靠,不允许松动,并用(红色)油漆标明点号和保护标记,随时检查,保证测点在施工期间绝对不遭到破坏。用水准仪观测设在墙顶各监测测点的高程变化情况。3.地下连续墙深层水平位移(测斜)监测

(1)测点布置

测点布置在沿基坑地下连续墙围护体上的重要位置,共布设10个测点,每个测点深度约为20m。其中Q1-44槽段埋设的测斜管在连续墙施工过程中遭到损坏,Q3-49槽段埋设的测斜管在基坑土方开挖过程中遭到损坏,不能用于监测。具体测点布置见附图2。

(2)监测方法

本项监测是深入到围护体内部,用测斜仪自下而上测量预先埋设在围护体内的测斜管的变形情况,以了解基坑开挖施工过程中,围护体因相应位置土体的挖除对其整体水平位移的影响程度,分析围护体在各深度上的稳定情况。

测斜管为外径70mm、内径66mm内壁有十字滑槽的PVC管,管长与相应桩等深,固定在钢筋笼上随之一起埋入地下。安装测斜管时,其一对槽口必须与基坑边线垂直,上下管口用盖子密封,安装完成后立即灌注清水,防止泥浆渗入管内。测斜管管口设可靠的保护装置。4.地下连续墙纵筋应力监测

(1)测点布置 按设计要求共监测10个断面,每个断面在不同深度的位置分别布设4个应力计,共埋设40个钢筋应力计。现有有效测点共计19个测点。具体测点布置见附图2。

(2)监测方法 将钢筋应力计与连续墙的纵向主钢筋焊接(或对焊,螺栓连接)在一起,然后将应力计的导线逐段用软绳绑扎固定在主筋上,在墙顶用钢管保护,引出地面,接入接线盒内保护,采用频率计对连续墙纵筋的应力变化情况进行监测。

5.地下连续墙外地下水位监测

(1)测点布置 根据本工程的实际情况,结合相似工程的相关经验,基坑外地下水位监测点沿基坑周边、监测点间距约为20~50 m,布置在地下连续墙的外侧约2 m处,水位监测管的埋置深度(管底标高)在控制地下水位之下3~5m。

由于6#水位孔在基坑施工过程中被埋,无法观测,现有效测点为5个。具体测点布置见附图2。(2)监测方法 地下水位采用电测水位仪进行观测,基坑开挖降水之前,所有降水井、观测井应在同一时间联测静止水位。在基坑降水前测得各水位孔孔口标高及各孔水位深度,孔口标高减水位深度即得水位标高,初始水位为连续二次测试的平均值,每次测得水位标高与初始水位标高的差即为水位累计变化量。

6.水平支撑内力监测(1)测点布置 按规范规定,基坑开挖期间对水平支撑进行内力监测,监测点宜设置在支撑内力较大或在整个支撑系统中起控制作用的杆件上;钢支撑的监测截面宜选择在两支点间1/3部位或支撑的端头,混凝土支撑的监测截面宜选择在两支点间1/3部位,并避开节点位置,各层支撑的监测点位置在竖向上宜保持一致。按规范要求,本工程每层选取18道钢支撑、2道钢筋混凝土支撑进行监测,共2层(其中一道受监测下层支撑未安装),每道钢支撑取3个测试截面,每道混凝土支撑取1个测试截面,共计xx个监测截面。支撑内力监测点布置见附图3。(2)监测方法 对于钢筋混凝土支撑,宜采用钢筋应力计(钢筋计)进行量测,将钢筋应力计与钢筋混凝土支撑的受力主筋焊接(或对焊,螺栓连接)在一起,然后将应力计的导线引至方便测量的地方,接入接线盒内保护,采用频率计对应力计变化情况进行监测;对于钢结构支撑,采用应变计进行量测,将应变计焊接于钢支撑表面,然后将应变计的导线引至方便测量的地方,接入接线盒内保护,采用频率计对应变计变化情况进行监测。

五、监测工序和测点保护 1.监测工序 各监测内容所需的监测仪器、监测点的安装、埋设以及测读的时间应随基坑工程施工工序而展开:(1)根据各道工序施工需要,先期布设建筑物沉降点。(2)地下连续墙围护结构施工时,同步安装围护墙体内测斜管。(3)围护墙顶的圈梁浇筑时,同步埋设墙顶位移测点,做好测斜管口的保护工作。(4)基坑开挖之前,应建立测量控制网,将所有已埋设测点测读三次初始值。2.测点保护 测点安装、埋设好后应作好醒目标记,设置保护设施,施工单位应平时加强测点保护工作,尽量避免人为沉降和偏移,确保测点成活率及其正常使用,以及监测数据的准确性、连续性。为保证工程质量,测量工作中使用的基准点、监测点用醒目标志标识的

同时,需要用钢管对接出地面部分的线缆进行保护,若发现已遭破坏,应立即对可以复原的测点进行重新连接或埋设。8 表9 连续墙纵筋应力最大变化值

槽段号 深度(m)应力计 编号 变化最大值(Mpa)槽段号 深度(m)应力计 编号 变化最大值(Mpa)Q1-1-7.50 402964 7.3 Q1-30-7.50 413061-12.9-12.00 418627 无读数-12.00 418625-5.3-15.00 418040 无读数-15.00 418026 无读数

-18.50 414592 无读数-18.50 418035 49.0 Q1-4-7.50 416143 15.9 Q1-39-7.50 418621-13.6-12.00 418064-11.8-12.00 418046 无读数-15.00 418028-38.0-15.00 418031 16.0-18.50 418042 21.5-18.50 418024 无读数 Q1-9-7.50 418061 10.4 Q1-44-7.50 418051 20.1-12.00 416616 6.0-12.00 418062-22.2-15.00 418025-10.4-15.00 418029 25.4-18.50 418034 无读数-18.50 413075 56.4 Q2-20-7.50 418629-12.4 Q3-49-7.50 416130-6.2-12.00 418622-14.3-12.00 418047 无读数-15.00 418037-17.2-15.00 414581-13.9-18.50 413073-42.3-18.50 413062 8.9 Q2-23-7.50 418623 无读数 Q3-52-7.50 418045 无读数-12.00 418058-37.0-12.00 418056-5.9-15.00 418027 无读数-15.00 418039-6.5-18.50 418032-16.6-18.50 418053-15.6(5)地下连续墙外地下水位监测 自2011年x月x日进行第一次观测,至2012年x月x日进行最后一次观测,在此期间共进行x次地下连续墙外地下水位监测,各监测点水位变化曲线见附图12。地下连续墙外地下水位最大累计变化值最终变化量如下表10所示: 表10 地下连续墙外地下水位累计变化值及最终变化量(单位:mm)水位孔号 1# 2# 3# 4# 5# 累计变化最大值 2323.33-364.33-574.67-533.33-512.67 最终变化值 1753.33 123.67 112.33 353.67 353.33(6)支撑内力监测 自2011年x月x日进行第一次观测,至2011年x月x日进行最后一次观测,在此期间对上层钢筋混凝土支撑共进行x次监测; 自2011年x月x日进行第一次观测,至2011年x月x日进行最后一次观测,在此期间对下层钢筋混凝土支撑共进行x次监测;自2011年x月x日进行第一次观测,至2011年x月x日进行最后一次观测,在此期间对选定的钢支撑共进行x~x次不等监测。支撑内力汇总见附表

8、附表9,支撑内力变化曲线见 9 附图13。支撑内力最大值如下表11、12所示: 表11 钢筋混凝土支撑内力最大值

截面位置 TZC1 TZC2 TZC3 TZC4 轴力最大值(kN)-623.36-688.12-423.15-352.45 弯矩最大值(kN.m)-94.91-63.11 34.58 33.82 表12 钢支撑内力最大值

截面位置 GZC1 GZC2 GZC3 GZC4 GZC5 GZC6 GZC7 轴力最大值(kN)-379.90-995.09-1843.46-443.82-260.78-646.91-979.27 截面位置 GZC8 GZC9 GZC10 GZC11 GZC12 GZC13 GZC14 轴力最大值(kN)-1050.28-785.05-741.77-274.98-782.84-1133.10-1008.08 截面位置 GZC15 GZC16 GZC17 GZC18 GZC19 GZC20 GZC21 轴力最大值(kN)-664.67-629.84-855.43-725.42-945.02-811.53-465.27 截面位置 GZC22 GZC23 GZC24 GZC25 GZC26 GZC27 GZC28 轴力最大值(kN)-1129.51 220.20-448.11-1056.29-441.55-1253.10-763.46 截面位置 GZC29 GZC30 GZC31 GZC32 GZC33 轴力最大值(kN)-511.26-868.94-581.74-845.86 2.监测结果分析(1)周边建筑物沉降监测数据显示,周围建筑物34个测点的累计沉降值和沉降变化速率均未达到报警值。xxx百货大楼测点的沉降变化最为明显,累计沉降变化范围在2~-4mm内。其中B3,B4测点的累计沉降值较大,B3出现的累计沉降最大值为-xxxmm,B4出现的累计沉降最大值为-xxxmm。B3,B4为xxx百货大厦的附属结构上的测点,位于基坑外与百货大楼间的狭小通道上坡处,此处下方坡体土体较松散,仅有钢筋网喷射薄层混凝土加护,x月初由于连续降雨,雨水沿此处地面原有裂缝下渗到土体中,B3,B4测点出现较为明显的沉降变化。所有测点的变化速率均在0.9~-0.9mm/d内,出现的变化速率最大值为0.85mm/d及-0.83mm/d,均为B4测点;其他建筑物测点的累计沉降变化范围在3~-3mm内,各测点的沉降变化速率较小,在0.6mm/d~-0.5mm/d内。分别统计xx百货大楼、xx大厦、xxx行、xxxx商场、xxx商厦的沉降累计变化数据并作曲线图,见附表1~附表5,附图4~附图8。(2)地下连续墙墙顶沉降监测数据显示,连续墙顶最终有效测点11个的累计沉降

值和沉降变化速率均未到达报警值。墙顶测点累计沉降变化范围在±4mm内,出现的累计沉降最大值为-xxxxmm,为DP14测点;变化速率在±1.50mm/d内,出现的变化速率最大值为-xxxmm/d,为DP9测点。基坑开挖至-4.00m及桩基施工期间,连续墙向基坑内偏移,墙顶测点高程变化总体表现为下沉,x月底至x月上旬,开始由xx街一侧向下一开挖面开挖,x月中旬,第一幅基本开挖完毕,其后基坑内开挖面积过半,未向下开挖区段的墙顶测点(DP3~DP6测点)的高程变化未出现明显抬升,已开挖区段的墙顶测点(DP7~DP14)高程开始出现较明显的抬升,分析其原因可能为基坑内土体开挖后,基坑底由于上覆土层压力释放隆起后形成一定的空间,同时基坑内外的土面高差不断增大,形成的加载和地面各种超载作用,使基坑外较下层的土层向内移动,基坑底部产生向上的塑性隆起,对连续墙底部产生一定的推挤,造成墙顶抬升。后期由于本工程采取分幅施工造成现场通视效果差,以及大多数的墙顶监测点被埋而停止监测。统计地下连续墙的沉降累计变化数据并作曲线图,见附表6及附图9。(3)地下连续墙深层水平位移监测数据显示:①9个连续墙深层水平位移监测点的累计水平位移量在-3.xxx~xxxmm间,其中Q1-

4、Q2-20、Q2-

23、Q3-

49、Q3-52槽段的深层水平位移累计变化量未超过报警值,Q1-

1、Q1-

9、Q1-30、Q1-39槽段的深层水平位移累计变化量超过报警值。② 随着基坑内土方开挖,各监测点得深层水平位移逐渐增加,各受监测槽段出现位移明显增大及变化速率明显增快的情况均对应了其周围的相应出现的工况:早期土方开挖至-4.00m时,基坑长边中段的槽段Q1-

9、Q1-30、Q1-39出现相对较快的变化速率,此区域存在较厚的淤泥质土,水平抗力不足;桩基施工期间,由于对土层扰动较大,槽段Q1-

4、Q1-

9、Q1-30、Q1-39出现较快的变化速率,超过1.00mm/d,尤其是在紧挨槽段Q1-

9、Q1-30、Q1-39内进行桩基施工时,变化速率均出现超过报警值2mm/d的情况;土方开挖-4.00m~-8.50m期间,槽段Q1-

4、Q1-

9、Q1-30内未能及时安装钢支撑,尤其开挖Q1-30槽段内土体期间,遇上连续强降雨,变化速率明显增大,超过1.00mm/d及报警值2mm/d;开挖Q1-39槽段内土体期间,此区域基坑外长时间过往及停留混凝土搅拌车,出现超载情况,变化速率过大,超过报警值2mm/d;在此期间多次报警并加强观测,并要求施工单位增加内支撑的预加力,加填反压,以减小变形。③在基坑底板浇筑养护完成后,各监测点的深层水平位移变化均呈收敛趋势,变化速率总趋势逐渐减小不再增加。④地下室土建施工期间,基坑状态稳定。⑤Q3-

49、Q3-52槽段向基坑外偏移,是由于基坑开挖期间,这两个槽段内的土体一直未挖除,形成施工机械进入基坑内作业的坡道,长时间过往重型车辆及器械,土体及此处连续墙受到指向基坑外 11 的荷载较大。地下连续墙深层水平位移变化曲线见附图10。(4)地下连续墙纵筋应力监测数据显示,纵筋应力变化值较大的截面位置有:Q1-4槽段-12.00m处,-xxxMPa;Q2-20槽段-18.50m处,-xxMPa;Q1-30槽段-18.50m处,xxMPa;Q1-44槽段-18.50m处,xxxMPa,;其中最大值为Q1-30槽段-18.50m处,xxxMPa,均未达到报警值。受监测槽段的深层水平位移有较大变化时,相应该槽段的受监测纵筋应力变化值出现较明显增大。各受监测槽段纵筋应力汇总表及累计变化曲线图见附表

7、附图11。(5)地下连续墙外地下水位监测数据显示,2#~5#水位孔的水位变化值较为稳定,一般均在500mm以内,累计变化值及变化速率均为达到报警值,x月x日、x日水位受长时间连续降雨的影响,水位有所上升,其后x月x日水位回落。x月x日1#水位孔水位累计下降临近报警值,此后水位下降值一直超过报警值1000mm,但变化速率未达到报警值,其变化趋势与2#~5#水位孔的一致,连续墙未出现漏水现象,从附近Q1-1槽段的深层水平位移、墙顶沉降、周边建筑沉降、墙体应力监测来看变化均不大,综合以上情况分析可能原因是1#水位孔与周围水流系统贯通,未进行报警。各水位孔水位累计变化曲线图见附图12。(6)支撑内力监测数据显示,GZC3截面位置处x月x日后轴力出现较大增长,期间有连续3日强降雨,土方开挖后未及时安装钢支撑,其后轴力于x月x日开始逐渐减小,本道钢支撑其余两截面内力表现出相近的变化趋势,其余各受监测支撑截面内力值未超过报警值。在出现土方超挖,下层支撑未及时安装时,多数上层支撑内力在安装初期会出现较大的变化值。下层支撑内力值一般较上层支撑内力值小。受监测支撑各截面内力汇总表见表8、9,内力变化图见附图13。3.结论 周围建筑物累计沉降、地下连续墙墙顶累计沉降、地下连续墙纵筋应力,2#~5#水位孔水位累计变化,支撑内力终值,地下连续墙Q1-

4、Q2-20、Q2-

23、Q3-

49、Q3-52槽段的深层水平位移累计变化量未达到报警值,1#水位孔水位累计变化超过报警值,Q1-

1、Q1-

9、Q1-30、Q1-39槽段的深层水平位移累计变化量超过报警值。综上分析,基坑周围建筑物安全,基坑深层水平位移过大,连续墙纵筋应力出现突变,但施工现场未出现明显塌方、滑移等异常情况,基坑施工期间处于安全状态。

第四篇:基坑监测实习报告

实习报告

学院:矿业学院 专业:工程地质勘察 班级:地质1412 姓名:柴安章 学号:1400001641 实习单位:云南新坐标科技有限公司 指导老师:刘伟

一、实习概况

随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。

对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。

本人在云南新坐标科技有限公司实习。主要从事基坑监测工作以及一些简单的施工管理。

二、实习主要内容

工程概况:拟建场地位于昆明市五甲塘(西亮塘)湿地公园附近,场地区域属官渡区付家营所辖。工程区域呈正方形,总用地面积约23861.55㎡(按道路中边线计),拟建建筑由20F—30F的6栋商品房组成,其中1栋、6栋无地下室(筏板地标高为1886.2m桩型为长螺旋灌注桩,桩长28m),其余4栋设整体-2F地下室,其±0.00标高为1891.00m,基坑大面开挖底标高为-6.85=1882.15m,主楼下开挖底标高为-7.9=1881.10m。地下室基础形式为桩筏基础,桩型为预制管桩。

实习简介:本人主要从事基坑监测方面工作。正常情况下每周两次,每四次总结数据后出报告,但是在一些特殊情况(比如:土体塌方、赶工开挖、取土、地下水位或沉降变化过大等)每天1次或者有时必须一天2次。

实习过程及项目:基坑监测

深基坑施工,必须要有一定的围护结构用以挡土、挡水。浅基坑的围护结构以前常用的是钢板桩或混凝土板桩;深基坑则大多采用现场浇灌的地下连续墙结构或排桩式灌注桩结构,并配以混凝土搅拌桩或树根桩止水。开挖时,坑内必须抽去地下水,7~15m深的基坑,中间必须配二到三道水平支撑,水平支撑采用钢管式结构或钢筋混凝土结构。围护结构必须安全可靠,并能确保施工环境稳定。从经济角度来讲,好的围护设计应把安全指标取在临界点附近,再靠现场监测提供的动态信息反馈来调整施工方案。以下内容是基坑监测应该做到的项目:

(1)地下管线、地下设施、地面道路和建筑物的沉降、位移。

(2)围护桩地下桩体的侧向位移(桩体测斜)、围护桩顶的沉降和水平位移。

(3)围护桩、水平支撑的应力变化。

(4)基坑外侧的土体侧向位移(土体测斜)。

(5)坑外地下土层的分层沉降。

(6)基坑内、外的地下水位监测。

(7)地下土体中的土压力和孔隙水压力。

(8)基坑内坑底回弹监测。

(一)沉降、位移监测。

1.仪器: TCA1800全站仪,TrmbileDINI03水准仪,脚架,标尺,尺垫,记录本。

沉降观测结束后要及时对所测数据进行计算整理,根据沉降量绘出沉降曲线图,这样根据曲线图就可以大致预测出建筑物的沉降趋势。2.观测点的布置

水平位移监测基准点应埋设在基坑开挖深度3倍范围以外不受施工影响的稳定区域,或利用已有稳定的施工控制点,不应埋设在低洼积水、湿陷、冻胀、胀缩等影响范围内;基准点的埋设应按有关测量规范、规程执行。宜设置有强制对中的观测墩;采用精密的光学对中装置,对中误差不宜大于0.5mm。沉降观测点应埋设在方便观测的地方,相邻点之间的间距应为15—30m左右,分别分布在建筑物的四周。

3.监测程序

(1).接受委托;

(2).现场踏勘,收集资料;

(3).制定监测方案,并报设计、监理和业主认可;(4).展开前期准备工作,设置观测点、校验设备、仪器;(5).观测点和设备、仪器、元件验收;(6).现场监测;

(7).监测数据的计算、整理、分析及报表反馈;(8).提交阶段性监测结果和报告;

(9).现场监测工作结束,提交基坑工程监测报告,预警通知书等。4.“五定”原则

“五定”分别指定人、定点(基准点、工作基点、观测点)、定仪器、环境条件要基本一致、观测路线和方法要固定,这样可以尽量减小误差。5.沉降观测精度要求

这个要根据建筑物的特性和设计单位要求选择测量的精度等级 6.观测时间的要求

建构筑物的沉降观测对时间有严格的限制条件,特别是首次观测必须按时进行,否则沉降观测得不到原始数据,而是整个观测得不到完整的观测意义。其他各阶段的复测,根据工程进展情况必须定时进行,不得漏测或补测。7.观测中的注意事项:

(1)严格按测量规范的要求施测。(2)前后视观测最好用同一水平尺。

(3)各次观测必须按照固定的观测路线进行。

(4)观测时要避免阳光直射,且各观测环境基本一致。(5)成像清晰、稳定时再读数。

(6)随时观测,随时检核计算,观测时要—气阿成。(7)在雨季前后要联测,检查水准点的标高是否有变动。

(8)将各次所观测沉降情况及时反馈有关部门,当建筑物每天(24h)连续沉降量超过1mm时应停止施工,会同有关部门采取应急措施。8.监测依据(1)《建筑基坑监测技术规范》DBJ14-024(2)《建筑地基基础工程施工质量验收规范》GB50202(3)《建筑基坑支护技术规程》JGJ120(4)《建筑地基基础设计规范》GB50007(5)《工程测量规范》GB50026(6)《建筑变形测量规程》JGJ/T8(7)《民用建筑可靠性鉴定标准》GB50292

(二)基坑外侧的土体侧向位移(土体测斜)1.测斜管的埋设与安装(1)钻孔

采用工程钻探机,一般采用φ108cm钻头钻孔,为了使管子顺利地完装到位一般都需比安装深度深一些,它的原则是每10米多钻深0.5米,即10米+0.5米=10.5米,20米+1米=21米,以此类推。(2)清孔

钻头钻到预定位置后,不要立即提钻,需把泵接到清水里向下灌清水,直至泥浆水变成清混水为止,再提钻后立即安装。(3)安装 a、管子的连接:

接的方法是采用插入连接法,首先拿起一根测斜管,在没有外接头的一端套上底盖,用三只自攻螺钉探紧,(这是每孔最下面的一节管子)就可向孔内下管子了,下一节,再向外接头内插一节管,这时必须注意的是一定要插到管子端平面相接为止,再用三只自攻螺钉把它固定好,才算该接头连接完毕,按此方法一直连接到设计的长度。

b、调正方向:

管子安装到位后,需要调正方向后才能回填,调正方向的要求是,管子内壁上有两对凹槽,首先需把孔口以上那节测斜管上的外接头拿掉才能看清管内凹槽,需要把管内的一对凹槽垂直于测量面就可以了,转动管子就可以实行,一人转不动时,可用多人,转动前可先把管子向上提起后再转动对准,对准后再把管子压到位,方向就调正好了盖上盖子,拧好螺钉就可以回填。

c、向孔内回填,还需特别注意两点:

在下管子时为减少其浮力,可向管内充清水,一边下管子,一边充清水,直至能顺利地放到位。清水也不能放得太多,否则管子会迅速下沉,使人抓不住而掉在孔中,无法继续工作。但管子全部(一孔)下到位置后,一定要把清水充满,这样做可减少泥浆进入管内形成沉淀。

测斜管外面有一对凹槽,此槽是偏心的(为保证测斜管的精度,尽量减少扭角的产生,使联接方法按管子的制作方向联接)与外接头内的凸槽相配合后把管子插入的,若插不下,把管子转动一个方向就可顺利地插入,因为该联接方法只有一个方向能插入,其余方向均插不进去。

2.土体测斜

仪器:基深CX-3C测斜仪

组装调试测斜仪,钻孔的测量,编辑测斜仪菜单,进行钻孔编号等,最后进行测斜,数据处理录入。

(三)基坑内、外的地下水位监测。仪器:水位计。

操作:将开关打到水位档,进行测量,到仪器发出警报,即为该孔水位深度,记录整理数据。

三. 实习小结及体会

通过这一次认识实习,我对相关的专业知识有更进一步的了解,也学到了很多之前未曾接触的东西,受益颇丰。深入工地一线的实习,使我能够将所学理论的知识与实践相结合,系统地巩固所学的理论知识,深化了对所学理论知识的理解,在实践中继续学习,不断总结,逐步完善,有所创新,并在实践中提高自己的综合素质和能力,并从实践中对这门自己即将从事的专业获得一个感性认识。在实习中,我发觉自己的分析解决问题的能力得到了很好的锻炼和培养,为未来走向工作岗位做好思想准备。这次实习除了在专业方面得到了非常大的收获之外,我还学会了怎样和同事们友好相处,虚心向他们请教。通过实习,我开阔了视野,增加了对建筑施工的理性认识。

第五篇:廊坊基坑监测工作方案

廊坊新朝阳广场二期工程 C 区基坑监测

工作方案

河北经纬大地测绘技术有限公司

二零一三年五月

廊坊新朝阳广场二期工程 C 区基坑监测

工作方案

批准:王瑞玲

审定:杨凤民

审核:魏

编写:尹中旭

河北经纬大地测绘技术有限公司

二零一三年五月

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

目 目录 1.概况................................................................................................................................................1 1.1 工程概况..............................................................................................................................1 1.2 工作内容及目的..................................................................................................................1 1.3 执行技术标准......................................................................................................................1 1.4 坐标系统及高程系统..........................................................................................................1 1.5 投入仪器设备及人员..........................................................................................................2 2.基坑监测基准点的布设及观测.....................................................................................................2 2.1 基坑监测基准点位的选埋..................................................................................................2 2.2 基坑监测基准点的标志......................................................................................................3 2.3 基坑监测基准点的观测的技术要求..................................................................................3 2.4 基坑监测基准点的检测......................................................................................................3 3.基坑顶部监测点的布设及观测.....................................................................................................4 3.1 基坑顶部监测点的布设......................................................................................................4 3.2 基坑顶部监测点的编号......................................................................................................4 3.3 基坑顶部监测点埋设及标志..............................................................................................4 3.4 基坑顶部监测点的观测......................................................................................................4 3.5 基坑顶部监测点监测周期..................................................................................................5 4.周边建筑物沉降观测.....................................................................................................................6 4.1 周边建筑物监测点的布设和数量......................................................................................6 4.2 沉降监测点的编号..............................................................................................................6 4.3 沉降监测点布设及标志......................................................................................................6 4.4 沉降监测点的观测..............................................................................................................7

4.5 沉降监测点的观测周期....................................................................................................7 5.周边路面沉降观测.........................................................................................................................7 5.1 周边路面沉降点的布设和数量..........................................................................................7 5.2 沉降点的编号......................................................................................................................7 5.3 沉降点布设及标志..............................................................................................................7 5.4 沉降点的观测......................................................................................................................7 5.6 注意事项..............................................................................................................................8 6.护坡桩深层水平位移(测斜)........................................................................................................8 6.1 测斜点的布设和数量..........................................................................................................8 6.2 测斜点的编号......................................................................................................................8

6.3 测斜管的安装与监测..........................................................................................................8

6.4 测斜频率 …………………………………………………………………………………9

6.5 测斜监测报警值 …………………………………………………………………………9 7.水位测量......................................................................................................................................9 7.1 水位测量点的布设和数量..................................................................................................9 7.2 水位测量点的编号..............................................................................................................9 7.3 水位测量............................................................................................................................10 7.4 水位测量频率....................................................................................................................10 8.锚杆内力监测............................................................................................................................10 8.1 锚杆内力监测点的布设和数量........................................................................................10

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

8.2 锚杆内力监测点的编号....................................................................................................10 8.4 锚杆内力监测频率............................................................................................................10 9.监测要求....................................................................................................................................11 10.监测报警值................................................................................................................................11 11.内业资料的处理.........................................................................................................................11 12.提交成果....................................................................................................................................11 附图 1:基坑监测基准点布置示意图...................................................................................13 附图 2:基坑监测基准点标志示意图...................................................................................15 附图 3:基坑顶部监测点布设示意图......................................................错误!未定义书签。

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

1.概况 1.1 工程概况 我公司承担廊坊新朝阳广场二期工程 C区基坑监测.本工程位于廊坊市和平路与永丰道西北角.廊坊新朝阳广场为一高档商业建筑群,由五栋高层商业楼和裙楼组成,基坑为大开挖形式,基坑深度 17.9 米,基坑南北和东侧支护为护坡桩形式,西侧为喷锚形式.1.2 工作内容及目的 基坑监测内容为基坑顶部水平位移和竖向位移、周边建筑物沉降观测、护坡桩深层水平位移、锚杆内力监测、水位监测、路面沉降观测等.目的是通过监测为业主提供准确可靠的监测数据,便于业主分析基坑的变形程度和变形趋势,达到防患于未然的目的.依据为(地勘、设计图、周边环境及市政部门的交底等).1.3 执行技术标准(1)《基坑支护技术规程》JGJ120-2012;(2)《工程测量规范》GB 50026-2007;(3)《建筑变形测量规范》JGJ 8-2007;(4)《建筑基坑工程监测技术规范》GB 50497-2009;(5)公司管理体系文件.1.4 坐标系统及 高程系统 统平面坐标系采用与甲方提供控制点坐标系或独立坐标系统,独立坐标系统假设基准点的坐标,尽量使基准点的相对方位处在正南正北位置,这样有利于对数据的分析.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

高程系可采用与甲方提供控制点相同的高程系统或独立的高程系统,但无论采用哪种高程系统,都不影响工程的质量.1.5 投入仪器设备及人员 1.5.1 投入人员 本工程拟投入4人,其中工程师1名,负责成果的检查验收,工程师1名,负责整个施工过程,助工、高级工人 2 名,组成作业组.1.5.2 投入仪器设备 本工程拟投入主要的仪器设备见表 1.表 1

主要仪器设备一览表

序 号 仪器设备名称 数 量 型 号 用 途 精密度 1 全站仪 一台 南方 352L 水平位移 2“2 米米-2pp米 2 水准仪 一台 苏光 DSZ2+GP 米3 竖向位移 ±0.7 米米 3 测斜仪 一台 RQBF-6989A 测斜 500 米米<0.1分辨率 2” 4 频率仪 一台 608A 锚杆内力监测 0.1HZ 5 水位仪或测绳 一台 SWY-30 水位监测 1 米米 6 测斜管 330 米辅材 若干

以上仪器可采用同等精度的其它品牌仪器.另配备计算机一台及配套的软件.2.基坑监测基准点的布设及观测 2.1 基坑监测基准点位的选埋 基准点应选设在变形影响范围以外便于长期保存的稳定位置,与基坑的距离应满足规范要求,且便于全站仪观测.根据本工程的实际情况在和平路与永丰道合适位置布设 3 个基准点,编号为 B 米 01、B 米 02、B 米

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

03.基准点布置示意图见附图(一).为了 便于工作及分析边坡位移情况,在工地上可布设若干工作基点,工作基点尽量为正南正北方向.工作基点的数量可根据现场施工情况确定.2.2 基坑监测基准点的标志 基准点的埋设标志:埋设地下水泥标石的标志为铁质,设置在建筑物上的标志为涂防锈漆的铁质.基准点采用混凝土现浇式,在选好的位置上按照规范要求进行点位 埋设,其规格与形状详见附图(二).2.3 基坑监测基准点的观测的技术要求 基坑监测平面基准点观测使用南方 352L 仪器或同等精度仪器,采用极坐标方法进行观测.即以已有控制点为已知点,采用极坐标方法两次摆站进行基准点的观测.或假设其中一个基准点的坐标,并将此基准点作为已知点,采用极坐标方法两次摆站进行其他基准点的观测.在观测坐标中误差≤3.0 米米时,取两次平均数值做为观测结果.基坑监测竖向基准点观测使用 DSZ2+GP米3水准仪,采用闭合线路往返观测,其观测方法按国家一级水准测量要求进行施测,当观测路线确定后,不得任意改动,各项技术要求见表 2:

表 2

一级水准测量技术要求

等级 视线 长度 前后 视距差 前后视距累计差 视线 高度 基辅分划读数差 基辅分划所测高差之差 环线闭合差(米米)检测已测测段高差之差(米米)一级 ≤30 米 ≤0.7 米 ≤1.0 米 ≥0.5 米 0.3 米米 0.5 米米 ≤0.2 n

≤0.45 n

注:

n 为测站数 2.4 基坑监测基准点的检测 基坑监测基准点的检测周期,每半年观测一次.观测方法同上.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

3.基坑顶部监测点的布设及观测 3.1 基坑顶部监测点的布设 根据建研地基基础工程有限责任公司的基坑监测点平面布置图,基坑顶部监测点共 66 个.3.2 基坑顶部监测点的编号 基坑顶部监测点编号可采用 WY+流水号的方法,流水号可从基坑东北角的监测点编为 01 号点,然后按顺时针方向增加依次编号.点位布置详见设计图纸.3.3 基坑顶部监测点埋设及标志 从基坑顶部硬化后或护坡桩过梁浇筑好后开始埋设监测点,在平行基坑方向:基坑的转角与每隔 20 米左右围护桩顶上;在垂直基坑方向:距离基坑1米左右的基坑边沿上或基坑围护桩顶埋设混凝土观测标志.为了 保持标志的稳定性,采用现埋式方法.在位置点上埋设一直径20米米、长为 250 米米左右的钢筋,钢筋一端加工成球状,中间打一深、直径均为 2米米左右的孔或画“十”字,另一端埋进混凝土以结构胶粘合,一端露出混凝 20 米米,详见附图(三).3.4 基坑顶部监测点的观测 为保证工程监测的初始值准确,在工程开始监测时应连续观测二次,取二次观测数据的平均数为项目的初始值.3.4.1 基坑顶部监测点水平位移观测 基坑顶部监测点水平位移观测采用极坐标法,即以基准点为已知点,用全站仪精确测出每个基坑顶部监测点的坐标,从而分析监测点在基坑内

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

侧方向的位移.3.4.2 基坑顶部监测点竖向位移观测 基坑顶部监测点竖向位移观测使用DSZ2+GP米 3 水准仪,采用闭合或附合线路进行观测,按国家二级水准测量要求进行施测,当观测路线确定后,不得任意改动,各项技术要求见表 3.表 3

二级水准测量技术要求 等级 视线 长度 前后 视距差 前后视距累计差 视线高度 基辅分划读数差 基辅分划所测高差之差 环线闭合差(米米)检测已测测段高差之差(米米)二级 ≤50 米 ≤2.0 米 ≤3.0 米 ≥0.3 米 0.5 米米 0.7 米米 ≤1.0 n

≤1.5 n

注:

n 为测站数 3.5 基坑顶部监测点监测周期 根据规范要求和现场的施工情况水平和竖直位移监测从基坑顶部硬化面完成时时开始布点观测,监测频率见下表:

表 4

监测频率表 施工进程 监测频率 开挖深度(米)≤5 1 次/2 天 5~10 1 次/1 天 >10 2 次/1 天 底板浇筑后 时间(天)≤7 2 次/1 天 7~14 1 次/1 天 14~28 1 次/2 天 >28 1 次/3 天 当大雨、基坑周边环境出现不利基坑稳定的变化、本监测项目或其他监测项目出现异常时,加密监测 当基础底板浇筑后2个月后可分析监测数据的收敛情况,若数据有所

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

收敛,监测频率可放宽至 7 天监测一次.当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔、加密监测次数,并及时向施工、监理和设计人员报告监测结果.(1)监测项目的监测值达到报警标准;(2)监测项目的监测值变化量较大或者速率加快;(3)基坑及周围环境中大量积水、长时间连续降雨、市政管道出现泄漏;(4)基坑附近地面荷载突然增大;(5)支护结构出现开裂;(6)邻近的地面突然出现大量沉降、不均匀沉降或严重的开裂;(7)基坑底部、坡体或围护结构出现管涌、流沙现象;(8)当有危险事故征兆时,应连续监测.4.周边建 筑物沉降观测

4.1 周边建筑物 监测点的布设 和数量

根据设计图纸,周边建筑物工商银行布设 13 个沉降监测点、餐厅 8 个、办公楼 11 个、水池 4 个、北侧商场 18 个.4.2 沉降 监测点的编号 基坑顶部监测点编号可采用 JZW+建筑物拼音第一个字母+流水号的方法,流水号可从建筑物东北角的监测点编为 01号点,然后按顺时针方向增加依次编号.4.3 沉降 监测点 布 设及标志 由于周边建筑物的所有权比较复杂,所以沉降点标志采用在离地面 50

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

公分左右的墙体上画测量线的方法.4.4 沉降 监测点 的观测 沉降观测实质上就是竖向位移的监测,所以周边建筑物的沉降观测与基坑顶部竖向位移监测的方法、精度、技术要求、使用仪器等均相同.4.5 沉降 监测点 的观测周期 沉降观测周期及注意事项同基坑顶部竖向位移监测.5.周边路面沉降观测

5.1 周边路面沉降 点的布设 和数量

根据设计图纸,周边路面沉降点共 53 个.5.2 沉降 点的编号 周边路面沉降点编号可采用 CJ+流水号的方法,流水号可从基坑东北角的沉降点编为 01 号点,然后按顺时针方向增加依次编号.5.3 沉降 点 布 设及标志 为了 保持标志的稳定性,采用现埋式方法.在位置点上埋设一直径 20米米、长为 250 米米左右的钢筋,钢筋一端加工成球状,中间打一深、直径均为 2 米米左右的孔或画“十”字,另一端埋进混凝土,一端露出混凝土 20米米.5.4 沉降 点 的观测 沉降观测实质上就是竖向位移的监测,所以周边路面的沉降观测与基坑顶部竖向位移监测的方法、精度、技术要求、使用仪器等均相同.5.5 沉降 点 的观测周期 沉降观测周期及注意事项同基坑顶部竖向位移监测.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

5.6 注意事项

根据以往经验,由于现场施工作业面小,周边路面来往车辆较多,路面的沉降点破坏性很大,如果补点则导致沉降成果不连续,所以在破坏点不小于沉降点总数的 70%时可不补点,以保证成果的连续性.6.护坡桩深层水平位移(测斜)6.1 测斜 点的布设 和数量 根据设计单位的图纸要求,测斜观测点共 11 个.6.2 测斜 点的编号 测斜点编号可采用 CX+流水号的方法,流水号可从基坑东北角的沉降点编为 01 号点,然后按顺时针方向增加依次编号.6 6..3 3 测斜管的安装 与监测

测斜管埋设采用直接埋入法.即在拟安装的支护桩清孔完毕后,将测斜管随钢筋笼一并放入桩孔内,待灌注混凝土后即完成埋设.具体步骤如下:

①安装测斜管在钢筋笼上;②测斜管接头处用玻璃胶密封,并将测斜管中的一对导槽垂直于基坑边线;③用测斜仪探头检验槽口是否通顺;④测斜管管口加盖保护,灌注混凝土.围护结构水平位移监测采用 RQBF-6989A 型测斜仪.测斜仪的系统精度不低于 0.25 米米/米,分辨率不低于 0.02 米米/500 米米.测斜测量时,将测斜仪探头沿测斜管垂直于基坑边线方向的导槽缓缓沉至孔底,在恒温 10~15 分钟后,自下而上每 0.5 米一个测点,测量至起算点后,旋转测斜仪探头 180°,重新放入孔内,按上述方法反方向量测

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

一次至起算点.现场测量完毕后,及时将数据采集至电脑内,采用专用软件分析当日数据,与初始值比较后,打印当日成果,如有异常,应立即通知相关单位.6 6..4 4 测斜 频率

测斜点的监测频率同基坑顶部监测点相同.6 6..5 5 测斜 监测报警值

累计变形量≥35 米米,或变化速率≥3 米米/d.结构安全性判别标准如下:

F=容许值/实测值 当 F>1

判定“安全” 1≥F>0.8

判定“注意” F≤0.8

判定“危险” 当安全性为“注意”时,应加密监测次数;当安全性为“危险”时,应严密监测,并召开由设计、施工及监测等单位进行会诊,对可能出现的各种情况作出估计和决策,并采取有效措施,不断完善与优化下一步的设计与施工.7.水位测量 7.1 水位测量 点的布设 和数量 根据设计单位的图纸要求,测斜观测点共 24 个.7.2 水位测量 点的编号 水位测量点编号可采用 SW+流水号的方法,流水号可从基坑东北角的沉降点编为 01 号点,然后按顺时针方向增加依次编号.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

7.3 水位测量

水位测量采用 SWY-30 型水位仪测量,在打好的水位井上部固定水位仪,当测头的触点接触到水位时,接受系统的音响器便会发出连续不断的蜂鸣声,此时读写钢尺电缆在井口处的深度尺寸,即为地下水位离井口的距离.根据实际情况水位测量亦可采用测绳观测.7.4 水位测量频率 监测频率同基坑顶部监测点相同.8.锚杆内力监测 8.1 锚杆内力监测 点的布设 和数量 根据设计单位的图纸要求,测斜观测点共 11 处.每处有 5 点,共 55 个点.8.2 锚杆内力监测 点 的编号 锚杆内力监测点编号可采用 YLJ+流水号+(由上到下为 1、2、3、4、5)的方法,流水号可从基坑东北角的沉降点编为01号点,然后按顺时针方向增加依次编号.8.3 3 锚索 测 力计 的安装 与监测

根据结构的设计要求,测力计安装在锚固垫座上,钢绞线从测力筒中心孔穿过,测力计置于刚垫座与工作锚之间,安装时应放置平稳,如发现几何偏心过大应及时调整.安装好后及时用频率以测量初值.现场测量完毕后,及时将数据采集至电脑内,采用专用软件分析当日数据,与初始值比较后,打印当日成果,如有异常,应立即通知相关单位.8.4 锚杆内力监测 频率 监测频率同基坑顶部监测点相同.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

9.监测要求 同一监测项目每次观测时,应符合下列要求:

(1)采用相同的观测路线和观测方法;(2)使用同一监测仪器和设备;(3)固定观测人员;(4)在基本相同的环境和条件下工作.10.监测报警值 以上各项监测项目报警值详见表 5.表 5

基坑顶部监测点监测报警值 序号 监测项目 累计绝对值(米米)变化速率(米米/d)1 基坑顶部水平位移 25 2 2 基坑顶部竖向位移 15 2 3 测斜 35 3 4 水位 1000 500 5 周边建筑物沉降 20 2 6 周边路面沉降 30 3 7 锚杆内力监测 承载力设计值的 70% 11.内业资料的处理 现场监测的数据经过核对无误后,通过平差,得出基坑顶部监测点平面坐标值和竖向高程值、周边建筑物和周边路面沉降值、测斜值、水位观测值、内力监测数据.制出成果表.若各项成果符合规范要求,则提交成果,若数据达到报警值则及时告知甲方或设计部门.12.提交成果

(1)每次观测结束后,及时提交资料,提交该次资料观测成果一式伍

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬

份(可以为电子版).(2)基坑回填完毕后 5 日内提供综合报告(含变形观测分析报告、观测点平面位置布置图、沉降观测数据等)一式伍份.廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬附图(一):

基准点 布置 示意图

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬附图(二):

基准点标志示意图

廊坊新朝阳广场二期工程 C 区基坑监测工作方案

河北经纬附图(三):基坑顶部监测点 标 志 示意图

下载新客站基坑监测技术总结报告word格式文档
下载新客站基坑监测技术总结报告.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基坑监测控制实施方案[五篇模版]

    目录 1、概况 ......................................................................................................................................11.1、工程概......

    基坑监测实施方案(五篇范例)

    基坑监测实施方案 1 监测内容由于在本工程范围内,基础堆置深度较深,为确保邻近地铁一号线、沪杭线、明珠线等运行正常,就要在选择合理的设计方案和施工组织设计基础上,加强施工......

    浅谈地铁车站基坑监测方案

    浅谈铁车站基坑监测方案 【摘要】 以成都地铁 2 号线互助站为例,结合该基坑工程的施工方案介绍了包括支护结构竖向及水平位移、钢支撑轴力、沉降监测、地下水位等内容的监测......

    基坑安全监测方案汇报材料

    基坑安全监测方案 各位专家,领导好! 下面我给大家汇报一下基坑安全监测方案,考虑到大家的时间,我就不一条一条给大家读了,把针对监测方案相关重点,给大家汇报一下。  第一章、工程......

    石家庄新客站实习报告

    实习报告 学校组织于4月10号上午进行毕业实习,实习地点是石家庄站(石家庄新站)。 石家庄新客站位于中华南大街与新石南路、新石中路交叉口,于2012年12月21日零时正式启用。新客......

    基坑支护验收总结报告(5篇)

    基坑支护验收总结报告 ++++广场位于佛山市+++++南侧,交通方便。本项目由地上22层公寓、18层酒店和办公室,2层商铺、1层的连廊及1~2层地下室组成基础采用高强预应力管桩。基坑......

    技术论文:基坑支护施工

    基坑支护**二项目部-**摘要:本文主要对深基坑支护施工问题进行了分析。阐述了基坑工程是一门综合性、实践性很强的学科,但是在现今的实际施工中面临着基坑越来越深的趋势,尤......

    地质灾害监测技术

    地 质灾害监 测技术 方法 晏鄂川教授博导 教育部新世纪优秀人才支持计划获得者 中国地质大学(武汉)前言 滑坡常规监测技术 3 泥石流监测技术方法 4 地面沉降监测技术方法 5......