第一篇:含砷废水处理技术总结
含砷废水处理技术总结
发布时间:2010-2-21 11:35:43 中国污水处理工程网 化学法处理含砷废水
处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。
中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣[5]。Nakazawa Hiroshi 等研究指出[6],在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾[7]从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
马伟等报道[8],采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾[9]有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。2 物化法处理含砷废水
物化法一般都是采用离子交换、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。
陈红等曾[10]利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。胡天觉等报道[11],合成制备了一种对As(III)离子高效选择性吸附的螯合离子交换树脂,用该离子交换柱脱砷:含As(III)5 g/L的溶液脱砷率高于99.99%,脱砷溶液中砷含量完全达标,而且离子交换柱用2mol/L的氢氧化钠(含5% 硫氢化钠)作洗脱液洗涤,可完全回收As(III)并使树脂再生循环利用。
刘瑞霞等[12]也曾制备了一种新型离子交换纤维,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度。实验表明该纤维具有较好的动态吸附特性,30mL 0.5mol/L氢氧化钠溶液可定量将96.0 mg/g吸附量的砷从纤维上洗脱。
另外,还有不少人作了用钢渣、选矿尾渣、高炉冶炼矿渣等废渣处理含砷废水的研究,取得了不错的成果。但由于物化法只能处理浓度较低,处理量不大,组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物化法的工程化程度较低。3 微生物法处理含砷废水
与传统物理化学方法相比,用微生物法处理含砷废水具有经济、高效且无害化等优点,已成为公认最具发展前途的方法。3.1 活性污泥
国内外诸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金属离子,尤其是重金属离子,他们与ECP的络合更为稳定。关于吸附机制,在ECP的复杂成分中吸附重金属离子的似乎是糖类。Brown和Lester(1979)指出ECP中的中性糖和阴离子多糖有着吸附不同金属离子的结合点位,不同价态或不同电荷的金属离子可以在不同的点位与 ECP结合,如中性糖的羟基、阴离子多聚物的羟基都可能是金属的结合位[13]。Kasan、Lester、Modak和Natarajam等认为:活性污泥对重金属离子的吸附有两种机制即表面吸附和胞内吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲壳素、壳聚糖等)含有配位基团—OH,—COOH,—NH2,PO43-和—HS等,他们与金属离子进行沉淀、络合、离子交换和吸附,其特点是快速、可逆和不需要外加能量,与代谢无关;胞外吸收通过金属离子和胞内的透膜酶、水解酶相结合而实现,速度较慢需要能量,而且与代谢有关[14]。
此外,Ralinske指出:好氧生物能大量富集各种重金属离子,这些离子积累于细胞外多聚物中,并在厌氧条件下释放回液相中[15]。这就有利于我们在二沉池中分离和沉降重金属离子。在活性污泥法处理含砷废水的实验中,存在许多影响因素,主要影响因素如下:(1)砷的浓度及价态
不同价态的砷对活性污泥的毒性不同。实验表明,As(III)对脱氢酶的毒性比As(V)平均大53倍。As(III)对蛋白酶活性的毒性约为As(V)的75倍。还有,As(III)对活性污泥脲酶活性的毒害作用是As(V)的35倍[16]。所以处理含砷废水时有必要将As(III)氧化成As(V)。实验还表明,活性污泥对低浓度砷的去除率高于对高浓度砷的去除率,这是由于污泥的吸附能力有限所造成的。此外,重金属离子浓度小于5mg·L-1时,活性污泥法对污水中有机物的处理效果不受重金属影响,当重金属离子浓度大于30mg·L-1时,活性污泥法污水中有机物的处理效果则大大受到影响[9]。(2)有机负荷
有机负荷对活性污泥去除五价砷也有较大的影响,有机负荷高,去除率也高。主要有两方面的原因:一是污水中的有机物本身可和五价砷相结合,降低了污水中砷的浓度;二是有机物浓度高有利微生物生长繁殖,这进一步提高活性污泥对五价砷的去除率[17]。此外,有机负荷高还可以防止污泥膨胀。因为在高有机负荷环境中絮状菌比大多数丝状菌有更强的吸附和存贮营养物能力,能够充分利用高浓度的底物迅速增殖,具有较高的比生长速率,抑制了丝状菌的生长。在低负荷下混合液中底物浓度长时间都低,由于缺少足够的营养底物,絮状菌的生长受到抑制,而丝状菌具有较大的比表面积,当环境不利于微生物的生长时,丝状菌会从菌胶团中伸展出来以增加其摄取营养物质的表面积。一方面,伸出絮体之外的丝状菌更易吸收底物和营养,其生长速率高于絮状菌,从而成为活性污泥中的优势菌种;另一方面,丝状菌越多,其菌丝越长,活性污泥越不易沉降,SVI越高,导致了污泥膨胀[18]。(3)pH pH 对金属去除影响很大,因为pH不仅影响金属的沉降状态,而且影响吸附点的电荷。一般pH 升高有利于污泥对阳离子金属的吸附。直至产生氢氧化物沉淀,反之则有利于对呈负电荷状态存在的金属的吸附。但是,过高或过低的pH对微生物生长繁殖不利,具体表现在以下几个方面:①pH过低(pH=1.5),会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。②过高或过低的 PH还可影响培养基中有机化合物的离子化作用,从而间接影响微生物。③酶只有在最适宜的pH时才能发挥其最大活性,极端的pH使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。④过高或过低的pH均降低微生物对高温的抵抗能力[19]。(4)生物固体停留时间(Qc)
Qc对阳离子金属去除有较大影响,因为活性污泥表面常被难溶性或微溶性的多聚物所包围(如多糖),这些多聚物表面的电荷可使金属迅速地得以去除。已经证实,细菌多聚物产生和细菌生长相有关,稳定相和内源呼吸阶段多聚物产量最大,而Qc增大,污泥中细菌处于稳定相和内源呼吸阶段,有利于对金属的去除[17]。(5)污泥浓度
污泥浓度高,吸附点也随着增加,从而有利于金属的去除。从去除金属的角度出发,高有机负荷,高污泥浓度的运行方式最为理想。
活性污泥法处理含砷废水,不论在处理费用,还是二次污染,或者工程化方面,都比传统处理方法具有相当突出的优势。虽然在理论研究方面还不是十分完善,但是在处理机制和影响因素方面都已达成一定的共识。如果在处理工艺上再进行一定的改进,如往污泥中投加优势菌种,可以改善污水的处理效果;此外,还可以引进生活污水进行混合处理并进行曝气,这样不仅降低了砷的浓度以及砷对污泥的毒害作用,同时还解决了活性污泥的营养源问题,为活性污泥法处理含砷废水的工程化应用开辟了一片新天地。3.2 菌藻共生体
国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水,与传统方法相比,具有更高效,费用更低等优点。用小球藻的生物迁移转化处理重金属废水的工艺,有一些已投入工程运作[20]。
菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。许多研究表明,在去除金属过程中,微生物的表面起着重要作用[21-22]。菌藻共生体中,藻类和细菌表面存在许多功能键[23-24],如羟基、氨基、羧基、硫基等。这些功能键可与水中砷共价结合,砷先与藻类和细菌表面上亲和力最强的键结合,然后与较弱的键结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡。
廖敏等人曾研究了菌藻共生体对废水中砷的去除效果。研究发现:培养分离所得菌藻共生体中以小球藻为主,此时菌藻共生体积累砷达7.47 g/kg干重。在引入菌藻共生体并培养16h后,其对无营养源的含As(III),As(V)的废水除砷率达80%以上,并趋于平衡,含营养源的As(III)、As(V)的废水中,菌藻共生体对As(V)的去除率大于As(III),对As(V)去除率超过70%,但对As(III)的去除率也在50%以上,在除砷过程中同时出现砷的解吸现象。在无营养源条件下,对As(III)、As(V)混合废水的除砷率超过80%[25]。菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,因此其在含砷废水的处理运用中有着广阔的前景。3.3 投菌活性污泥法 投菌活性污泥法[26](Application of Bio-Augmentation Process with Liquid Live microorganisms)是将具有强活力的细菌投入到曝气池里去,使曝气池混合液内的各种细菌处于最佳活性状态,这样.不仅投入了吸气池内所缺少的细菌,在流入污水水质不变的条件下,微生物氧化作用显著,而且,当污水水质改变,环境变异的情况下,微生物仍能适应,保持活性,其氧化代谢过程依然充分,投入菌液后使曝气池耐冲击负荷,提高污水处理厂的处理效果,改善了出水水质。
投菌活性污泥法(LLMO)是出之一种新的概念,它是根据在同一环境里,最适宜的细菌能自然繁殖,同样,污水处理厂曝气池混合液内的细菌也会自然繁殖到一定数目,自然界无处不可找到细茵,然而,在同一环境里并非可以找到一切细菌这一原则,作为理论指导,从自然界土壤内筛选出污水厂中的有用细菌制成液态的或固态的产品。液态菌液微生物成活率高;固态菌使用前需先用水溶成液态,细菌的成活率较液态菌液低,使用时按一定比例将液态菌液投入曝气池内或投到需用处,投菌活性污泥法(LLMO)在国外已收到良好的应用效果。因此,我们可望通过向活性污泥中投加对砷具有高耐受力,对砷具有特殊处理效果的混合菌种,达到对砷的高效处理,净化工业含砷废水。
第二篇:浅谈造纸厂废水处理技术
浅谈造纸厂废水处理技术
摘要:近年来,废纸造纸行业发展迅速,为了使其产生的废水达标排放,应采用合理的处理技术。通过对废纸造纸废水污染特性、目前比较成熟的处理技术及零排放清洁生产工艺的研究,对废纸造纸处理技术的进一步发展提出了建议。目前,很多处理技术已成功研发并投入使用,取得了不错的处理效果,同时在应用范围、能源消耗、技术可操作性、投资运行费用等方面存在一定的局限性。建议在废水处理新技术开发和零排放清洁生产工艺的研究,废水处理设备、使用药剂的优化等方面加大工作力度。
关键词:废纸造纸废水 特点 方法 新技术
1、引言
造纸废水是我国主要的工业污染源之一。我国造纸业多采用草杆、木浆等作为造纸原料。造纸废水成分复杂,可生化性差,属于较难处理的工业废水。若采用单一的好氧处理工艺很难达到理想的处理效果,因此,在好氧处理工艺前利用厌氧处理中的水解酸化过程将废水中的难降解有机物转化成易降解的脂肪酸,提高废水的可生化性,而且还可以达到除磷和部分脱氮功能。厌氧/好氧交替生物处理系统是在活性污泥法的前段设置厌氧槽,在此厌氧槽内,将原废水、回流污泥同时流入,待停留一段时间后再流入氧化槽内氧化,由于微生物在厌氧和好氧的状态下交替操作,可以筛选及驯化脱磷菌种,发挥脱磷功能。
2、造纸污水的特点
为了有限地处理造纸污水。首先必须对造纸污水的水质有所了解。碱法造纸排出的污水主要有以下三种:(1、蒸煮木浆(或草浆)所生成的废液,又称黑液(2、打浆机和精浆机排出的污水,称打浆污水。(3、造纸机污水,其中可以直接使用的称为白水。这些污水中含有的主要污染有以下几种:(1、悬浮物 包括可沉降悬浮物和不可沉降悬浮物,主要是纤维和纤维细料(即破碎的纤维碎片和杂细胞)(2、易生物降解有机物 包括低分子量的半纤维素、甲醇、乙酸、甲酸、糖类等.(3、难生物降解有机物 主要来源于纤维原料中所含的木质素和大分子碳水化合物。(4、毒性物质 黑液中含有的松香酸和不饱和脂肪酸等。(5、酸碱毒物 碱法制浆污水ph值为9~10;酸法制浆污水ph值为1.2~2.0.(6、色度 制浆污水中所含残余木质素是高度带色的。
3、污水常用的处理方法
(1.沉淀、过滤法
所谓物化处理技术就是根据造纸废水的一些物理特性采用物理原理对废水进行处理进而达到预期目的的技术。此类技术主要针对的是废水中一些大颗粒物质以及不溶于水的污染物主要采用沉淀、过滤等物理方法。沉淀是最早也是最传统的去污技术通过在特定沉淀池中对废水进行长时间的沉淀,而将废水中质量较大的污染物去除的方法。由于沉淀法不能做到尽数除去废水中的大质量污染物目前 此法只作为废水处理的预处理手段。同样当前的过滤法也不能去除油状液态物质、溶解性物质以及微小的悬浮物因此也同样被作为预处理手段。当前较常见的造纸废水过滤方法中,多用细筛网和微滤机而根据笔者的经验由于实际中的工作量较大细筛网和微滤机都会因此发生污染物堵塞。所以在实际运作的过程中要经常进行清污操作以保持过滤顺利进行。现在国内大部分造纸企业的微滤设备主要是斜筛和过滤机。而由于斜筛比过滤机更加节能因此斜筛在目前的使用度是相对较高的。企业可以根据自身的实际情况自行设计制造用于实际的斜筛,筛网的网目一般取60至100目并同时增大斜筛网的网目以便于有效去除造纸废水中的SS。
(3.混凝沉淀法
混凝沉淀法是指在废水中加入混凝剂利用混凝剂与水中的微小悬浮物产生的压缩表面双电层、降低界面Zeta电位、电中和等电的化学过程以及桥联、网捕、吸附等物化过程使悬浮物发生物化反应凝聚成为各种大颗粒的絮团。然后,再通过沉淀法将废水中生成的絮团去除得到浊度较底的清水的方法。而由于采用混凝沉淀法得到的清水浊度较低SS和色度的去除率高达到90左右COD的去除率也达到了60至80同时处理后得到的沉淀物可以用于制造箱板夹层清水可回收用于洗浆以及抄纸。所以,目前为止混凝沉淀法是实际中采用率较高的造纸废水处理方法流程简单、容易操作、处理高效也相对节省了造纸成本。
(3.生物接触氧化法
所谓生物接触氧化法是指将填料放入接触氧化池使填料的表面生长出固定的微生物,且此类微生物是以生物膜的形式生长着,而池水中则生长出絮状的微生物而后采用沉淀、过滤的方法去除废水中的污染物的技术方法。因此生物接触氧化法利用的是生物的好氧性和生物膜的特性因此填料的选择至关重要。同时生物接触氧化法兼具活性污泥法和生物滤池法二者的特点。而由于其自身的特性生物接触氧化法拥有比这两者更高的效率第一更大的容积负荷。接触氧化池的填料表面积较大池内的氧含度也较高,因此池内单位容积内的生物固体量都高于前二者的曝气池和滤池具有更大的容积负荷。第二更便于管理和运行。接触氧化池中的微生物是固着在填料表面上的,所以不需要设计回流系统也不存在膨胀的问题相对来说在管理和运行上更加具有实践性。第三更强的水质水量变化适应能力。接触氧化池内的生物量较多水体完全处于半胶状的混合状态,所以对于水质和水量的变化强度具有很高的适应能力。同时接触氧化完全后的混合液体,会自动流入沉滤池进入下一个沉淀、过滤的环节。而且,在此环节中产生的剩余物质是生物的脱膜只产生少量的污泥,节省了污泥处理环节的成本。
4、造纸污水回收的方法
(1、黑液的回收利用:对造纸黑液的处理是造纸业废水处理的关键,目前,常用的造纸黑液处理技术有碱回收法、絮凝沉淀法、膜分离法、酸析法、好氧活性污泥法及生物技术法等。其中碱回收法是目前技术最成熟、工业中应用最广泛的造纸黑液处理方法。燃烧法碱回收技术的完整流程分为提取、蒸发、燃烧、苛化-石灰回收四道工序。基本原理是将黑液浓缩后在燃烧炉中进行燃烧将有机钠盐转化为无机钠盐,然后加入石灰将其苛化为氢氧化钠,以达到回收碱和热能的目的。(2、电渗析法: 电渗析法工艺一般采用循环式流程,黑液通过阳极室循环,稀碱液通过阴极室循环。在直流电场作用下,Na+通过阳膜进入阴极室,与电解产生的OH–结合生成NaOH而得以回收碱;阳极室黑液由于电解产生H+而不断被酸化,到一定程度时,将大部分木质素沉淀析出。电渗析法碱回收具有工艺过程简单,操作方便、设备投资少,易于自动化等特点。为了进一步提高碱回收率并降低耗电量,尚需对电极和膜片进行改进。(3、黑液气化法 :黑液碱回收除了常采用上述两种方法外,在国外还普遍使用的一种方法是黑液气化法。其原理是将黑液在高温快速反应器中气化,使其中的有机物转化为清洁的可供燃气轮机使用的燃料气体。黑液气化法比传统的燃烧回收更有效,且环境友好性强,是制浆造纸工业能源生产与回收的一种有前景的技术。
5、造纸废水处理新技术
(1、人工湿地 :人工湿地处理技术是指根据需要人为设计与建造湿地利用基质、微生物、植物这个复合生态系统的物理、化学和生物的三重协调作用通过共沉、过滤、吸附、离子交换、植物吸收和微生物分解来实现对造纸废水的高效净化同时通过营养物质和水分的生物地球化学循环促进绿色植物生长并使其增产实现废水的资源化和无害化。
漆酶处理技术
漆酶是一种含铜的多酚氧化酶广泛的分布于自然界。漆酶可催化大量酚类化合物和芳香胺的氧化而且在还原介体物质存在下漆酶的底物范围可进一步的扩大。用固定化漆酶处理纸厂废水有效地除去甲基酚脱甲基和部分溶解纸浆中的木素。漆酶还可以降低造纸厂漂白车间碱抽提段废水、棉清洗车间苛化段废水以及棉清洗车间高含硫废水的色度。
6、结束语
目前,很多废纸造纸废水处理技术已成功研发并投入使用,取得了不错的处理效果,同时在处理技术的应用范围、能源消耗、技术可操作性、投资运行费用等方面还存在着一定的局限性。因此,对废纸造纸废水处理技术的研究不能停滞,建议在以下方面加大研发力度针对废纸造纸废水处理的不同阶段,从物理、化学、物化和生物等方面,优化现有的技术,并不断开发新技术。
参考文献
[1]崔兆杰,宋薇,张国英.废纸造纸行业的清洁生产措施与实践[ J ].环境科学与技术,2004, 27(4): 8858.[4]王利,买文宁,马新辉.废纸造纸废水生物处理方式的分析与选择[ J ].河南科技, 2006,(2): 34-35.
第三篇:纺织印染废水处理技术
纺织印染废水处理技术
一、废水来源及主要污染物
纺织印染工艺,是由坯布开始,先退浆、煮练、漂白、丝光、染色、印花,最后通过整理工序成为成品。在各个工序中排出的废水通称印染废水,印染工业生产因为受原料、季节、市场需求等变化的影响,因此废水的水质变化很大。同时,印染废水的排放量是间歇的,所以废水排放量极不均匀。不同的印染厂加工工艺不同,废水中含有悬浮纤维屑粒、浆料、整理加工药剂等。该废水水质复杂,含有大量残余的染料的助剂,因此色度大,有机物含量高。并且废水中含有大量的碱类,pH值高。印染废水中的主要污染物如下。
BOD:有机物,如染料、浆料,表面活性剂酯酚,加工药剂等。COD:染料,还原漂白剂,醛,还原净水剂,淀粉整理剂等。重金属毒物:铜、铅、锌、铬、汞、氰离子等。色度:染料、颜料在废水中呈现的颜色。
印染工业废水水质情况见表6—6。纺织印染工业废水排放情况见表6—7。
表6—6印染工业废水水质情况
表6—7纺织印染工业废水排放情况
二、印染废水污染特点纺织、印染和染色废水,水量大,色度高,成分复杂,废水中含有染料(染色加工过程中的10%~20%染料排入废水中)、浆料、助剂、油剂、酸碱、纤维杂质及无机盐等,染料结构中硝基和胺基化合物及铜、铬、锌、砷等重金属元素具有较大的生物毒性,严重污染环境。印染废水的水质复杂,污染物按来源可分为两类:一类来自纤维原料本身的夹带物;另一类是加工过程中所用的浆料、油剂、染料、化学助剂等。分析其废水特点,主要为以下方面。
① 水量大、有机污染物含量高、色度深、碱性和pH值变化、水质变化剧烈。因化纤织物的发展和印染后整理技术的进步,使PVA浆料、新型助剂等难以生化降解的有机物大量进入印染废水中,增加了处理难度。
② 废水BOD5/CODCr值均很低,一般在20%左右,可生化性差,因此需要采取措施,使BOD5/CODCr值提高到30%左右或更高些,以利于进行生化处理。
③ 印染废水中的碱减量废水,其CODCr值有的可达到10万mg/L以上,pH值≥12,因此必须进行预处理,把碱回收,并投加酸降低pH值,经预处理达到一定要求后,再进入调节池,与其他的印染废水一起进行处理。
④ 印染废水的另一个特点是色度高,有的可高达4000倍以上。所以印染废水处理的重要任务之一就是进行脱色处理,为此需要研究和选用高效脱色菌、高效脱色混凝剂和有利于脱色的处理工艺。
⑤ 印染行业中,PVA浆料和新型助剂的使用,使难生化降解的有机物在废中含量大量增加。特别PVA浆料造成的量占印染废水总CODCr的比例相当大,而水处理用的普通微生物对这部分CODCr很难降解。因此需要研究和筛选用来降解PVA的微生物。
三、印染废水处理工程实例
例
1、水解酸化一接触氧化—气浮法处理染色废水
该处理工艺为生化、物化相结合的工艺,其流程见图6-6。
生产中使用的主要染料为硫化染料、还有涂料、凡士林、活性及化学助剂。处理水量为100m3/d(漂炼60m3/d,染色40m3/d),水质为:pH=10~12,CODCr=1000mg/L,BOD5=200~300mg/L,色度为200~300倍。厌氧水解酸化池内设半软性填料、生物接触氧化池内设高SNP型新型填料。后续物化处理采用加药反应气浮池。加药反应气浮池的特点为:一是脱落的生物膜、悬浮物等去除率高,可达到80%~90%;二是色度去除高,可达到95%;三是气浮池水力停留时间短,约30min左右,而沉淀池水力停留时间1.5~2h,故气浮池体积小,占地面积少;四是污泥含水率低,约97%~98%,气浮排渣可直接进行脱水处理。因此,采用气浮池后工艺流程中出现了两个明显的特点:一是只设污泥池,不设污泥浓缩池和污泥反应池,污泥直接进脱水机脱水处理;二是本来应用活性污泥回流到厌氧水解酸化池,因加药反应后的污泥失去了活性,不能回流,故工艺中采取生物接触氧化池中以1︰1回流至厌氧水解酸化池,以加强水解和酸化。但采用气浮需要增设一套空压机、压力溶气罐、回流水泵等辅助系统,操作管理相对较复杂。
经该工艺处理后,CODCr的去除率达95%以上,实际出水水质为pH=6~9,色度<100倍,SS<100mg/L,BOD5<50mg/L,CODCr<150mg/L。因原水pH=10~12,故应首先加酸中和。
例
2、水解酸化-接触氧化-化学氧化处理染色废水
深圳市某织带厂日排放废水量500m3/d。废水水质为:COD 1200mg/L;BOD5 400mg/L;SS 250mg/色度 500倍。其废水处理工艺流程见图6-7。
主要设计参数:
水解酸化池停留时间5.6小时,接触氧化池停留时间4.0小时,二级斜管沉淀池表面负荷为0.71m3/m2·h。化学氧化是作为色度高时的脱色补充工艺。
第四篇:常见工业废水处理技术
常见工业废水处理技术
企业,主要分布在电子、塑胶、电镀、五金、印刷、食品、印染等行业。从废水的排放量和对环境污染的危害程度来看,电镀、线路板、表面处理等以无机类污染物为主的废水和食品、印染、印刷及生活污水等以有机类污染物为主的废水是处理的重点。本文主要介绍几种比较典型的工业废水的处理技术。
一、表面处理废水 1.磨光、抛光废水
在对零件进行磨光与抛光过程中,由于磨料及抛光剂等存在,废水中主要污染物为COD、BOD、SS。
一般可参考以下处理工艺流程进行处理:
废水→调节池→混凝反应池→沉淀池→水解酸化池→耗氧氧池→二沉池→过滤→排放 2.除油脱脂废水
常见的脱脂工艺有:有机溶剂脱脂、化学脱脂、电化学脱脂、超声波脱脂。除有机溶剂脱脂外,其它脱脂工艺中由于含碱性物质、表面活性剂、缓蚀剂等组成的脱脂剂,废水中主要的污染物为pH、SS、COD、BOD、石油类、色度等。
一般可以参考以下处理工艺进行处理:
废水→隔油池→调节池→气浮设备→厌氧或水解酸化→好氧生化→沉淀→过滤或吸附→排放 该类废水一般含有乳化油,在进行气浮前应投加CaCl2破乳剂,将乳化油破除,有利于用气浮设备去除。当废水中COD浓度高时,可先采用厌氧生化处理,如不高,则可只采用好氧生化处理。3.酸洗磷化废水
酸洗废水主要在对钢铁零件的酸洗除锈过程中产生,废水pH一般为2-3,还有高浓度的Fe2+,SS浓度也高。可参考以下处理工艺进行处理:
废水→调节池→中和池→曝气氧化池→混凝反应池→沉淀池→过滤池→pH回调池→排放
磷化废水又叫皮膜废水,指铁件在含锰、铁、锌等磷酸盐溶液中经过化学处理,表面生成一层难溶于水的磷酸盐保护膜,作为喷涂底层,防止铁件生锈。该类废水中的主要污染物为:pH、SS、PO43-、COD、Zn2+等。可参考以下处理工艺进行处理:
废水→调节池→一级混凝反应池→沉淀池→二级混凝反应池→二沉池→过滤池→排放 4.铝的阳极氧化废水所含污染物主要为pH、COD、PO43-、SS等,因此可采用磷化废水处理工艺对阳极氧化废水进行处理。
二、电镀废水
电镀生产工艺有很多种,由于电镀工艺不同,所产生的废水也各不相同,一般电镀企业所排出的废水包括有酸、碱等前处理废水,氰化镀铜的含氰废水、含铜废水、含镍废水、含铬废水等重金属废水。此外还有多种电镀废液产生。
对于含不同类型污染物的电镀废水有不同的处理方法,分别介绍如下: 1.含氰废水
目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难。
该法的原理是废水在碱性条件下,采用氯系氧化剂将氰化物破坏而除去的方法,处理过程分为两个阶段,第一阶段是将氰氧化为氰酸盐,对氰破坏不彻底,叫做不完全氧化阶段,第二阶段是将氰酸盐进一步氧化分解成二氧化碳和水,叫完全氧化阶段。反应条件控制:
一级氧化破氰:pH值10~11;理论投药量:简单氰化物CN-:Cl2=1:2.73,复合氰化物CN-:Cl2=1:3.42。用ORP仪控制反应终点为300~350mv,反应时间10~15分钟。二级氧化破氰:pH值7~8(用H2SO4回调);理论投药量:简单氰化物CN-:Cl2=1:4.09,复合氰化物CN-:Cl2=1:4.09。用ORP仪控制反应终点为600~700mv;反应时间10~30分钟。反应出水余氯浓度控制在3~5mg/1。
处理后的含氰废水混入电镀综合废水里一起进行处理。2.含铬废水
含六价铬废水一般采用铬还原法进行处理,该法原理是在酸性条件下,投加还原剂硫酸亚铁、亚硫酸钠、亚硫酸氢钠、二氧化硫等,将六价铬还原成三价铬,然后投加氢氧化钠、氢氧化钙、石灰等调pH值,使其生成三价铬氢氧化物沉淀从废水中分离。还原反应条件控制:
加硫酸调整pH值在2.5~3,投加还原剂进行反应,反应终点以ORP仪控制在300~330mv,具体需通过调试确定,反应时间约为15-20分钟。搅拌可采用机械搅拌、压缩空气搅拌或水力搅拌。
混凝反应控制条件:
PH值:7~9,反应时间:15~20分钟。3.综合重金属废水
综合重金属废水是由含铜、镍、锌等非络合物的重金属废水以及酸、碱前处理废水所组成。此类废水处理方法相对简单,一般采用碱性条件下生成氢氧化物沉淀的工艺进行处理。处理工艺流程如下:
综合重金属废水→调节池→快混池→慢混池→斜管沉淀池→过滤→pH回调池→排放 反应条件一般控制在pH值9~10,具体最佳pH条件由调试时确定。反应时间快混池为20~30分钟,慢混池10~20分钟。搅拌方式以机械搅拌最好,也可用空气搅拌。4.多种电镀废水综合处理
当一个电镀厂含有多种电镀废水,如含氰废水、含六价铬废水、含酸碱、重金属铜、镍、锌等综合废水,一般采取废水分流处理的方法,首先含氰废水、含铬废水应从生产线单独分流收集后,分别按照上述对应的方法对含氰、含铬废水进行处理,处理后的废水混入综合废水中与其一起采用混凝沉淀方法进行后续处理。处理工艺流程如下: 含氰废水→调节池→一级破氰池→二级破氰池→综合废水池 含铬废水→调节池→铬还原池→综合废水池
综合废水→综合废水池→快混池→慢混池→斜管沉淀池→中间池→过滤器→pH回调池→排放
三、线路板废水
生产线路板的企业在对线路板进行磨板、蚀刻、电镀、孔金属化、显影、脱膜等的工序过程中会产生线路板废水。线路板废水主要包括以下几种:
化学沉铜、蚀刻工序产生的络合、螯合含铜废水,此类废水pH值在9~10,Cu2+浓度可达100~200mg/l。
电镀、磨板、刷板前清洗工序产生的大量酸性重金属废水(非络合铜废水),含退Sn/Pb废水,pH值在3~4,Cu2+小于100mg/l,Sn2+小于10mg/l及微量的Pb2+等重金属。
干膜、脱膜、显影、脱油墨、丝网清洗等工序产生较高浓度的有机油墨废液,COD浓度一般在3000~4000mg/l。
针对线路板废水的不同特点,在处理时必须对不同的废水进行分流,采取不同的方法进行处理。
1.络合含铜废水(铜氨络合废水)
此
类废水中重金属Cu2+与氨形成了较稳定的络合物,采用一般的氢氧化物混凝反应的方法不能形成氢氧化铜沉淀,必须先破坏络合物结构,再进行混凝沉淀。一般采用硫化法进 行处理,硫化法是指用硫化物中的S2-与铜氨络合离子中的Cu2+生成CuS沉淀,使铜从废水中分离,而过量的S2-用铁盐使其生产FeS沉淀去除。处理工艺流程如下:
铜氨络合废水→调节池→破络反应池→混凝反应池→斜管沉淀池→中间水池→过滤器→pH回调池→排放
反应条件的控制要根据各厂水质的不同在调试中确定。一般在加硫化物等破络剂之前将pH值调到中性或偏碱性,防止硫化氢的生成,也有的将pH值调到略偏酸性。硫化物的投药量根据废水中铜氨络离子的量来确定,一般投放过量的药。在破络池安装ORP仪测定,当电位达到-300mv(经验值)认为硫化物过量,反应完全。对过量的硫化物采用投加亚铁盐的方法去除,亚铁的投加量根据调试确定,通过流量计定量加入。破络池反应时间为15~20分钟,混凝反应池反应时间为15~20分钟。2.油墨废水
脱膜和脱油墨的废水由于水量较小,一般采用间歇处理,利用有机油墨在酸性条件下,从废水中分离出来生产悬浮物的性质而去除,经过预处理后的油墨废水,可混入综合废水中与其一起进行后续处理,如水量大可单独采用生化法进行处理。处理工艺流程如下:
有机油墨废水→酸化除渣池→排入综合废水池或进行生化处理
当废水量少时,反应池内的油墨颗粒物在气泡上浮力的作用下浮出水面形成浮渣,可以用人工方法撇去;当水量大时,可用板框压滤机脱水,也可在撇渣后进行生化处理,进一步去除COD。3.线路板综合废水
此类废水主要包括含酸碱、Cu2+、Sn2+、Pb2+等重金属的综合废水,其处理方法与电镀综合废水相同,采用氢氧化物混凝沉淀法处理。4.多种线路板废水综合处理
当一个线路板厂含有以上几种线路板废水时,应将铜氨络合废水、油墨废水、综合重金属废水分流收集,油墨废水进行预处理后,混入综合废水中与其一起进行后续处理,铜氨络合废水单独处理后进入综合废水处理系统。处理工艺流程如下:
铜氨络合废水→调节池→破络反应池→混凝反应池→斜管沉淀池→中间水池 有机油墨废水→酸化除渣池→排入综合废水池
综合废水→综合废水池→快混池→慢混池→斜管沉淀池→中间池→过滤器→pH回调池→排放
四、常见有机类污染物废水的处理技术 1.生活污水
较常用的生活污水处理方法是A2/O法,处理工艺流程如下:
生活污水→格栅池→调节池→厌氧池→缺氧池→好氧池→混凝反应池→沉淀池→排放 2.印染废水
此类废水水量大、色度高、成分复杂,一般可采取水解酸化-接触氧化-物化法处理印染废水。处理工艺流程如下:
印染废水→调节池→混凝反应池1→斜沉池→水解酸化池→接触氧化池→氧化反应池→混凝反应池2→二沉池→中间池→过滤器→清水池→排放 3.印刷油墨废水
此类废水特点是水量小、色度深、SS和COD等浓度高。可参考以下处理工艺:
水墨废水→调节池→混凝气浮池→水解酸化池→接触氧化池→混凝反应池→斜沉池→氧化池→过滤器→清水池→排放
第五篇:洗煤废水处理技术探讨论文
摘要:探讨煤炭洗选废水特点,分析洗煤废水处理的影响因素,阐述洗煤废水处理技术的应用,以期对相关工作有所助益。
关键词:高浓度洗煤废水;处理技术;回用技术
洗煤废水循环利用是洗煤废水处理技术的发展趋势,因此发展回用型洗煤废水处理技术对于中国经济的进步具有十分重要的意义。从保护生态环境角度出发,洗煤废水处理技术要做到洗煤水闭路循环,从而增加能源业对水资源的利用率,不但节约资金,增加相关企业的市场竞争力,还一定程度上还保护了中国的生态环境,从而促进中国建立环境友好型经济模式。本文从影响洗煤废水处理技术的影响因素出发,深入研究洗煤废水处理技术的类型与发展趋势。
1煤炭洗选废水特点
1.1浓度
洗煤废水处理技术的根本目的是泥水分离,因此把握煤炭性质有助于深入研究新的洗煤废水处理技术。洗煤废水处理技术之中的浓度是指水与煤泥的比值,这个比值影响洗煤废水处理技术的选择,例如絮凝剂的使用量主要是根据煤泥水的浓度决定的,因此浓度检测是保证水与煤泥比值适应洗煤废水处理技术的一种有效途径[1]。目前,绝大多数企业采用的检测方式都存在不同程度的不足,因此引入超声波技术对于洗煤废水处理技术的浓度检测有十分重要的作用。同时当煤泥水浓度过大,也在一定程度上影响洗煤废水处理技术的开展,降低絮凝剂的絮凝作用,给洗煤处理工作带来不利影响。
1.2黏度
影响煤泥水黏度的因素主要是煤泥水中的矿物质含量、成分组成及颗粒含量。这些影响因素都会对煤泥水的黏度造成一定影响,因此为了提高设备分离效果,从根本上增加洗煤废水处理技术的应用效果,应该注意在澄清过程中颗粒的组成比例,从而在浓缩颗粒减慢沉降的前提下,加快固液分离过程。需要注意的是,黏度的影响不止表现在洗煤废水处理技术的脱水效率方面,还表现在其无法预测的布朗运动,因此防止煤泥水黏度过大是保证洗煤废水处理技术取得稳定实用效果的保证。
1.3化学性质
化学性质是煤泥水的固有属性,包括其水中溶解物、酸碱度等,对洗煤废水处理技术的应用产生深远影响,因此加深煤泥水化学性质研究是保证洗煤废水处理技术提高其工艺水平的基础。同样,在煤泥分选工作中,煤泥水的化学性质也具有相当大的参考价值。化学性质对洗煤废水处理技术的影响还表现在加工过程中,硬度较大的煤泥水冲洗成本也相应较高,这是由于硬度较大的煤泥水浓度高、不易破碎,因此其溶解分离的过程也随之拉长。正确的做法是在进行洗煤废水处理前,对煤泥水进行絮凝沉降实验,从而提高相关技术人员对洗煤废水化学性质的认识,根据煤泥水的有机分子数,使用适宜的絮凝剂[2]。除此之外,煤泥水的酸碱度也是衡量洗煤废水化学性质的一个标准,偏酸性的洗煤废水沉降时间长,偏碱性的洗煤废水颗粒之间的硬度较大,因此沉降速度小。
1.4煤泥水的沉降特性
沉降特性由煤泥水的内在因素决定的,因此沉降特性只是煤泥水综合性的反应,但不是说沉降特性就不重要,实际上,洗煤水的沉降特性对洗煤废水处理技术具有相当大的参考价值,甚至决定了洗煤废水处理技术的最终效果。
2洗煤废水处理的影响因素
a)洗煤废水中的负电荷,其作用是稳定悬浮颗粒,增加洗煤废水处理的难度。另一方面静电虽然能够分散胶体成分,但却会产生很强的污染,而分离出的煤泥会造成二次污染,稳定的颗粒给洗煤废水处理造成严重影响。另外胶体颗粒能够因为微波技术的应用形成保护膜,从而增大洗煤废水的处理难度[3];b)高浓度洗煤废水处理更难,这是由于高浓度的洗煤废水中微生物含量更高,一定程度上影响了颗粒的沉降速度,从根本上给洗煤废水处理技术带来了不利影响;c)污泥。污泥的阻力也对洗煤废水处理技术产生一定影响,一定程度上降低了洗煤废水的过滤性,从而给周围水域造成二次污染,通过压滤脱水的方法很难达到理想效果。
3洗煤废水处理技术
3.1微生物技术
微生物技术是最新的洗煤废水处理技术,化学处理法、微生物处理技术更接近自然的处理方式,一定程度上迎合了中国绿色环保的发展理念。并且还具有污染较小、水循环水质保存较好的特点,是未来洗煤废水处理技术发展的主要趋势。事实上,通过专家研究,微生物处理技术在许多方面还存在局限性:a)生物絮凝剂的成本较高,不利于推广应用,绝大多数企业宁愿用传统的絮凝剂作为洗煤废水处理材料;b)生物处理技术成分不够稳定,因此增加了沉降过程,让微生物处理技术的实际效果大打折扣。但这些不足并不能阻止业界对微生物处理技术的研究步伐。实际上,如果将时间拉长,菌体絮凝效果更好,远超传统的絮凝剂。这是因为菌体絮凝剂带有一定的生物性,因此随着培养时间增长,菌体絮凝的物质会成倍增长,从而在更高层次上分离泥水,从而实现更高效的洗煤废水处理。减少颗粒胶体也能有效分离洗煤废水中的泥水,从而实现水循环利用[4]。但由于颗粒都带有负电荷,因此增大分子的活性,有效提高絮凝剂中的分子碰撞,从而加快沉降过程。从微生物处理技术的实际效果而言,去除胶体的效果不是很理想,甚至会导致絮凝恶化现象,从而降低微生物处理技术的絮凝效果。
3.2微波处理技术
微波处理技术主要利用超高频电磁波净化水中的污染物,是洗煤废水处理的一种新技术,其主要优势在于:相比微生物处理技术,微波处理技术更快速,能够克服工作环境的影响,从而实现高效的洗煤废水处理。一般来说,水中的污染物都有对应波长,但其中有许多污染物的对应波长都不够明显,但能通过微波处理技术的诱导反应增强污染物吸收微波。具体方法是通过一种敏化剂的活性炭,从而增强洗煤废水中的微波能量,取得较好的微波处理效果。微波场能够有效吸收碳类物质,因此可以有效消除洗煤废水中的交替污染,从而达到一定的净化效果。微波热点是影响水中污染物活性的一个具体参数,随着热点增加,其分子之间的碰撞频率也呈线性增长。但微波处理技术的缺点也很明显,比如微波处理技术不具有经济性,高效、快速处理洗煤废水的同时,也给洗煤废水处理工作增添了经济负担,不利于大规模推广,因此微波处理技术仍处于开发阶段。
3.3絮凝处理技术
角蛋白助剂是提高絮凝剂吸附能力的一种有效途径,一般来说,正负电荷会在洗煤废水中发生反应,而角蛋白助剂的主要作用正是生成大絮体,从而使洗煤废水中的煤炭颗粒迅速脱离,这是加快沉降速度最好的一个手段,能从根本上将洗煤废水中的胶体降至原本的一半左右。改变洗煤废水的温度能够在一定程度上调节洗煤废水的酸碱度,从而在化学性质上影响洗煤废水处理技术的使用效果。一方面,能够提高沉降的速度,另一方面,能够将洗煤废水中的pH值调节到适合洗煤废水处理技术开展的区间,一般来说,这个区间在5~7之间,能够形成较为良好的洗煤废水处理技术环境[5]。
3.4化学沉淀处理技术
化学沉淀处理技术是利用煤泥颗粒发生的凝聚效果,从而实现水泥分离的洗煤废水处理技术。煤泥颗粒表面上存在大量大分子链,这些大分子链能够与静电产生互相吸引,能够通过架桥作用形成硅酸钙层,这样一来,一方面提高吸附物的分子活性,从而提高洗煤废水处理技术的应用效果,另一方面,在某种程度上牢固了絮体强度,有利于絮凝剂的分离工作。化学沉淀处理技术利用煤泥颗粒表面的疏水性,从而形成表面分子的协同效应。同时化学沉淀处理技术还着眼于固液分离,从而在减少药量投放的技术上保持絮凝效果。4结语随着中国经济不断发展,煤炭资源需求量不断增加,洗煤废水处理技术必将经历一个高速发展的阶段,在这个阶段中,要求相关技术人员能够加深对煤泥颗粒及相关处理技术的应用能力,从而改善中国洗煤废水处理水平,促进中国经济又好又快发展。
参考文献:
[1]黄小标.聚丙烯酰胺和氯化钙复合体系处理高浓度洗煤废水的研究[J].合成材料老化与应用,2014(4):36-39.[2]杨小平,赵婷婷,张青霞.洗煤废水处理技术现状与发展趋势[J].资源节约与环保,2014(7):163-164.[3]任连刚.洗煤废水处理新技术[J].清洗世界,2015(10):24-32.[4]贾楠.高浓度洗煤废水处理与回用技术研究[J].科技与企业,2012(5):138.[5]刘梅英.跳态洗煤废水处理及回用技术的研究[J].环境保护科学,2013(5):27-30.