单目结构光测距标定方法总结

时间:2019-05-13 19:38:32下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《单目结构光测距标定方法总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《单目结构光测距标定方法总结》。

第一篇:单目结构光测距标定方法总结

1、总体思路:

两步标定法:

(1)利用张正友的多平面标定法,对摄像机的内参数与外参数包括径向畸变和切向畸变参数进行标定,精度能够得到较高的保证。

(2)对结构光平面进行标定,摄像机标定完成后进行光平面上已知长度直线段的图像采集,并通过一定的图像处理手段获取该线段的两个端点在图像上的像素坐标。至少采集两张这样的图片后即可进行线结构光光平面参数的求解。所需要获取的数据可以至少只有三条结构光光平面上的空间直线段的长度和其对应在成像平面上的端点像素坐标。

2、具体实现过程:

(1)摄像机参数标定:

利用张正友多平面的标定方法求求解出相机的内外参数。(利用工件测量程序的标定代码或者用肖志鹏学长针对本相机的标定代码)(2)结构光平面标定:

已知条件:

A 相机坐标系和结构光光平面坐标系为同一坐标系;

B Line1、line2、line3为结构光平面中不共线的三条已知长度的额线段(结构光固定不动,在空间内移动画有线段的标定板获得这三条线段);

C 在成像平面中三条线段的投影可以获得,进而能通过获得∠A1OB1、∠A2OB2、∠A3OB3。

原理和实现过程:

第二篇:工程结构加固方法的归纳总结

工程结构加固方法分析与探讨

【摘要】:本文介绍了工程实际中运用比较广泛的几种结构加固的方法,并分析部分加固方法的特点、适用范围以及相关的设计计算原理。通过此文希望为土木工程师进行结构加固计算提供借鉴意见和方法。【关键字】:结构加固,加固设计,增大截面加固法,FRP

1、结构加固常用方法

1.1增大截面加固法

增大截面加固法,也称外包混凝土加固法,他通过增大构件的截面和配筋,来提高结构的承载力、强度、刚度、稳定性及抗裂性。该方法施工工艺简单,适用面广,可广泛用于梁、板、柱、墙、基础、屋架等混凝土构件的加固。根据构件受力特点和加固的目的、构件几何尺寸、便于施工等要求可设计为单侧、双侧或三侧和四面包套的加固。混凝土受弯构件中受拉钢筋不足且净空不受限制时,可采用梁板底加大截面对原结构进行加固。

根据加固目的和要求的不同,可以是以增大截面为主的加固,可以是增配钢筋为主的加固,也可以两种方法同时采用。以增大截面为主时,为了保证补加混凝土正常工作,亦需适当配置构造钢筋。以增配钢筋为主时,为保证配筋的正常工作,亦需按钢筋的间距和保护层厚度等构造要求决定适当增大截面尺寸。

增大截面法的技术难点是,在设计构造方面必须注意解决好新加部分与原有部分的整体工作共同受力问题。

1.2粘贴钢板加固法

粘贴钢板加固法是用环氧树脂系列粘结剂将钢板粘贴在钢筋混凝土结构物的受拉区或薄弱部位,使之与原结构物形成共同受力的整体,以提高其抗弯、抗剪能力及刚度,改善原结构的钢筋及混凝土的应力状态,限制裂缝的进一步发展,进而提高结构的承载能力与耐久性的加固方法。由于粘贴钢板厚度有限,因而它对刚度的提高效果并不显著。

1.3粘贴纤维增强复合材料(FRP)加固法

粘贴纤维增强复合材料加固法是利用粘结剂将纤维增强复合材料(FRP)粘贴在被加固混凝土构件薄弱部位,使两者共同工作,提高结构构件的承载能力,从而起到加固补强的一种加固方法。此法的加固功效类似于粘贴钢板加固法。由于纤维增强复合材料非常薄,此法对于结构刚度的提高更加有限,对拉应力的降低效果及对混凝土裂缝的抑制作用都不明显。因而该加固方法适用于混凝土结构的抗弯和抗剪加固。

纤维增强复合材料(FRP)由连续纤维和树脂基体复合而成。常用纤维种类包括碳纤维、玻璃纤维和芳纶纤维。常用树脂有环氧树脂、聚酯树脂和乙烯酯树脂。根据纤维种类的不同可将用于混凝土结构加固的纤维复合材料分为三类:玻璃纤维复合材料(GFRP)、碳纤维复合材料(CFRP)和芳纶纤维复合材料(AFRP)。相比而言碳纤维复合材料具有更好的性能,在工程中也用的最广,碳纤维复合材料的优点主要有:高拉伸强度(约为普通钢材强度的10倍),高弹性模量,自重轻,耐高温,耐酸碱腐蚀,施工简便,施工工期短。

1.4外加预应力加固法

外加预应力加固法是指采用预应力筋对建筑物的梁、板、柱或桁架进行加固的方法。这种方法不仅具有施工简便的特点,而且可在基本不增加梁、板截面高度和不影响结构使用空间的条件,提高梁、板的受弯、受剪承载力,改善其在使用阶段的性能。这主要是因为预应力所产生的负弯矩抵消了一部分荷载弯矩,致使梁、板弯矩减小。

之前几种加固方法都是被动的加固方法,这主要表现在他们都不能减小,更不能消除结构自重所产生的应力和变形。而外加预应力加固法是一种主动的加固方法,也就是说,在自重增加很小的情况下可大幅度调整并改善原结构的受力状态,提高结构刚度和抗裂性能。

1.5外粘型钢加固法

外粘型钢加固法是钢筋混凝土梁、柱四周包以型钢的一种加固方法。例如,在构件截面的四角沿构件通常或沿某一段设置角钢,横向用箍板或螺栓套箍将角钢连接成整体,成为外包于构件的钢构架。外包钢构架可以完全替代或部分替代原构件工作,达到加固的目的。

外粘型钢加固法优点是构件截面尺寸增加不大,而构件承载力可大幅度提高,并且经过加固后原构件混凝土受到外包钢的约束,原构件承载力和延性得到改善。

1.6增设支点加固法

增设支点加固法就是通过增加支撑点以减小受弯构件的计算跨径,使得结构受力体系和受力状况发生改变,从而提高结构的承载能力及刚度,减小结构效应,改善结构受力性能。

1.7植筋加固

植筋技术是一种新型的钢筋混凝土结构加固改造技术,它是在需连接的旧混凝土构件上根据结构受力特点,确定钢筋的数量、规格、位置,在旧构件上进行钻孔、清孔、注入植筋胶结剂,再插入所需的钢筋,使钢筋与混凝土通过结构胶粘结在一起,然后浇注新混凝土,从而完成新旧钢筋混凝土的有效连接,达到共同作用、整体受力的目的。作为一种新型的加固技术,他不仅具有施工方便、工作面小、工作效率高的特点,而且还具有适应性强、适用范围广、锚固结构的整体性能良好、价格低廉等优点。因而被广泛应用于建筑结构加固及混凝土的补强工程中。

2、增大截面加固法

2.1特点及适用范围 2.1.1 特点

增大截面加固法广泛用于梁、板、柱、墙、基础、屋架等混凝土构件的加固。该加固方法有以下特点:

(1)结构受力明确,计算简单方便,加固后结构的承载力、刚度、稳定性得到明显提高,加固效果好。

(2)加大构件截面,会使上部结构恒载增加,对原下部结构有一定影响。(3)现场湿作业工作量大,养护时间长,对生产和生活有一定影响。(4)若对梁底增大尺寸,会使梁下净空有所减小。

2.1.2 适用范围

增大截面加固法加固构件时,对受弯构件来说增加抗弯刚度效果好,但增加尺寸有限。对偏心受压构件来说,增加强度、刚度、稳定性方面效果都较好,但有一共同缺点是新增混凝土会增加原构件的负担,养护时间长,浇注不便、工期相对长些。增大截面加固法主要适用于以下情况:

(1)原受弯构件的抗弯或抗剪承载力不足,或构件刚度不足,采用增大截面加固效果较好。

(2)受压构件承载力、刚度、稳定性不满足要求。(3)对于梁下净空没有特殊要求的结构。

2.2受弯构件加固计算

采用增大截面加固法可分为在截面受压区或受拉区增设现浇混凝土加厚层的两种方法。

2.2.1 受压区加加现浇混凝土层加固法

2.2.1.1正截面抗弯承载力计算

受压区加现浇混凝土层加固后,梁板受弯构件正截面抗弯承载力可按下列公式计算:

Mfcmbx(h0)fyAs(h0as)(2-1)

' fcmbxfyoAs0fy'As(2-2)

x2'''上两式中:M为加固后构件计算截面承担的弯矩设计值;As0为原构件纵向受拉钢筋截面面积;As为受压区新加纵向受压钢筋截面面积;fy0为原构件纵向受拉钢筋抗拉强度设计值;fy'为受压区新加纵向受压钢筋抗压强度设计值;fcm为混凝土弯曲抗压强度设计值,当'xh0h01时,按新加混凝土取用;当xh0h01时,可近似按新旧混凝土的小者取用。b为计算截面宽度;h01、h0分别为加固前后计算截面的有效高度;x为计算截面受压区高度。

2.2.1.2斜截面抗剪承载力计算

加固时,若能在构造上保证叠合层部分门形箍筋与原构件可靠连接,且其数量不低于原构件,则受压区加现浇混凝土层加固后,梁板受弯构件斜截面承载力可按下式计算:

V0.07fcbh01.5fyv0Asv0h0 s0

(2-3)

式中:V为加固后构件计算截面承担的剪力设计值,V0.25fcbh0;Asv0为原构件配置在同一截面内箍筋各肢的全部截面面积;fyv0为原构件箍筋抗拉强度设计值;s0为原构件箍筋间距;fc为混凝土抗压强度设计值,近似按原构件混凝土取用。

否则,可近似不考虑新加箍筋的有利影响,按下式计算:

V0.07fcbh01.5fyv0Asv0h01 s0

(2-4)2.2.1.3设计计算方法

(1)确定受压区现浇混凝土层厚度。当板也需要加固时,梁受压区新增混凝土层厚度一般应与板相同,在不影响正常使用的条件下,梁板受压区新增混凝土层厚度可近似按下式初步确定:

hnMMu0(2-5)

0.85As0fy0式中:Mu0为原构件正截面抗弯承载力设计值;hn为受压区新增混凝土层厚度,hnh0h01。

(2)验算正截面抗弯承载力并确定受压钢筋的数量。按照实际选定的截面尺寸,确定计算截面弯矩设计值M,然后令As'0代入式(2-1)和式(2-2)对加固截面正截面抗弯承载力进行验算,当满足要求是,仅需按构造配制受压钢筋,否则需要按照式(2-1)和式(2-2)计算确定受压钢筋数量。

(3)判断计算结果和加固方案是否合理,不合理则须修改截面尺寸或采用其他加固方法。

(4)验算斜截面抗剪承载力。

2.2.2 受拉区加加现浇混凝土围套加固法

2.2.2.1正截面抗弯承载力计算

受拉区加现浇混凝土围套加固后的钢筋混凝土受弯构件正截面抗弯承载力可按下列公式计算:

MfyAs(h0)s0(h01)fy0As0(as)(2-6)fcmbxs0As0fyAsfy0As0(2-7)

上二式中:s0为达到极限状态时原受拉钢筋的应力;为受拉区新加纵向钢筋抗拉强度折减系数,可近似取0.9;x为加固后构件截面计算受压区高度,为保证新加受拉钢筋屈服应满足应满足xbh0;b为受拉区加现浇混凝土围套加固梁正截面界线破坏受压区高度系数。

达到极限状态时原受拉钢筋的应力s0可根据平截面假设确定,即: s0(''''x2x2''x2'''0.8h011)cuEsfy0(2-8)x上式中:cu为混凝土极限压应变;Es为钢筋的弹性模量。

b''应根据加固时原构件已承担的荷载值M1k,根据平截面假定,按下述方法确定:

加固时,在荷载值M1k作用下,原受拉钢筋的应变s01可按下式确定: s01M1k(2-9)

0.87h01As0Es根据平截面假定,此时相应新加钢筋位置处的初始应变为 s1(1.6h00.6)s01(2-10)h01加固后,在新增荷载作用下,新增钢筋是以初始应变s1为起点,则 b''12.2.2.2斜截面抗剪承载力计算

0.8(2-11)

fyEss1cu单面混凝土围套加固时,若能在构造满足新加U形箍与原构件的可靠连接,并保证其数量不低于原钢筋,则其斜截面抗剪承载力可按下式计算:

V0.07fcbh01.5fyv0否则,应按下式计算:

V0.07fcbh01.5fyv02.2.2.3设计计算方法

(1)初步确定加固梁截面尺寸。从式(2-6)到式(2-8)可以看出,三个方程求解四个未知数(As、h0、x和s0),有无穷组解。一般可根据工程经验和构造及斜截面承载力要求,初步假定截面尺寸。

(2)根据初步确定的截面尺寸,求解式(2-6)到式(2-8),确定新增纵向钢筋的面积。当正截面承载力需要的增量很大,截面新增加高度较大时,可近似地不计原受拉钢筋的作用,令As00,按式(2-6)到式(2-8)确定As。

(3)按式(2-12)到式(2-13)验算斜截面承载力。

(4)根据计算结果判别加固方案是否满足要求,不满足则修改截面尺寸或采用其他加固方法。

Asvoh0(2-12)s0Asvoh01(2-13)s02.3受压构件加固计算 2.3.1 轴心受压柱的加固计算

采用加大截面法加固的钢筋混凝土轴心受压柱正截面受压承载力由两部分组成,即被加固柱对承载力的贡献和新加部分对承载力的贡献。

根据截面平衡条件,加固后轴心受压柱正截面承载能力可以表示为 Nu(Nu0N)(2-14)

'式中:Nu为被加固柱截面轴心受压承载力,Nufc0Ac0fy'0As0;fc0为被加固部分混凝土轴心抗压强度设计值;Ac0为被加固部分混凝土截面面积;fy'0为被加固部分纵向钢筋抗压强度设计值;As'0为被加固部分纵向钢筋截面面积;N为被加固部分材料破坏时,新加固

''部分截面所能承担的压力,NcAcsAs;Ac为新加部分混凝土截面面积;As'为新加部分纵向钢筋的截面面积;c为被加固部分混凝土应变为0新加部分混凝土的应力;s为被加固部分混凝土应变为0新加部分钢筋的应力;为轴心受压构件稳定系数。

2.3.1 偏心受压柱的加固计算

采用加大截面法加固钢筋混凝土偏心受压柱时,可近似按照混凝土结构偏心受压构件正截面受压承载力的计算方法计算,但应考虑新加钢筋和混凝土可能得不到充分利用,对其强度进行折减。规范规定:对受压区新增混凝土和纵向钢筋的抗压强度设计值以及受拉区新增钢筋的抗拉强度设计值均应乘以0.9的折减系数。

3、粘贴钢板加固法

3.1特点及适用范围 3.1.1 特点

采用粘贴钢板加固法在国内应用已是相当广泛。该加固法有以下特点:(1)不会破坏被加固结构的外形。

(2)施工工艺简单,施工质量易于控制,施工工期短,经济性较好。(3)钢板所占空间小,不影响桥梁净空,桥梁自重增加不大。(4)黏结剂的质量及耐久性是影响加固效果的主要因素。(5)加固钢板容易锈蚀,必须进行严格的防锈处理。

3.1.2 适用范围

粘贴钢板加固法适用于钢筋混凝土受弯、受拉和受压构件的加固。

(1)为了提高结构的抗弯能力,一般在构件的受拉边缘表面粘贴钢板使其与原结构形成整体受力。

(2)如果结构的主拉应力区斜筋不足,为了增加结构的抗剪切强度,可将钢板粘贴在结构的侧面,并垂直于剪切裂缝的方向斜向粘贴(斜度一般为45-60),以承受主拉应力。也可以竖向粘贴成条状或用U形和L形箍板。两种方式都需要钢板压条。

(3)有时为提高结构整体刚度也可通过粘贴钢板来实现。

(4)当局部受力比较集中部位出现裂缝时,通过粘贴钢板可增强构件抗剪强度。

3.2计算原理(受弯构件)3.2.1 正截面抗弯承载力计算

有采用外部粘贴钢板加固的钢筋混凝土梁,其正截面承载力可按钢筋混凝土受弯构件正截面承载力的方法计算,即

Mfcmbx(h0)fyAs(h0as)fay(h0aa)fayAa(asx2'''''ta)(3-1)2''' fcmbxfyAsfayAafy'As

(3-2)fayAa上二式中:As、As'为被加固构件受拉、受压区纵向钢筋的面积;fy、fy'为被加固构件纵

'向受力钢筋的抗拉、抗压强度设计值;Aa、Aa为受压区、受压区粘贴钢板的截面面积;fay、''为粘贴钢板的抗拉、抗压强度设计值;as、as为被加固构件受拉、受压区纵向钢筋合fay力作用点至混凝土截面边缘的距离;aa为受压区粘贴钢板合力作用点至混凝土截面边缘的距离;ta为受拉区粘贴钢板的厚度;b为被加固构件截面宽度;x为截面受压区计算高度,''应满足xbh0和xbh01;b为混凝土受弯构件正截面相对界限受压区高度系数;b为

'''粘贴钢板加固正截面相对界限受压区高度系数。

考虑到粘贴钢板受力前被加固构件中钢筋已受力变形,b应按下式确定:

b''''10.8

(3-3)

fyEss1cus1为粘贴钢板位置处,假想的由于加固前原构件受力变形引起的变形值,按照平截面假设,并假设原构件内力臂系数为0.87,则

s1(1asta2)s0(3-4)h0s01为加固时原截面受拉钢筋的初始应变,可以近似按下式计算:

s01M0k

(3-5)

0.87h0AsEs式中:M0k为加固前被加固构件承受的弯矩标准值。

3.2.2 斜截面抗剪承载力计算

有采当构件斜截面抗剪承载力不足时,可以采用粘贴U形钢箍板或斜方向钢板条进行加固,加固后构件斜截面承载力可按下列公式计算:

当采用U形钢箍板加固时 VVu02fayAa1当采用侧向斜钢板条加固时

VVu02fayAa1sinLu(3-6)SLu(3-7)S上两式中:V为斜截面最大剪力设计值;Vu0为原构件斜截面受剪承载力设计值;Aa1为单肢箍板或板条的截面面积;S为箍板或板条轴线间的距离,应满足LuS1.5;Lu为箍板或板条在梁侧的高度;为斜板条的倾角。

4、粘贴纤维复合材料加固法

4.1特点及适用范围 4.1.1 特点

粘贴纤维复合材料加固时有以下特点:

(1)粘贴厚度小,不增加断面尺寸,不增加桥梁恒载。

(2)可以随结构外形变化施工,从而降低施工难度,缩短施工工期。(3)施工简便,无需大型设备,可在不影响或少影响交通的情况下施工。(4)能有效的封闭混凝土的裂缝。

(5)具有良好的耐腐蚀性,寿命较长,便于养护。

4.1.2 适用范围

粘贴纤维复合材料加固法适用于梁、板的加固,可提高梁、板的承载力,对刚度的提高效果相对较差;亦可用于加固钢筋混凝土受压柱,以提高其承载力、延性、耐久性等。

粘贴纤维复合材料加固构件,主要适用于以下情况:

(1)原构件受拉主筋或腹筋配筋不足的梁和板,抗弯、抗剪加固效果较为显著。(2)原构件受拉钢筋严重腐蚀或受损,以致承载力无法满足安全及使用要求。(3)提高构件的抗裂性,可制约裂缝的发展。(4)以延长结构使用年限为主要目的的耐久性加固。(5)混凝土墩柱的抗剪、抗压补强以及抗震延性补强。

4.2计算原理(受弯构件)4.2.1 假定及相关规定

采用纤维复合材对梁、板等受弯构件进行加固时,除应遵守现行国家标准《混凝土结构设计规范》GB 50010正截面承载力计算的基本假定外,尚应遵守下列规定:

(1)纤维复合材的应力与应变关系取直线式,其拉应力f取等于拉应变f与弹性模量Ef的乘积;

(2)当考虑二次受力影响时,应按构件加固前的初始受力情况,确定纤维复合材的滞后应变;

(3)在达到受弯承载能力极限状态前,加固材料与混凝土之间不致出现粘结剥离破坏。

受弯构件加固后的相对界限受压区高度fb应按下列规定确定:

(1)对重要构件,采用构件加固前控制值的0.75倍,即

fb0.75b(4-1)

(2)对一般构件,采用构件加固前控制值的0.85倍,即

fb0.85b(4-2)

式中 b—构件加固前的相对界限受压区高度,按现行国家标准《混凝土结构设计规范》GB50010的规定计算。

4.2.2 理论计算

在矩形截面受弯构件的受拉边混凝土表面上粘贴纤维复合材进行加固时,其正截面承载力应按下列公式确定: xM1fc0bx(h)fy'0As'0(ha')fy0As0(hh0)(4-3)2' 1fc0bxfy0As0fffAfefy'0Aso(4-4)f(0.8cuhx)cuf0f'(4-5)x2a(4-6)式中 M—构件加固后弯矩设计值; x—等效矩形应力图形的混凝土受压区高度,简称混凝土受压区高度;

b、h—矩形截面宽度和高度; fy0、fy'0—原截面受拉钢筋和受压钢筋的抗拉、抗压强度设计值;

'AAs0s、0—原截面受拉钢筋和受压钢筋的截面面积;

a—纵向受压钢筋合力点至截面近边的距离;

h0—构件加固前的截面有效高度;

ff—纤维复合材的抗拉强度设计值;

Afe—纤维复合材的有效截面面积;

f—虑纤维复合材实际抗拉应变达不到设计值而引入的强度利用系数,当'f1.0时,取f1.0

cu—混凝土极限压应变,取cu0.003

3f—纤维复合材拉应变设计值;

f0—考虑二次受力影响时,纤维复合材的滞后应变,若不考虑二次受力影响,取f00。

加固设计时,可根据公式(4-3)计算出混凝土受压区高度x,并按公式(4-5)计算出强度利用系数f,并代入公式(4-4),即可求出受拉面应粘贴的纤维复合材的有效截面面积Afe;然后按下述规定换算为实际应粘贴的纤维复合材截面面积Af。

图4-1矩形截面构件正截面受弯承载力计算

规定:实际应粘贴的纤维复合材截面面积Af,应按下列公式计算:

AfAfekm(4-7)纤维复合材厚度折减系数是km,应按下列规定确定:(1)当采用预成型板时,km1.0;

(2)当采用多层粘贴的纤维织物时,km值按下式计算: km1.160.90(4-8)

308000nfEftf式中Ef—纤维复合材弹性模量设计值(Mpa);

nf和tf—分别为纤维复合材(单向织物)层数和单层厚度。

对受弯构件正弯矩区的正截面加固,其粘贴纤维复合材的截断位置应从其充分利用的截面算起,取不小于按下式确定的粘贴延伸长度(图4-2): lc

1ffAfff,vbf200(4-9)

图4-2纤维复合材的粘贴延伸长度 式中 lc—纤维复合材粘贴延伸长度(mm);

bf—对梁为受拉面粘贴的纤维复合材的总宽度(mm),对板为1000mm板宽范围内粘贴的纤维复合材总宽度;

ff—纤维复合材抗拉强度设计值,ff,v—纤维与混凝土之间的粘结强度设计值(Mpa),取ff,v0.4ft;ft为混凝土 抗拉强度设计值,按现行国家标准《混凝土结构设计规范》GB 50010规定值采用;当ff,v计算值低于0.4时,取ff,v0.40Mpa;当ff,v计算值高于0.70时,取ff,v0.70Mpa; 1—修正系数;对重要构件,取11.45;对一般构件,取11.0。

4.3 FRP的施工

碳纤维复合材料(Carbon Fiber Reinforce Plastic)加固修复混凝土结构技术是将碳纤维这种高性能纤维材料应用于土木工程,利用与其相配套的树脂类粘结剂(建筑结构胶)将碳纤维粘贴到结构或构件需要加固的部位表面,形成复合材料体(CFRP),通过其与结构或构件的协同工作,来提高结构或构件的承载力和延性的一种新型加固工法。该工法与传统的结构加固技术相比,以其轻质高强、耐腐蚀性和耐久性强、施工便捷、结结构影响较小等优点,广泛应用于国内外结构加固改造工程中。

4.3.1 加固方案设计依据

碳纤维材料加固混凝土构件,通常有以下几种方式:①沿构件主轴方向粘贴碳纤维,以提高构件正截面的抗弯能力;②沿与构件主轴垂直方向粘贴碳纤维,由碳纤维与原有箍筋共同分担剪力以提高构件的抗剪承载力;③沿与构件主轴垂直方向粘贴碳纤维以改善加固部位的延性,提高其抗震性能。目前在国内工程中应用最多的是第一种方式,即加固修复提高梁板正截面承载能力,使之满足使用功能要求。

4.3.2碳纤维复合材料的选择

加固修复混凝土结构所用碳纤维材料主要有两种:碳纤维与配套树脂粘贴剂。碳纤维是高强度高弹性模量材料,强度是钢材的十几倍。建筑粘结剂种类繁多,选择与某种碳纤维布相容性好的粘结剂是关键。

与碳纤维相配套的树脂粘结剂一般由4部分组成。即底层粘结剂、找平材料、浸渍树脂和防护材料。底层粘结剂必须能渗透进混凝土表面,促进粘结并形成长期持久界面的基础;找平材料用来修补结构表面的平整度,以便使用片材;浸渍树脂用以浸渍碳纤维片材在混凝土表面形成原位层板;防护材料用以保护碳纤维片材免受外界条件的影响,延长其使用寿命。树脂粘结剂的粘结强度应大于混凝土的拉伸剪切强度,且具有适宜的工作粘度,以便于施工操作。

4.3.3施工工艺

4.3.3.1碳纤维复合材料加固混凝土结构施工工艺流程

混凝土结构表面处理→配制并涂刷底层粘结剂→面层找平处理→粘贴树脂的配制并侵润碳纤维布→粘贴碳纤维布→表面防护。

4.3.3.2施工要点

①混凝土表面的处理程度直接影响加固效果。表面要打磨平整直至露出新面,涂底层粘结剂前,再用丙酮清洗一遍。

②碳纤维布一定要用粘贴树脂浸润透,尽可能让粘结剂充分渗入碳纤维单丝之间的空隙中,提高各单丝之间的共同工作性能。

③浸润后的碳纤维布用手轻压贴于需要的位置,用橡皮滚筒顺纤维方向均匀平稳压实,使树脂从两边溢出,保证碳纤维布与结构之间密实无空洞,或者有效粘贴面积不小于95%。

④碳纤维片材沿其纤维方向折直角会导致应力集中,影响其强度发挥。施工时将角部磨成圆角,可减缓应力集中,碳纤维布的强度基本不受影响。结语

工程结构加固的方法还有许多如:置换混凝土加固法、喷射混凝土加固法、高性能水泥复合砂浆钢筋网加固法等,随着工程加固理论的日益成熟,规范的日益优化,必将有更多的适用的,简便的,高效的结构加固方法。

参考文献

[1]曹双寅,邱洪兴,王恒华.结构可靠性鉴定与加固技术[M].北京:中国水利水电出版社,2001.[2]卜良桃,周锡全.工程结构可靠性鉴定与加固[M] .北京:中国建筑工业出版社,2009.[3]邬晓光,白青侠,雷自学.公路桥梁加固设计规范应用计算示例[M].北京:人民交通出版社,2011.[4]中华人民共和国行业推荐性标准.公路桥梁加固设计规范(JTG/T J22-2008).北京:人民交通出版社,2008.[5]谌润水,胡钊芳,帅长斌.公路旧桥加固技术与实例[M].北京:人民交通出版社,2001.[6]混凝土结构加固设计规范(GB 50367-2006)

第三篇:现货做单方法的总结

现货品种走势千变万化,也还是有东西万变不离其中。大家要结合自己的习惯还有实际做盘的情况选择适合自己的做单方法。现货界的随缘在这里总结了一点做单方法经验,预祝大家投资愉快!

1,变盘突破做单法:当行情经过长时间的盘整后,最终会选择方向,在行情选择方向变盘以后追入,是稳定获利最快速的方法。要求必须具备良好的变盘判断能力,要求心态稳健,忌贪忌恐惧。

2,震荡做单法:行情大部分时间是处于震荡格局,在行情震荡时的箱体间高抛低吸,是稳定获利的最基本方法。运用的指标为BOLL,箱体理论。成功的前提是根据各种技术指标及图形,找准阻力支撑。震荡做单法运用的原则是,短线买卖,不可贪婪!

3,单边趋势做单法:在行情突破盘局以后,市场都会选择一个方向,在单边行情形成以后,顺势做单是千古不变的真理。在每一次的回调或反弹中,都是进单的机会,是稳定获利的最佳保障!运用的技术指标为:K线,均线,BOLL,趋势线!要求能熟练了掌握以上指标。

4, 阻力支撑做单法:当行情遇到很重要的阻力支撑时候,往往会受阻或受支撑,在受阻或受到支撑时进单,是我们常用的方法,是稳定获利的最普遍方法。运用的指标为趋势线,均线,布林带,抛物指标,要求对阻力支撑有非常准确的判断。

5,回调反弹做单法:当行情经过一波大幅上涨或下跌以后,会出现短暂回调或反弹的走势,抓住这样的机会,是我们稳定获利最轻松,最简单的方法。主要的运用指标为K线形态,要求必须要有非常好的盘感,能准确判断阶段高点或低点。

6,时间段做单法:一般的情况早盘行情波动相对激烈,能迅速获利并有多次进场的机会,适合性格激进的投资者操作,缺点是行情难把握,容易出错,对技术水平及判断能力要求比较高!午盘行情波动相对平稳,行情容易把握,适合性格温和的投资者操作,缺点是下单获利的时间延长,必须要具备足够的耐心。

第四篇:单变量统计分析方法总结(写写帮推荐)

单变量统计分析方法总结

一、计量资料

1.两组独立样本比较

1.1资料符合正态分布,且两组方差齐性,及独立性,可直接采用t检验。1.2资料不符合正态分布

(1)数据转换(如对数转换等)→使之服从正态分布→转换后的数据采用t检验;(2)直接采用非参数检验(如Wilcoxon检验)。1.3资料方差不齐

(1)t’检验(前提是资料满足正态性);(2)采用非参数检验(如Wilcoxon检验)。2.两组配对样本的比较

2.1 两组差值服从正态分布,采用配对t检验。

2.2 两组差值不服从正态分布,采用wilcoxon的符号配对秩和检验。3.多组完全随机样本比较

3.1资料符合正态分布,且各组方差齐性,直接采用完全随机的方差分析。

如检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,SNK法,Bonferroni法,tukey法,Scheffe法等。3.2资料不符合正态分布,或各组方差不齐

(1)数据转换(如对数转换等)→使之服从正态分布或方差齐性→转换后数据采用F检验;(2)直接采用非参数检验(如Kruscal-Wallis法)。

如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然 后用两组的Wilcoxon检验,或秩变换方法。4.多组随机区组样本比较

4.1资料符合正态分布,且各组方差齐性,直接采用随机区组的方差分析。

如果检验结果为有统计学意义,则进一步作两两比较,两两比较的方法有LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。

4.2资料不符合正态分布,或各组方差不齐,则采用非参数检验的Fridman检验法。如果检验结果为有统计学意义,则进一步作两两比较,一般采用Bonferroni法校正P值,然 后用符号配对的Wilcoxon检验。★需要注意的问题:

(1)一般来说,如果是大样本,比如各组例数大于50,可以不作正态性检验,直接采用t检验或方差分析。因为统计学上有中心极限定理,假定大样本是服从正态分布的。

(2)当进行多组比较时,最容易犯的错误是仅比较其中的两组,而不顾其他组,这样作容易增大α。正确的做法应该是,先作总的各组间的比较,如果总的来说差别有统计学意义,然后才能作其中任意两组的比较,这些两两比较有特定的统计方法,如上面提到的LSD检验,Bonferroni法,tukey法,Scheffe法,SNK法等。**绝不能对其中的两组直接采用t检验,这样即使得出结果也未必正确**

二、分类资料

1.四格表资料

2检验。

1.2 n≥40,且至少一个理论数1≤T<5,则用校正的2检验。1.1 n≥40,且所有理论数T>5,则用普通的Pearson 1.3 n<40,或有理论数T<1,则用Fisher’s确切概率法检验。2.R×C表资料的统计分析

2.1 列变量和行变量均为无序分类变量,则(1)n≥40,且理论数1≤T<5的格子数目占总格子数目<20%,则用普通的Pearson

2检验。

(2)超过理论数1≤T<5的格子数目占总格子数目20%,可采用似然比卡方检验或Fisher’s确切概率法检验(总例数不应太大,因为这种算法计算机也要算半天才能出结果)。2.2 需要统计分析变量为等级资料变量,另一变量为分组变量,采用非参数检验。两组的Wilcoxon秩和检验,或多组的 Kruskal-Wallis检验。如果总的来说有差别,还可进 一步作两两比较,以说明是否任意两组之间的差别都有统计学意义。

2.3 列变量和行变量均为等级资料变量,如果要做两变量之间的相关性,可采用Spearson 相关分析。

3.配对分类资料的统计分析 则用McNemar配对检验。

第五篇:着名化学家徐光宪院士总结的科研创新的16条方法

著名化学家徐光宪院士总结的科研创新的16条方法

国家最高科技奖得主、著名化学家徐光宪院士多年探索科研如何创新,并通过讲座等形式传递给学生后辈。

● 知识创新都有前因后果,来龙去脉。故而勤奋学习,建立知识框架,积累深厚基础;加上追根到底,万事逼问为什么的好奇心,就是创新的源泉。前者是学,后者是问。学而不问则殆,问而不学则茫。学而问,问而思,思而行,行而果,这就是创新。

● 如果你梦想要做一个科学家,那么勤奋学习就是实现你的梦想之“舟”。但舟有快如宇航飞机,慢如蜗牛。所以勤奋必须是高效率的勤奋,不要去做“磨擦生热”的“无用功”,更不要做“负功”。

● 在科学研究中常常会遇到“山穷水尽疑无路”时,粗心大意的人很容易放过这种机遇。只有具有敏锐眼光和扎实基础的科学家才能抓住它,取得重大的突破。

● 实际的学科基础是金字塔,有比较广的知识,但是又要有塔尖,有高度,也就是你的专业知识高度。但是一条竹竿是站不直的,所以你除了“高”,还要有一些“宽”。

多年以来,我一直在实践中探索科研如何创新的方法,总结了16条。我可以告诉大家,我的天赋很平常,但“天道酬勤”,只要依靠勤奋,是可以取得科学成就的。大发明家爱迪生说:天才=98%的汗水+2%的灵感。而2%的灵感也可用勤奋来培养。各位同学只要勤奋努力,相信都能成为出色的科学家。

1、创新与知识积累:中药铺的抽屉和知识框架

创新必须先有知识积累,这是创新和继承的关系。我幼年时常生病,生了病去看中医,到中药铺去抓药,看到中药分类归档,放在上百个抽屉里。从那时起就模糊认识到要把学到的东西放在脑中的抽屉里,并把众多抽屉有序排列,才能记住。以后就慢慢形成要在自已的头脑里建立知识框架的概念。知识框架即知识文档树,建立知识文档树便于知识存贮检索、记忆、联系比较、分析归纳和创新。

2、创新链和创新树

科学研究是接力赛跑,起跑点要在科学研究的前沿,要把前人的有关知识接过来。研究生的导师很重要,他把接力赛跑的棒交给你,你就可以在科学研究的前沿起跑。牛顿说:“我是站在巨人的肩膀上,所以能看得远一些”。这是创新和继承的关系。

科学研究既然是接力赛跑,所以每一项科学创新都有前因后果。把这些前因后果串联起来,就构成一条“创新链”。创新链常有分支,于是构成“创新树”。建

立创新树的方法,可以启发你的创新灵感,活跃你的创新思维,特别是在分枝点上,可以思考一下:还有什么新路可走?

3、分类研究法

“分类法”是一种重要的科学方法。科学(Science)原来的含义就是分科之学。例(1)动植物的宏观分类法——门,纲,目,类,科,亚科等。例(2)生物的微观分类法——基因分类法。例(3)萃取机理的分类。例(4)经济模式的分类——自由资本主义经济(如美国),欧洲资本主义经济,中国特色社会主义市场经济等。

世界上的事物是非常复杂的巨系统,要探索这个巨系统,先要把它进行分类,才能找到其中的规律。现代科学发展的大趋势之一,是学科越分越细。例如1900年是500门学科,2000年是5000门。100年增加10倍。2100年可能到50000门,2050年到20000门,50年中创建15000门新学科,我们中国人至少创建3000门。你们要有创建3000门新学科的雄心壮志。

4、学科交叉法

学科交叉法就是在不同的学科之间,进行“比较”、“类比”和“移植”的研究方法,从而产生新的研究领域或新的学科。

“比较法”是具有悠久历史的传统方法,也是科学研究中的重要逻辑方法。在语言学的研究中有一分支,叫做“比较语言学”,就是用比较的方法来研究两种或多种语言的异同。在生物学中有“比较生物学”。学科交叉的无人区是创新的生长点。

在比较语言学中,可以互相取长补短,促进本门语言学的发展。例如英文的Crisis,中文是“危机”。危机有危险和机遇两层意思。处理得当可以把危险化为机遇,而Crisis只有危险的意思。中文有“做学问”一词,通常翻译为Learning,但后者只有学习的意思,没有问的含义。做学问要既学又问,学而不问则殆,问而不学则茫。

5、移花接木法

“移花可以接木,杂交可以创新”,这是科学创新的“移植法”。科学可按照它的研究对象由简单到复杂的程度分为上、中、下游。数学、物理学是上游,化学是中游,生物、医学、社会科学等是下游。上游科学研究的对象比较简单,但研究的深度很深。下游科学的研究对象比较复杂,除了用本门科学的方法以外,如果借用上游科学的理论和方法,往往可收事半功倍之效。所以“移上游科学之花,可以接下游科学之木”。

例(1)量子化学是把量子力学的理论和数学方法移植到化学中来,因而产生的交叉学科。美国理论物理学家科恩和英国数学家波普尔,把量子力学的理论和计算数学的方法移到化学中来,解决了量子化学中的计算难题,因而获得1998年诺

贝尔化学奖。

例(2)把数学方法移植到经济学中来,可以实现经济学的突破。1994年的诺贝尔经济奖授予纳什,他把数学中概率论之花,移到经济学中来,提出预测宏观经济发展趋势的“博弈论”。

例(3)移花接木创新法的另一例子是仿生学。例如第一架飞机就是模仿蜻蜓制造出来的。流线型的喷气飞机和高速火车的造型是模仿鱼类的,特别是海豚的皮肤表面有一种可吸收能量的弹性结构,借以消除流体的阻力,使湍流变为平流。

例(4)生物学与化学的交叉产生生物化学、分子生物学、生物物理学、结构生物学等。现在后基因组时代已经到来,生物学与化学之间又有一个新的交叉学科——蛋白质组学已经形成。

6、四两拨千斤法

中国有句成语,叫做“四两拨千斤”,这就是“力的放大”。例如杠杆、齿轮、千斤顶等,在搬运东西和机械工程中被广泛使用。在科学研究中,我们要把一种已知的方法尽量推广拓展到未知的领域,这就是“创新”。

例(1)三极管的发明可以实现电流的放大,上世纪三十和四十年代,是电子管的鼎盛时期,它曾为无线电、雷达、电子计算机和V型导弹的发明做出了贡献。1948年发明了晶体管,同样可以放大电流,但体积、重量、耗电量均比电子管减少100-1000倍。1959年又发明集成电路,从而产生了微电子学和微电子工业,导致20世纪的信息革命。

例(2)激光器的发明。电流的放大产生了如此重大的影响,于是人们联想到光是不是也能放大呢?1954年汤斯首先实现了微波的受激辐射放大。1960年从事红宝石微波量子放大器研究的年轻人梅曼成功地研制出第一台红宝石激光器,实现了光波的受激辐射放大。

例(3)化学合成的自动组装放大,例如用K.Ziegler和G.Natta催化剂,可使单体自动定向聚合为高分子。又如自组装化学,也是化学发展的方向之一。

例(4)生命的放大——从卵细胞到生命的发育成长,发展成为现代的克隆技术。

7、逆向思维法

在飞机的设计中,要试验飞机的外型和材料在高速飞行中与空气阻力的关系。这种试验很难在空中飞行时进行。于是创造出“风筒”来模拟飞行。这是一种“反其道而行之”的逆向思维方法,即把飞机固定,让高速空气流向飞机,其效果是一样的。这就是在空气动力学和航空技术研究中常用的“风洞”实验室方法。又如在轮船的设计中,可以做一个缩小的模型,放在一个缩小的水槽中,用各种流速来试验船体的阻力。

8、柳暗花明法

在科学研究中常常会遇到“山穷水尽疑无路”时,粗心大意的人很容易放过这种机遇。只有具有敏锐眼光和扎实基础的科学家才能抓住它,取得重大的突破。

例(1)按照经典遗传学的观点,水稻是自花授粉,不能杂交的,“杂交水稻之父”袁隆平也相信这一点。上世纪60年代初,他在田间发现一株优势非常强的水稻,第二年他把它种下去,结果大失所望,跟上年选的植株完全不同,高的高,矮的矮,生长期长的长,短的短。就在失望之余,他突然产生了震撼:为什么遗传会有这样大的分离呢?只有杂种才会有分离,纯种不会有分离。他于是大胆提出假设:他选的这株是天然杂交稻,推翻了经典遗传学认为水稻不能杂交的结论。当然这只是大胆的初步假设,还有待做艰苦的研究工作,培养出人工杂交水稻来证实。为避免自花授粉,他选择雄性不育植株来受粉,取得了很大成功,使我国水稻由亩产300公斤提高到500公斤。

例(2)光的本质是什么?是波动还是微粒?这个问题争执了200多年,互有胜负,不得解决,在20世纪初到了“山穷水尽疑无路”的地步。这是因为人们的思想受形式逻辑的限制,形式逻辑回答问题,非此即彼,非彼即此。爱因斯坦跳出了形式逻辑的框框,认为问题的答案可以“亦此亦彼”,于是“柳暗花明又一村”,达到了完美的创新境界。这就是他在1905年提出的光子学说。

9、天上人间法

有些物质是天文学家在天上先发现,然后由化学家把天上之花,移植到地球人间的。

例(1)1868年天文学家在观察日全蚀时,从日珥的光谱中发现一种未知原子的谱线,命名这一未知元素为“太阳元素(Helium)”。28年后,化学家才从地球大气中把He元素气体分离出来。

例(2)天文学家用射电天文望远镜研究分子的转动光谱,发现了几十种星际分子,有一类是直线形的HCiN分子。化学家Smally想象宇宙中有闪电C C C C;C,空气中有氮气和氢气,企图用激光或电弧作用于石墨,在地球上来制备这类化合物,却意外地得到C-60,并获得诺贝尔奖。但这类HCiN分子,至今在地球上尚未合成。

10、傻瓜提问法

创新的第一步是“提出问题”。年轻人好奇提问往往是创新的开端。好奇性是科学发展的重要动力之一,所以“好奇性”也是科学家应具备的素质之一。

例(1)三角形的内角之和一定要等于180度吗?其实,三角形的内角之和等于180度是平面上的几何学,即欧几里德几何学。人们发现用平面几何学经行大地测量,在范围较大时有偏差。这是因为地球是球面的。在地球上距离较大的三点之间,作三条直线,组成一个三角形,它的三个内角之和大于180度。这就是球面几何学。反之,在凹面上的三角形的内角之和小于180度。由此建立了一门新的学科:非欧几何学。

例(2)空间的维数是不是一定要整数?例如说一维、二维或三维空间。可不可以有分数的维度?这个看似傻瓜的提问,终于发展成为一门新科学:分形理论。弯弯曲曲的海岸线的维数就在一维和二维之间。

11、大胆假设、小心求证法

胡适在考古学研究中提出“大胆假设,小心求证”的科学方法,我认为也可用于自然科学研究,而且是一个很重要的科学创新的方法。如果你不明白为什么,对老师、专家、权威都可提出质疑,敢于好高骛远大胆假设,善于实事求是,小心求证。对于你的假设预期,要认真安排实验来小心求证。实验的结果不外四种:

(1)证明了你的假设,于是进一步去寻求新的实验证明。证明越来越多,假设就能发展成为理论;

(2)部分否定了你的假设,于是你可以部分修改你的假设,使之更为完善;

(3)全部否定了你的假设,于是你可以根据新的实验结果,提出新的假设;

(4)得到完全意外的结果。例如从设计合成一个新化合物的失败,到发现一个新的结构类型。如果你的运气好,可能发现新现象或新效应,但必须有敏锐眼光才能抓住它。

所以这四种可能性,在科学上都有收获。尤其是第四种,可能有巨大收获。

12、意外机遇法

例(1)弗莱明发现青霉素。

例(2)X-射线的发现。

例(3)宇宙的微波背景辐射。

13、灵感培养法

国学大师王国维在《词话》中写到治学的三个境界:“独上高楼,望尽天涯路”,这是第一境界,是治学或研究的开始,要找到学科发展的前沿,作为你科研创新的起点。“衣带渐宽终不悔,众里寻她千百度”,这是第二境界,正是科学研究的紧张阶段,遇到困难,不知如何解决才好。“蓦然回首,伊人正在灯火阑珊处”,这是第三境界,正在山穷水尽的时候,忽然灵感到来,蓦然回首,伊人(这

里指你希望得到的结果,或解决困难的方案和办法)出来了,却在忽明忽暗的灯火阑珊处。

从中可以得到三点启发:(1)开题的重要性;(2)勤奋是成功的关键,如果你梦想要做一个科学家,那么勤奋学习就是实现你的梦想之“舟”。但舟有快如宇航飞机,慢如蜗牛。所以勤奋必须是高效率的勤奋,不要去做“磨擦生热”的“无用功”,更不要做“负功”;(3)创新除了勤奋外,还要有一定的“灵感”。当你在科研中已“进入角色”,“身心投入”后仍然遇到难题,百思不得其解,这时你可以忘掉它,轻松愉快地去做别的工作,或看电影,或散步,或听音乐,然后好好睡一觉。睡眠中大脑会把白天困扰你的问题进行知识的反刍、酝酿和陈化的慢波处理,早上一觉醒来,往往就忽有所悟。听说开库勒就是在早上一觉醒来时,悟到苯分子的六角形结构的。

14、虚拟实验法

现在常用的虚拟现实法也是“建立模型”的方法之一。提出一个理论模型,用计算机虚拟现实,得到希望得到的结果。这一方法现已广泛用于科学研究和高新技术,例如:

(1)虚拟大气温度、湿度、气流的未来变化,做出近期和中期的天气预报;

(2)建立模型,虚拟小浪底水库放水冲洗黄河的泥沙,提供最优化实际放水时间和流量等参数;

(3)虚拟原子弹爆炸过程,代替实际爆炸实验,为原子弹设计提供基础;

(4)北京大学在稀土分离研究中,以串级萃取理论为模型,用计算机模拟“摇漏斗”的实验,获得稀土工艺设计的“一步放大专家系统”,并在全国推广应用。

15、综合集成法

系统科学是从传统科学中提出带有共性的问题来研究,因而产生的科学。它是最广泛的交叉学科。如果把自然科学、技术科学、社会科学看作科学分类的经线,那么系统科学就是横跨自然科学、技术科学、社会科学的纬线,所以也可称为横断科学。它包括系统论、控制论、信息论、耗散结构理论、非线性科学、协同学、运筹学、混沌理论、分形理论、突变论、超循环论等。下面仅以控制论为例,说明它是怎么发展起来的。

控制论是把自动调节、通信工程、计算机技术,以及神经生理学和病理学等学科,以数学为纽带联系在一起而形成的新学科。它是1948年美国数学家维纳创立的,他在二次世界大战期间,接受了研制防空火力的控制系统的任务,尝试用机器来模拟人脑的功能。他把生命机体和机器作比较研究,总结出自动机应具备的一些特点。他的研究还表明,无论是自动机器,还是神经系统、生物系统,以至经济、社会系统,反馈都对系统稳定起着至关重要的作用。他总结了这些思

想,在1948年出版了《控制论》一书,把控制论定义为“关于机器和生物的通讯和控制的科学”。钱学森1954年在美国出版的《工程控制论》一书,是这个学科的奠基性著作。同年艾什比发表《大脑设计》,建立了“生物控制论”。

16、接近于“无中生有”的原始大创新

量子力学和相对论是突破当时牛顿经典力学的理论和传统概念,提出全新思维和理论的创新。但即使这样重大的原始创新,也不是完全“无中生有”,而是有迹可寻的。

以量子力学为例,实现这一类创新的第一步是“提出科学问题”。正确敏锐地提出科学问题,本身就是重大的创新。

第二步是要有敏锐的直觉和灵感,提出一些前所未有的新概念,并重新审视旧理论中的概念。

第三步是要建立新理论的基本方程。既然微观粒子与光子一样具有波粒二象性,它们的基本运动方程也应相似。薛定鄂把光的Maxwell电磁波方程与德布罗意关系式结合起来,得到量子力学的基本方程,即著名的薛定鄂方程。

第四步是要有深厚的数学基础,从基本方程推导出可以由实验来检验的结果。

第五步,一个新理论的基本方程建立以后,还要回过头来看看这个理论体系是建筑在哪些基本假设的基础之上的。基本假设的要求是:物理概念要明确,表述要简洁,它的实验基础要巩固,条数要愈少愈好。这样才能建立简洁优美的理论体系。

徐光宪简介:

徐光宪,著名化学家,中国科学院院士。现任北京大学化学系教授、博士生导师。

徐光宪长期从事物理化学和无机化学的教学和研究,涉及量子化学、化学键理论、配位化学、萃取化学、核燃料化学和稀土科学等领域。通过总结大量文献资料,提出普适性更广的(nxcπ)格式和原子共价的新概念及其量子化学定义,根据分子结构式便可推测金属有机化合物和原子簇化合物的稳定性。建立了适用于研究稀土元素的量子化学计算方法和无机共轭分子的化学键理论。合成了具有特殊结构和性能的一系列四核稀土双氧络合物。

2008年,徐光宪获得中国国家最高科技奖。

下载单目结构光测距标定方法总结word格式文档
下载单目结构光测距标定方法总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐