浅谈小学数学概念教学

时间:2019-05-13 02:41:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浅谈小学数学概念教学》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浅谈小学数学概念教学》。

第一篇:浅谈小学数学概念教学

小学数学中概念教学

蹇家坡学校

杨胜

毕业两年,每学期都带两个班的数学课,一直以来,我就觉得数学有几大难题,其中就有对于概念的教学,像老师所提到了现象,在教学时,学生对于概念好像识记了,掌握了,甚至会背了,可是到需要运用这些概念时,学生往往不知所措,完全不会运用。

而数学概念是数学思维的细胞,是形成数学知识体系的基本要素,是数学基础知识的核心,是孩子们学习数学的坚固基石。对于小学的孩子来说,正确地理解、掌握数学概念更是孩子学好数学的前提和保障,有利于学生在后来的学习中形成完整的、清晰的、系统的数学知识体系。

下面我就以我所了解的我们班的情况浅谈几点:

第一、存在问题

1、学生方面:对于小学的孩子来说,其抽象思维能力较弱,对于数学语言的理解和表达有一定的难度,从而使学生出现死记硬背牢记了数学概念,确完全不知该如何应用。

2、教师方面:由于我刚刚毕业,本身对于小学数学概念就没有一个系统的、清晰的认识,只是跟着教材、教参走,结果在某些问题上自己也拿捏不准,自然会使得孩子们数学概念越来越不确定,越来越糊涂。

3、教学设备方面:由于学校处于偏远地区,教学资源特别薄弱,并缺少教学最需要的多媒体,也没有什么教具给我们老师提供,同时由于课堂教学在空间、时间上的限制,使得概念教学显得枯燥、乏味,教学也往往只浮于表面。

4、来自概念本身的:数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映,具有抽象概括性;数学概念又是以语言和符号为中介的,这和我们对生活的理解是不同的,造成了生活概念和数学概念的混淆。比如大部分孩子对于“角”就仅停留在角的顶点上,并需要依托具体的实物才能进行描述,而数学中的“角”则是“角是有公共端点的两条射线所组成的几何图形”,这对于孩子们来说是费劲的。

第二、解决方法

怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。

1、概念的引入讲述宜直观形象

针对小学孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。

2、概念的练习宜生动有趣

小学孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。

游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。

四、概念的拓展宜实在有效

美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。

孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。

概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。

我也只是一个刚刚踏上教师岗位的教师,对于班级管理存在的问题,对于教学当中存在的问题,太多太多了,希望各位老师能多多指教,在下一定虚心请教。

2014年10月14日

第二篇:浅谈小学数学概念教学

浅谈小学数学概念教学

在数学教学中,概念是学好数学法则、定律、性质、公式等数学知识的基础和关键,是培养学生数学能力的前提,是解答数学实际问题的重要条件.因此,把握数学概念的教学十分重要.一、依据掌握概念的心理过程进行教学

数学概念教学必须适合学生掌握概念的心理过程,这个过程一般有两种形式,即概念的形成和概念的同化.因此,我们在概念教学过程的设计和实施时,应以它为依据.1.概念的形成

概念的形成是指从大量的同类事物的不同例证中发现该类事物的本质属性,这种获得概念的形式叫做概念的形成.概念形成的过程,简单地概括为“具体―抽象”的过程.概念的形成主要依赖于辨别和概括这两种心理活动,而辨别与概括又贯穿于“感知―表象―概括―概念系统”这一发展过程中.所以,我们要按学生的认知规律组织教学,增强辨别不同正、反例证的能力.例如,一位教师为了丰富学生对三角形的感性认识,准备了3厘米长的小棒3根,及4厘米、2厘米、8厘米长的小棒各一根.教师请学生先用8厘米长的小棒去围三角形,学生发现随便配上哪两根小棒都不能围成三角形.“为什么呢?”“这根小棒太长了,另外两根小棒太短了”.“如果把它们换掉,你们能将它们围成三角形吗?”学生互相讨论,结果围成了各种三角形.在实践活动中,学生初步感知三角形的特征后,师生共同抽象出三条线段围成封闭的图形是三角形的两个本质属性,然后概括出三角形的概念:由三条线段围成的图形叫做三角形.再通过变式练习,深化了学生对三角形的认识.2.概念的同化

概念的同化是利用学习者认知结构中原有的有关概念,以定义的方式直接向学习者揭示概念的本质属性,这种使学习者掌握概念的方式叫概念的同化.采用概念同化的方式学习概念,前提是学生已积累了许多初级概念,它不同于概念形成过程中的辨别、抽象、分析和概括,一般适用于高年级教学.利用概念同化的方式掌握概念,它是由概念到概念,比较抽象.所以,我们要采取“加强与表象联系”、“强化新概念的本质属性”等方法,教会学生辨析新旧概念的异同.例如,建立比较小数大小的概念时,可以联系整数大小的比较及学生所熟悉的元、角、分等知识进行教学.教师可先出示654与543.8321与8436,让学生回忆比较整数大小的方法,再出示例题,比较2.35元和2.41元的大小.引导学生思考:2.35元和2.41元的整数部分完全相同,2.35元的十分位是3,表示3角;2.41元的十分位是4,表示4角,所以2.35元0.059米.这两道例题都是借助学生已有的知识,帮助学生建立起比较小数大小的概念.二、使用知识迁移的理论方法进行教学

知识迁移是指先前学习的知识对以后学习的知识所产生的影响和作用.知识迁移的理论有:形式训练理论、共同因素理论和概括化理论.为了加强新旧知识之间的联系,教师要注意知识间异同点的揭示,提高学生对知识的概括水平,实现正迁移,防止负迁移,发挥迁移规律在数学概念教学中的作用.例如,教学“平行四边形的面积公式”时,第一步,复习长方形的面积公式:长 × 宽;第二步,将平行四边形沿一条对角线或沿一顶点作对边的高,将它分成两部分,然后拼成等积的长方形;第三步,根据等积概括出平行四边形面积公式:底 × 高.这条思路和经验,为学习三角形面积公式的迁移作了铺垫.那么,在“三角形面积公式”教学时,教师只要适当提示,学生就会根据已有的知识和经验,将平行四边形转化为两个等面积的三角形,通过与平行四边形面积公式建立联系,自然地推导出三角形面积公式,实现知识、经验的迁移.三、抓住概念的内涵和外延进行教学

学生掌握数学概念大致有三种水平:第一种是形式主义地掌握概念,第二种是概括地掌握概念,第三种是创造性地掌握概念.因此,我们在概念教学中必须抓好概念的内涵和外延这一关键,实现概括地或创造性地掌握概念.1.概念的内涵

概念的内涵是指概念所反映的对象的本质属性.本质属性是指对这一类事物有决定意义的属性.它必须具备两个条件:第一,这类事物本身必须具备这种属性,否则就不是这类事物;第二,能把这类事物与其他事物区别开来.譬如,长方体有许多属性,但它的本质属性只有两点:第一,它是个六面体;第二,它六个面都是长方形(有时有两个相对面是正方形).也就是说,长方体必须具备这两个属性,否则它就不是长方体.显然,这两个属性能把长方体与正方体等其他多边形体区分开来.2.概念的外延

概念的外延是指这一概念所反映的对象的总和.譬如,分数这个概念的外延是真分数、假分数(带分数);平行四边形这个概念的外延是一般平行四边形、长方形、菱形、正方形等对象的总和.概念的内涵和外延,两者之间的关系是相互制约、相互依存的,但它们又是统一的、不可分割的两个方面.因此,我们必须明确掌握概念的内涵和外延这两个方面.例如,角、直角、锐角、钝角、平角、周角等概念教学.角:其内涵是从一点引出两条射线所组成的图形,它的外延有直角、锐角、钝角、平角、周角.直角:内涵指角的两条边成90°的角,它的外延就是90°的角.锐角:内涵指角的两条边所成的角小于90°,它的外延是指适合0°

第三篇:如何进行小学数学概念教学

如何进行小学数学概念教学

王新梅

【内容提要】数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。

【关键词】恰当 准确

运用

数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映。小学数学中有很多概念,包括:数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。数学概念不仅是数学基础知识的重要组成部分,而且是学习其他数学知识的基础。学生掌握基础知识的过程,实际上就是掌握概念并运用概念进行判断、推理的过程。数学中的法则都是建立在一系列概念的基础上的。事实证明,如果学生有了正确、清晰、完整的数学概念,就有助于掌握基础知识,提高运算和解题技能。相反,如果一个学生概念不清,就无法掌握定律、法则和公式。那么,如何进行小学数学概念教学,下面就谈谈自己初浅的几点看法:

一、概念的引入要恰当。

概念引入得当,就可以紧紧地围绕课题,充分地激发起学生的兴趣和学习动机,为学生顺利地掌握概念起到奠基作用。因此,教学中 1

必须根据各种概念的产生背景,结合学生的具体情况,适当地选取不同的方式去引入概念。例如在学习圆的面积后,我就设计了这样的问题:“我们已经学习了圆面积公式,谁能想办法算一算,学校操场上白杨树树干的横截面面积?”同学们就讨论开了,有的说,算圆面积一定要先知道半径,只有把树砍下来才能量出半径;有的不赞成这样做,认为树一砍下来就会死掉。这时教师进一步引导说:“那么能不能想出不砍树就能算出横截面面积的办法来呢?大家再讨论一下。”学生们渴望得到正确的答案,通过积极思考和争论,终于找到了好办法,即先量出树干的周长,再算出半径,然后应用面积公式算出大树横截面面积。课后许多学生还到操场上实际测量了树干的周长,算出了横截面面积。再如,在教学比例的意义与性质。我们可以这样引入:“同学们,我们已经学习了比,在我们人体上有许多有趣的比。例如:拳头滚动一周的长度与脚的长度的比是1:1,身高和胸围长度比大约是2:1。这些有趣的比作用非常大,比如你到商店去买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿。而这些奥秘是用比例知识来计算的,今天我们就来研究比例的意义和性质。”老师选取一些生动形象的实际例子来引入数学概念,既可以激发学生的学习兴趣和学习动机,又符合学生由感性到理性的认识规律。因此教学中应选择那些能充分显示被引入概念的特征性质的事例,正确引导学生去进行观察和分析,这样才能使学生从事例中归纳和概括出共同的本质属性,形成概念。

二、让学生能够准确理解概念。

正确理解数学概念是学好数学的前提,如果这些概念不清,就会思绪混乱,计算、推理发生错误,就会影响今后整个数学的学习。经过这些年的教学,我认为现在很多小学生对学习数学的积极性不高,缺乏学习兴趣,很多是对数学概念的不理解。数学概念是数学研究对象的高度抽象和概括,反映了数学对象的本质属性,是最重要的数学知识之一。概念教学是数学教学的重要组成部分,正确理解概念是学好数学的基础,概念教学的基本要求是对概念阐述的科学性和学生对概念的可接受性。如讲述加法进位时,先让学生通过摆实物、图形,理解进位加法的算理,用“凑十法”的思考方法,让学生摆一摆、算一算,这样通过实物将抽象的概念具体化。

用直观教具,进行模拟形象的感知,如演示图片、模型等,同时配以动作表情,通过物象直观来直接获得感性知识,把抽象的概念具体、形象地重现出来。学生头脑中的印象形象鲜明、完整深刻,在此基础上,教师引导学生从感性认识逐步抽象出概念。

在教学中有很多数量关系都是从具体生活中表现出来的,因此,在教学中要充分利用学生的生活实际,运用恰当的方式进行具体与抽象的连贯。把抽象的内容转变成具体的生活知识,在学生思维过程中强化抽象概念。如:在学习“体积”概念时,教师可以通过将两个不同大小的石头扔到同样的圆柱水杯中,然后观察两个水杯水的高度来展现石头体积的大小。这样将抽象的体积概念就转变为了水具体的高度,对于尚未形成抽象思维方式的小学生来说就更容易掌握。

三、使学生牢固掌握、正确运用概念

掌握概念是指要在理解概念的基础上记住概念,正确区分概念的肯定例证和否定例证。能对概念进行分类,形成一定的概念系统。概念的运用主要表现在学生能在不同的具体情况下,辨认出概念的本质属性,运用概念的有关属性进行判断推理。学生是否牢固地掌握了某个概念,不仅在于能否说出这个概念的名称和背诵概念的定义,而且还在于能否正确灵活地应用,通过应用可以加深理解,增强记忆,提高数学的应用意识。

1、学过的概念要归纳整理才能系统巩固

学习一个阶段以后,引导学生把学过的概念进行归类整理,明确概念间的联系与区别,从而使学生掌握完整的概念体系。如学生学了“比”的全部知识后,我帮助他们归纳整理了什么叫比;比和除法、分数的关系;比的基本性质,利用比的基本性质,可以化简比;这一系列知识复习清楚之后,才能很好地解决求比例尺三种类型题和比例分配的实际问题。只有把比的意义理解得一清二楚,才能继续学习比例。表示两个比相等的式子叫做比例。这样做,就构成了一个概念体系,既便于理解,又便于记忆。概念学得扎扎实实,应用概念才会顺利解决实际问题。

2、通过实际应用,巩固概念

学习的目的是为了解决实际问题。而通过解决实际问题,势必加深对基本概念的理解。如学生学了小数的意义之后,我就让学生利用

课外时间,到商店了解几种商品的价钱,写在作业本上,第二天让他们在课上向大家汇报。通过了解的过程,非常自然地对小数的意义,读、写法得以运用与理解。又如学了各种平面图形后,我让学生回家后,观察家里那些地方有这些平面图形。通过这种形式的作业,学生感到新鲜,有趣。这不仅巩固了所学概念,还提高了学生运用数学概念解决实际问题的能力。

3、综合运用概念,不仅巩固概念,而且检验概念的理解情况。

在学生形成正确的数学概念之后,进一步设计各种不同形式的概念练习题,让学生综合运用、灵活思考、达到巩固概念的目的,这也是培养检查学生判断能力的一种良好的练习形式。这种题目灵活,灵巧,能考察多方面的数学知识,是近些年来巩固数学概念一种很好的练习内容。

练习概念性的习题,目的在于让学生综合运用,区分比较,深化理解概念。所安排的练习题,应有一定梯度和层次,按照概念的序,学生认识的序去考虑习题的序。要根据学生实际和教学的需要,采用多种形式和方法设计,借以激发学生钻研的兴趣,达到巩固概念的目的。尤其应组织好概念性习题的教学,引导学生共同分析判断。

多年来的教学实践,使我深刻地体会到:要想提高教学质量,教师用心讲好概念是非常重要的,既是落实双基的前提,又是使学生发展智力,培养能力的关键。但这也仅仅是学习数学的一个起步,更重要的是在学生形成概念之后,要善于为学生创造条件,使学生经常地

运用概念,才能有更大的飞跃。只有学生会运用所掌握的概念,才能更深刻地理解概念,从而更好地掌握新的数学知识。只有这样,培养能力,发展智力才会有坚实的基础。

2014年1月19日

第四篇:小学数学概念教学模式

小学数学概念教学模式

东营市胜利物探小学 李涛

数学概念是人对客观事物中有关数量关系和空间形式方面本质属性的抽象。数学概念具有抽象性和概括性的特点。

数学概念是数学知识结构中的基本材料,也是数学认知结构的重要组成部分。在数学教学中,使学生正确掌握数学概念是理解掌握数学原理、形成基本技能的关键,也是培养学生数学能力、发展学生智力的基础。

小学数学中的概念涉及到数的概念、运算的概念、量与计量的概念、几何形体的概念、比和比例的概念、方程的概念,以及统计初步知识的有关概念等。

儿童获得概念的两种基本形式是:概念形成与概念同化。1.概念形成:

所谓概念形成,是指学生从许多具体事例中,以归纳的方式概括出一类实例的本质属性,从而获得概念的一种形式。概念形成的心理过程主要包括辨别、分化、抽象、概括等心理活动。概念形成的认知方式常用于学生初次感知某一概念时,小学低年级学生概念学习为主。以“圆的认识”为例,要使学生形成圆的概念,需要学生从自己的生活经验出发,在生活中找到诸如车轮、硬币、圆桌、钟面等等“圆”的原型,并感知这些物体的共同特征,从而逐步形成圆的表象,归纳出这类形状物品的本质属性:到定点的距离等于定长的点的集合。在学生运用概念形成这一形式获得概念的过程中,要求教师要善于举例,教师为学生提供的例子必须是典型的同时又是学生所熟悉的,并且教师要为学生提供非常充分的实例让学生进行感知,只有在充分感知基础上建立起的概念的表象才是牢固的、完整的。同时教师还必须善于比较和分类,教师要引导学生通过分类呈现出具有共同本质属性的同类事物,通过比较凸显出这类事物与其他事物不同的本质属性。

2.概念同化:

概念的同化是小学生掌握数学概念的又一种基本形式。它是指利用学生认知结构中原有的概念,以定义的方式直接向学生揭示新概念的本质特征,从而使学生获得新概念的方式。以小学中高年级为主。小学生到了中高年级,随着年龄的增长,认知结构中知识和经验的不断积累和智力的不断发展,概念同化的方式逐渐成为他们获得新概念的主要形式。如学生在获得“直角三角形”这一概念时,学生原有的认知结构中,已经有了“直角”和“三角形”的概念,在这里只是将两个已有概念进行组合,直接向学生揭示“有一个角是直角的三角形是直角三角形。”简言之,概念同化就是以概念解释概念。在用这种形式帮助学生获得概念时,教师需要弄清学生的原有认知基础,更要找准新概念的知识生长点。在此基础上,教师通过不断地追问帮助学生逐步澄清概念的本质属性。

不管使用何种形式帮助学生获得新的概念,都要符合学生的认知规律。根据皮亚杰的认知发展阶段论,小学生正处于具体运算阶段。在这一阶段,儿童形成了初步的运算结构,出现了逻辑思维。但思维还直接与具体事物相联系,离不开具体经验,还缺乏概括的能力,抽象推理尚未发展,不能进行命题运算。此阶段正处于以直观形象思维为主向抽象思维为主的过渡阶段,他们的思维带有很多的直观形象性,他们是有了所感才有所思,然后才有所知。因此此阶段的儿童要完成对一个概念的获得,必须遵循“感知—表象—抽象”的过程进行。“感知”属于直观动作思维,需要学生通过演示、观察、比较、操作等直观的动作来完成,这一过程可以帮助学生在头脑中建立起对于概念的“表象”,形成表象的过程属于具体形象思维,“表象”的建立过程是从直观到抽象的过渡阶段,学生对于概念本质属性的抽象不是对具体事物本身的抽象,而是将学生头脑中形成的“表象”出来进行一系列的分析、综合、抽象、概括等抽象逻辑思维,从而确定事物的本质属性,获得概念。整个过程是一个从直观到抽象,从感性到理性,抛去非本质抓住本质属性的过程。学生必须经历这一完整的过程才能够真正掌握一个概念。

学生概念的获得过程,强调数学学习与儿童的生活联系起来;强调数学学习是儿童的一种发现、操作、尝试等主动实践活动,强调数学学习的体验性;强调数学学习也是一种认识现实世界的一般方法的学习;强调数学学习是群体交互合作与经验分享的过程。

概念教学的整体要求是:使学生准确地理解概念、使学生牢固地掌握概念、正确地运用概念。要达成这样的教学目标,必须要遵循儿童的认知规律,让学生经历完整的“感知—表象—抽象”的思维过程。以此为依据我们总结出一套完整的概念教学的模式,此模式分为五个环节:

环节一:联系实际,引入概念。

概念可以从小学生比较熟悉的事物入手引入。如二年级学习长方形时,可通过学生观察他们所熟悉的桌面、书面、黑板面等事物,从而引入概念。也可以在旧概念的基础上引入新概念。当新旧概念联系十分紧密时,不需要从新概念的本义讲起,而只需从学生已学过的与其有关联的概念入手,加以引申、指导,得出新的概念。如教学约数和倍数的概念时,可从“整除”这一概念入手,引出概念。

环节二:感知实例,建立表象。

教师为学生提供典型的、熟悉的感性材料,作为形成概念的物质基础。让学生在充分的观察、比较、操作、演示的基础上逐步建立起概念的表象。

环节三:提取表象,抽象概念。

引导学生将上一环节建立起的表象进行提取,并加以分析、综合、抽象、概括,找出全体材料共同的本质属性。如学习梯形的概念时,可针对如上所提供的形式不同的梯形,找出其共同之处。(1)都是四边形,(2)每个四边形仅有一组对边平行。合并上述两个要点,即可得出:只有一组对边平行的四边形叫做梯形。

环节四:结合应用,深化理解。

数学概念一旦形成,就要注意在实践中的应用,让学生将所形成的概念带入具体的情境中进行巩固。这一过程是从抽象再次回到具体的过程,这一环节的目的是使学生能够学以致用。此环节教师要精心设计练习,引导学生巩固概念。练习的类型可以有:①应用新概念的练习。②关键问题重点练习。③对比练习。

环节五:扩展延伸,发展概念。

此环节要充分利用好概念的变式与反例,让学生在对比、辨析的过程中明确概念的内涵与外延,从而深化对于概念本质属性的理解。

在整个概念教学模式中,对于教师的要求:

1.要认真做好上课前的准备工作,为学生提供形成科学概念的实物、教具、模型等,为学生建立概念创造条件。

2.概念的抽象要适时,要准确把握抽象概括的时机。要以足量的感性材料为基础,让学生在头脑中形成清晰的表象。抽象不可过早,过早容易使学生死记硬背,不理解,影响课堂教学的效率。3.概念形成之后,要通过比较,搞好概念的类比,形成概念系统。为此,教师要站在全册、全学年、乃至全套小学数学教材的高度审视和把握本节教学内容。

对学生的要求:

1.要求学生养成乐于观察、勤于观察、善于观察的良好习惯。在观察中把握本质属性,形成清晰的表象。

2.要积极参与概念的抽象概括。抽象概括时,学生要克服被动地接受心理,积极思考、大胆发言。要能在教师的引导、疏导、启发、点拨、订正中,去伪存真,使认识不断地升华,以便在认识概念中逐步学会抽象概括的方法。

概念教学的模式固然有利于我们更好地帮助学生形成新的概念,但是作为教师,我们却不能够模式化,不能拘泥于死板的模式,只有真正弄懂了所学概念的本质,充分了解了学生的认知基础,深刻把握了学生的认知规律,当遇到具体的概念教学内容时,我们才能结合具体情况做出科学的教学设计,取得良好的教学效果。

第五篇:小学数学概念教学浅谈(汇总10篇)

篇1:小学数学概念教学略谈

小学数学概念教学略谈

在小学数学概念的教学过程中,教师一定要从小学生年龄实际出发,才会收到好的教学效果. 1.直观形象地引入概念 数学概念比较抽象,而小学生,特别是低年级小学生,由于年龄、知识和生活的.局限,其思维处在具体形象思维为主的阶段.

作 者:王文菊  作者单位:贵州省仁怀市茅坝一小校本部 刊 名:科海故事博览・科教论坛 英文刊名:KEHAI GUSHI BOLAN(BAIKE LUNTAN) 年,卷(期):2010 ""(3) 分类号:G62 关键词: 

篇2:小学数学概念的教学

小学数学概念的教学

数学概念是小学数学知识的基本要素。小学数学是由许多概念、法则、性质等组成的确定体系。每一个法则、性质等实际上都是一个判断,而且离不开概念。可以说,判断是概念与概念的联合。因此,要使小学生掌握所学的数学知识和计算技能,并且能够实际应用,首先要使他们掌握好所学的数学概念。在中国编写小学数学课本时十分重视数学概念的教学。

一 数学概念的确定

在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。

(一)选择数学概念时应适应各方面的需要。

1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。

2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。

3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的`具体情况选择适当的解答方法。这里举一个例子。

要求五年级的一个实验班的38名学生(年龄10.5―11.5岁)解下面两道题:

学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是91.7%。下面是两个学生的解法。

一个中等生的解法:

一个下等生的解法:

多少米?

这道题是比较难的,学生没有遇到过。结果很有趣。58.3%的学生用方程解,41.7%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。

下面是两个学生的解法。

一个优等生用算术方法解:

一个中等生用方程解:

解:设买来蓝布x米

(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具

[1] [2] [3] [4]

篇3:浅谈小学数学概念教学方案

浅谈小学数学概念教学方案

小学低年级的数学概念,大部分是具体的,可以直接感知,浅谈小学数学概念教学。从四、五年级起,抽象程度较大的要领逐步增加,要让四、五年级学生掌握这些抽象的概念,有一 定的困难。但他们对具体的材料和经验性的知识却很感兴趣,于是,我就抓住儿童这一特点,按照由具体到抽象,由感性到理性的认识规律,采用直观演示、动手测量、新旧知识相联系等方法,深入浅出地讲清概念,使学生理解又快又深。

在讲圆锥体积时,我先用纸做了三个圆锥体和一圆柱体。其中一个圆锥体和圆柱等底等高;圆柱等底不等高;一个和圆柱等高不等底。然后把圆锥里盛满沙子(每个圆锥盛三次)倒入圆柱。这样学生就清楚地看到:三个圆锥体中,只有那个和圆柱体等底等高的圆锥体里的`沙子三次正好填满圆柱体,其余两个不合适。

接着再让学生思考,找圆柱和圆锥之间的关系,在学生理解的基础上,动用已学过的圆柱体积的公式,推导出圆锥体积的计算方法。最后,给学生小结,圆锥的体积,等于和它等底等高圆柱体积的三分之一。经过这样由浅入深的直观演示和讲解,既复习了圆柱体积的计算公式,又学会了计算圆锥体积的方法,效果很好。

五年级在讲了正比例以后,我出两个题:一是正方形的边长和面积成什么比例?二是长方形的长一定,它的宽和周长成什么比例?学生一看题,马上就错误地判断成正比例。这是什么总是这主要是教材中的难点还没有攻破。在回讲正比例时,我重新反复强调了三点:

(一)两种相关联的量成正比例,必须以某一种的量固定不变为前提,正方形四条边都相等,一边变化,其余的边也随着变化。

其中没有一个固定量,所以边长和面积不成正比例。

(二)充分强调了“相同倍数”这个要领相关联的两种量,虽然其中一种量扩大或缩小,另一种量也扩大或缩小,但如果它们扩大或缩小的倍数不相同,这两种量仍不叫成正比例的量。比如,长方形的长固定,宽和周长就不成正比例,因为宽扩大或缩小,周长虽然也随着扩大或缩小,但它不是扩大或缩小相同倍数。因此也就不成正比例。

(三)告诉学生如果两种量之间成正比例,那么自变的一个量相当于乘法中的一个因数,固定的一个量相当于另一个因数,随之变化的另一个量相当于积。在判断成正比例时,如果能肯定两种量存在着因数与积的关系,这两种量就一定成正比例。这样强调并反复举例说明,学生就掌握了判断正比例的方法,达到了深刻理解要领突破教材难点的目的。

讲清概念的含义,突破难点以后,要选择典型的有代表性的练习题让学生自己动手练习,为了加深理解概念在课堂教学中,我采用读读、议议、讲讲、练练的方法,每一节我只讲十五分钟到二十分钟。其余时间,在教师指导下采用多种形式让学生练习。在讲完一个概念之后,就指导学生反复阅读教材,要求学生逐字逐句推敲,进一步消化所学的知识。讲了“已知一个数的几分之几是多少,求这个数,用除法”这一概念以后,我指导学生反复阅读教材中的例题,观察思考题中的图解和算式,从而理解了它是从乘法和除法逆运算关系上推导出来的,知道了“已知一个数的几分之几”是条件,“求这个数”是问题,“用除法”是计算方法。

篇4:小学数学概念教学策略

1.有效的引入是概念形成的基础。

在我这几年的小学数学教学中,我感觉“利用学生身边熟悉的生活例子”或“合适的情境”进行引入,能够让学生构建抽象的概念。我以《体积与容积》一课来说说,体积的定义:物体所占空间的大小。如果我们不结合生活实际,他们是很难理解这一概念的。

我是从乌鸦喝水的故事激起学生的兴趣,然后通过设置问题“乌鸦为什么能够喝到瓶中的水?”引出“石头占了水的空间”;再问学生“在我们身边,哪些事物也占了空间?”通过学生思考意识“书包占了教室的空间”“铅笔占了笔盒空间”等物体都是占了空间的。最后,我用一个魔方和可爱的小公仔进行比较“谁占空间比较大?”让学生感受物体不仅仅占了空间,而且占的空间是有大有小的。

通过这些生活中的实物,再加上鲜活的例子。学生就能够通过表象特征去抽象出共同的特征,形成概念。学生认知概念后,还要及时强化,让他们在小组内或同桌间,通过拿物体让对方说出”什么是它的体积”。

2.切实地概括是概念形成的前提

以《分数的再认识》为例说一说:通过看图,用分数表示阴影部分。说说从具体概念到抽象概念

(1)把一张纸平均分成4份,取其中的1份,用1/4表示;

(2)把4个苹果平均分成4份,取其中的3份,用3/4表示;

(3)把全部蝴蝶平均分成5组,取其中的3组,用3/5表示;

我们把一张纸,4个苹果,或5组蝴蝶都可以看成一个整体,即单位“1”。综上所述,把一个整体平均分成若干份,取其中的一份或几份,可以用分数表示。

数学概念是“抽象之上的抽象”,它强大的系统性需要我们在教学时结合孩子的年龄特征,采取合适的教学策略开展教学活动,注重概念的现实意义和数学意义,从而提高教学质量。

篇5:小学数学概念教学策略

一、提供感性材料,帮助学生建构概念

在学习几何形体概念的过程中,学生要用各种感官去感知概念、听取教师的言语说明,阅读文字符号,进行实际操作,从而了解概念的表征,有选择地把感知的概念的有关信息进行初步概括,形成表象。小学生的思维以直观形象思维为主,在理解概念的过程中,我们可以提供一些感性材料,借助各种教学指导,帮助学生更好地理解概念。当然,在提供感性材料帮助学生理解概念时,根据不同的概念,我们可以采取不同的教学策略。

(一)运用直观教学,帮助学生理解概念

小学生以形象思维为主,如果能借助直观演示,将更容易理解概念的本质。例如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形?”根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要做成三角形的而不做成四边形的呢?同时借助教具的直观演示,进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合儿童认知规律的。

(二)通过实验探索,促进学生理解概念

理解几何形体概念的本质,需要动手操作和实验观察相结合,我们要让学生在实验探索的过程中感悟和理解概念,及时引导学生比较操作对象之间的异同点,总结出概念的本质属性。如教学“体积”概念时,先要学生理解“任何物体都占有空间”的含义,才能理解体积的概念。为此,我们通过“乌鸦喝水”的故事引入后,提出问题“水为什么会上升?”,初步理解“空间”,然后进一步设问“到底是因为石块有重量还是因为占有空间才使水面上升?别的物体也占有空间吗?”接着请学生设计一个实验,来证明他们的发现,并要求在实验中能紧紧围绕“①是怎样进行实验的?②在实验过程中观察到了什么现象?③这种现象说明了什么?”最后请学生交流汇报,一名同学演示,其他学生边观察边思考:“如果杯中液体的水,变成固体沙,同样把石块放入沙里,会有什么现象发生?”通过小组合作交流,得出结论。结合实例使学生深刻理解了“体积”的概念。

(三)加强概念变式,帮助学生理解概念

变式是指概念的肯定例证在无关特征方面的变化。变式用以说明同一个概念的本质特征相同、非本质特征不同的一组实例。在几何形体概念的教学中,我们可以充分运用变式来帮助学生更深刻地理解概念。例如,在学习“垂直”的概念时,学生常习惯于竖着理解,过直线外一点作垂线,也习惯于向水平方向画。当变化了直线的方向、位置,就会受思维定势影响,发生错误,以致在位置或形状有了变化的三角形(平行四边形、梯形)中找错、画错高,影响面积的正确计算。其原因就在于“垂直”这个概念的形成阶段未能为学生提供充分的变式材料,学生没能在“两条直线相交成直角”这一本质意义上对“互相垂直”进行抽象概括。在认识和画出三角形(平行四边形、梯形)的高时,也要在变式图形中进行。然后引导学生分析、比较,找出它们的异同点,从而帮助学生从不同方面理解“三角形的高”的本质特征。

二、构建概念的网络体系,深化概念本质

在教学概念时,我们不应该孤立地教概念。在准备教一个新概念之前,要为学生提供一个可把这个概念置于其中的框架,如果孤立地学习概念,将会限制学习的水平。因而在教学中,教师应当采取一些恰当的方式了解学生,找到新旧知识之间、文本知识和生活之间的联结点展开教学,让学生以联系的观点学习新的概念,促进主动建构,形成概念的网络体系。

(一)比较概念的异同,促进概念的认识

通过同类事物的比较,有利于帮助学生发现同类概念的共同和本质的特点。在学习过程中,很多时候存在相近的概念。比如教学“锐角三角形”、“直角三角形”、“钝角三角形”等概念时,给学生提供大量实例,让学生在测量的基础上,把三角形按角分类,并引导学生讨论为什么这样分,分在一组的三角形具有哪些共同特征,最后教师给出三个概念。呈现三种不同类型的三角形,在比较中,使概括更加精细化,进一步明确这些概念的本质特征。

(二)揭示概念间的联系,加深概念的理解

新知识的理解依赖于头脑中已有的知识。在概念教学中,寻求学生原有认知结构中的适当知识是理解新概念的重要基础。例如在“认识平行四边形”的学习中,平行四边形是在学习了正方形、长方形等图形的基础上学习的,可以说,长方形、正方形的知识是学习了平行四边形的上位知识,把握学生知识背景,瞄准学生的最近发展区,可以复习长方形、正方形的特征和探究方法,建立表象,从而请学生通过猜想、操作、验证等方法抽象出平行四边形的特征。然后请学生通过比较、观察、动手操作等方法探索这三种图形之间的关系,找出它们之间的异同点,把分散的图形串联起来,动态联系构建认知结构,经历一个部分到整体的过程,进一步丰富概念的外延,明确概念的本质。

(三)利用图式建立结构,促进概念的内化

图式是指一个有组织的、可重复和概括的东西,是个体对外部世界的知觉、理解和思考方式。我们在帮助学生学习概念时,要有目的地引导学生把相关的概念分类、整理、归纳并用图式表示出来,建立概念结构,促进概念内化。例如,在教学三角形分类时,可以借助韦恩图帮助学生进一步理清各种三角形的本质特征。又如,在复习了平面图形过程中,我们可以引导学生通过比较、概括、分类等方法,逐步画出小学阶段平面图形结构图,从而更进一步地理解各类概念本质和明确概念之间的联系和区别。

总之,促进学生空间思维发展是几何形体概念教学的最高层次。教师只有根据概念的本质,从学生认知特点和现实起点出发,运用各种有效地教学策略,以发展的观点开展教学,在概念的系统中教学概念,建立起概念之间的联系,紧扣概念本质,帮助学生在观察、探索、体验、实践中深入剖析理解概念本质,才能实现几何形体概念的有效教学。

篇6:小学数学概念教学策略

一、数学概念教学的重要性

数学概念是数学知识中最基础的知识和重要组成部分。首先,它具有相对独立性。概念反映的是一类对象的本质属性,即这类对象的内在的、固有的属性,舍去了这一类现象的具体物质属性和具体关系,抽象概括出其中量的关系和形式构造。因此,在某种程度上表现为与原始对象具体内容的相对独立。其次,它是抽象性与具体性的统一。数学概念反映了一类对象的本质属性。以“矩形”概念为例,现实世界中并不能见到抽象的矩形,而只有形形色色的具体的矩形。从这个意义上说,数学概念“脱离”了现实。由于数学中使用了形式化、符号化的语言,使数学概念离现实更远,抽象程度更高。正因为抽象程度高,与现实的原始对象联系弱,才使得数学概念的应用更广泛。不管怎么抽象,高层次的概念总是以低层次的概念为具体内容,且数学概念是数学命题、数学推理的基础部分,就整个数学体系而言,概念是实实在在的。所以,它既是抽象的又是具体的。再次,它还具有逻辑联系性。数学中大多数概念都是在原始概念的基础上形成,并被用逻辑定义的方法,以语言或符号的形式固定,因而具有丰富的内涵和严谨的逻辑联系。在数学概念学习过程中,小学生往往对概念的内涵和外延把握不准,容易对概念产生模糊的认识,以致影响分析问题、解决问题和信息处理的能力。因此,正确理解数学概念是掌握数学基础知识的前提,概念教学是整个数学教学的关键。教师应当加强概念教学,努力使学生对概念理解透彻、掌握牢固、应用灵活,并设法培养学生的思维能力和解题技能,从而提高教学质量。

在小学数学教学过程中,学生数学能力的培养、数学问题的解决,实际上是运用概念做出判断、进行推理的过程。在概念、判断、推理这三种思维形式中,概念作为思维的“细胞”,是判断和推理的前提。没有正确的概念,就不可能有正确的判断和推理,更谈不上逻辑思维能力的培养。因此,学好概念是学好数学最重要的一环。从小学数学概念教学的实际来看,学生对概念的态度大体有两种:一种认为基本概念单调乏味,不重视它,不求甚解,导致对概念的认识和理解模糊。另一种是重视基本概念但只是死记硬背,而不能真正透彻理解,这样必然严重影响学生对数学基础知识和基本技能的掌握和运用。只有真正掌握了数学中的基本概念,学生才能把握数学的知识系统,才能正确、合理、迅速地进行运算、论证和空间想象。从一定意义上说,数学水平的高低,关键是在对数学概念的理解、应用和转化等方面的差异。;因此,抓好概念教学是培养数学能力的根本一环。

影响小学数学概念教学的因素很多。一方面,在教学中教师对概念教学的重视程度是影响教学的主要外部因素。在概念教学中,教师往往刻意关注概念表述的“精确”,而忽视其实质和实际的背景;强调定义、定理的字斟句酌推敲,而忽视其发生、发展的过程和反映的基本事实和现象;过分追求逻辑严谨和体系的形式化,而忽视学生在一定年龄阶段的思维所应该具有的形象性。另一方面,《小学数学课程标准》中指出,小学数学基础知识中的概念主要包括:数的概念、集合图形的概念、四则运算的概念、计量的概念、比和比例的概念、式的概念等。这些概念具有较强的抽象性、概括性等特征,本身也给概念教学带来了难度。

就小学生个体而言,由于年龄较小,缺乏足够的感性材料和实际生活经验,抽象逻辑思维能力、语言理解能力等较差,这些因素都会影响小学数学概念教学的成效。

小学生学习数学概念,往往是利用概念的同化和概念的形成这两种方式。概念的同化需要学生从已有的认知结构中,检索出与新概念有联系的概念,通过相互作用提示新概念的本质属性。学生个体之间的智力是有差别的,即便是同一年龄或同一年级的学生,由于智力发展的程度不同,达到相应的学习水平的速度也不一样,其主要原因是学生的认知策略和元认知水平的差别。概念的形成主要依靠学生的直接经验,从大量的感性材料中进行抽象概括,提示概念的本质属性,从而形成概念。小学数学的概念教学有明显的认知直观性,需要有具体的经验作支持。因此,学生原有认知结构中概念的清晰度和稳固程度、原有生活经验和得到的感性材料的丰富性,将对概念教学起着重要作用。

学生的抽象概括能力和语言表达能力,都是影响概念教学效果的内部因素,值得关注。在概念的形成过程中,学生通过观察客观事物,发现事物的各种属性,然后把本质属性从中抽象出来。在掌握了概念的内容后,再把这些本质属性推广到同类事物中,才能对概念所反映的同类事物有普遍的认识,这才算理解了概念。比如,教学长方形概念时,应先让学生观察具有长方形的各种实物,引导学生找出他们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。如果缺乏必要的抽象概括能力,概念的内涵和外延就会出现片面扩大或缩小的错误。学生的语言表达能力对数学概念教学也相当重要。如果数学语言表达能力差,必然对概念的表述不够准确,就会影响到概念的理解、巩固和运用。比如,“半径”的准确定义应该是:“连接圆心到圆上任意一点的线段叫做圆的半径。”如果学生把它说成是圆心到圆的距离,无疑就会在实际运用中产生偏差。

二、数学概念优化的策略

小学数学概念的教学,一般要经过概念的引入、概念的建立、概念的巩固和概念的深化等环节。这是一个复杂的思维过程,既是知识的再创造、概念的逐步理解过程,又是改善学生思维品质、发展学生思维能力、培养学生创新意识和创造能力的过程。

1、概念的引入

概念的引入是数学概念教学的第一步,直接关系到学生对概念的理解和掌握程度。

形象直观地引入。小学生掌握概念是一个主动的、复杂的认识过程,他们的抽象思维是直接与感性经验相联系的。因此,首先应提供丰富而典型的感性材料,使他们通过直观形象,逐步抽象、内化成概念。形象直观地引入概念,就是通过小学生所熟悉的生活实例以及生动形象的比喻,提出问题,引入概念;或者采用教具、模型、图表、投影演示及动手操作等,增加学生的感性认识,然后逐步抽象,引入概念。在这一过程中,应该重视生活实例在引入概念中的作用。数学来自现实生活,生活中处处有数学,结合生活实际引入概念符合小学生的心理特点和认知规律。比如,在教学三角形的特点时,可以让学生思考:在实际生活中哪些地方用到了“三角形”?自行车的三角架、支撑房顶的梁架、电线杆上的三角架等,为什么都做成三角架而不做成四边形呢?通过生活中的实例,来提示三角形具有稳定性的特点。利用学生熟悉的生活实际中的一些事物或实例,使其获得感性认识,便于在此基础上引入概念。现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的实际操作引入概念,可以使抽象的概念具体化。操作活动,对学生思维能力的发展有着极大的推动作用。教学中,可以让学生亲自动手,量一量、分一分、算一算、摆一摆,从中获得第一手的感性材料,为抽象概括出新概念打下基础。比如,教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算一算周长是直径的几倍。让学生自己发现圆的大小虽然不同,但周长总是直径的3倍多一些。这时教师引入概念:圆周长是同圆直径的3倍多,是个固定的数,称为“圆周率”。

从原有概念的基础上引入。数学概念之间的联系十分紧密,因此可以从学生已有的概念知识基础上加以引申,直接导出新概念。这样,既巩固了旧知识,又学习了新概念,强化了新旧知识的内在联系,能帮助学生建立系统、完整的概念体系,充分调动学习的积极性和主动性。比如,在“整除”概念基础上建立“约数”、“倍数”概念;由“约数”导出“公约数”、“最大公约数”;由“倍数”引出“公倍数”,再导出“最小公倍数”。又如,在几何知识中,可以由长方形的面积导出正方形、平行四边形、三角形、梯形等面积公式。

从计算方法引入。指通过计算发现问题,通过计算引出概念。有些概念不便运用实例引入,又与已有概念联系不大,就可以通过对运算的观察分析,发现其中蕴含的本质属性,达到引出概念的目的。比如,教学“倒数”的认识时,可以先给出两个数相乘乘积是1的几个算式,让学生计算出结果,再观察、分析,从中发现规律,引出“倒数”的定义。

2、概念的建立

概念的建立是概念教学的中心环节。感知和经验只是入门的导向,对概念本质属性的揭示才能成为判断的依据。

利用变式。所谓变式,是指提供的事例或材料不断地变换呈现形式,改变非本质属性,使本质属性“恒在”,借此可以帮助学生准确形成概念。感性材料的表现形式对数学概念的学习和掌握有重要影响,如果给学生提供的感性材料都是一些“标准”的实物或图形,那么学生在概念的理解上就难免出现片面性。利用变式,可以使学生透过现象看到本质,真正掌握概念。

利用对比辨析。建立概念时,对一些临近的、易混淆的数学概念,应该及时进行对比辨析,弄清它们之间的联系和区别。如最大公约数和最小公倍数;整除和除尽;正比例、反比例和不成比例的量等。这样,既可以巩固概念,又能使新概念清晰,有助于学生概念系统的逐步形成。

利用反面衬托。反面衬托即举出概念的反例,可直接举反例说明,也可从正反两方面分析,是进行概念教学的有效方法。学生通过接触这些与概念相关的正反例子,能进一步加深对概念的理解。

多层次、分阶段建立概念体系。概念的理解不是一次完成的,要有一个长期的、反复的认识过程。同样,一个完整的概念体系的建立也要多层次、分阶段进行。比如,在教学“分数的初步认识”时,可以分成三个层次来教学:第一是突出把一个分数“平均分”以后“取份”;第二是解决“份数”与“整体”的关系;第三是明确单位“1”可以是一个物体,也可以是一类物体的集合体。通过这样反复的概念教学,学生不但能够很好地掌握分数的基本概念,而且为继续学习分数的本质属性打下了良好的基础。

3、概念的巩固与深化

从认识的过程来说,形成概念是从感性认识上升到理性认识的过程。即从个别的事例中总结出一般性的规律,巩固概念则是识记概念和保持概念的过程,是加深理解和灵活运用概念的过程,即从一般到个别的过程。小学生数学概念的掌握不是一蹴而就的,必须通过及时的巩固来加深对概念的理解。

巩固概念一般采用熟记、应用并建立概念系统等方法来进行。熟记,就是要求学生对概念定义在理解的基础上通过反复感知、反复回忆等手段达到熟练记忆。应用,则是指学生在应用概念中,达到巩固概念的作用,其主要形式是练习。比如,教学“分数乘法的意义”后,让学生说说3÷4×5,5×3÷4,2÷3×3÷4等的意义。又如,学了“圆的认识”后,让学生判断图中哪条线段为圆的半径,哪条线段为圆的直径。

学生的认识是由浅入深、由具体到抽象的发展过程,而学生数学知识又是分段进行,概念教学也是分段安排的。因此,概念教学既要重视概念的阶段性,又要注意到概念发展的连续性,要有计划地发展概念的含义,按阶段发展学生的抽象概括能力。通过运用,加深学生对概念的认识,使学生找出概念间的纵向与横向联系,形成系统的认识结构,达到深化概念的目的。

总之,小学数学概念教学的各阶段环环相扣。引入概念后要紧接着建立概念,建立后要及时巩固,巩固中要加深理解,同时又要为概念的发展作准备。教师在概念教学中,要结合概念的特点和学生的实际,灵活设计不同的环节,采取多种教学策略,使学生在掌握数学概念的同时,提高数学能力。

篇7:小学数学概念四环节教学谈

小学数学概念四环节教学谈

小学数学概念一般可以分为三种情况:一是定义型的概念,如约数、倍数、分数等。这些概念,教材中有 确切的定义。二是描述型的概念,如直线、小数等。这些概念,教材中没有严格的定义,只用语言描述了其基 本特征。三是感知型的概念,这种概念,在小学阶段既没有下严格的定义,也无法用语言描述,只能用实物或 图形让学生直观感知认识。如圆的概念,义务教材第一册,课本上只画了一个圆的图形,并注明这就是圆。义 务教材第九册也没有给出圆的定义,只是说“圆是平面上的一种曲线图形”。对于这些概念如何进行教学呢? 一般要经过引入、形成、巩固和发展四个环节。在每一个教学环节中,为了达到一定的教学目的,教师要根据 概念的不同情况及学生的具体实际,采用相应的教学方法。

一、概念的引入

1.形象直观地引入。

所谓形象直观地引入概念,就是通过学生所熟悉的生活事例,以及生动形象的比喻,提出问题,引入概念 ;或者采用教具、模型、图表、幻灯演示及让学生动手操作等增加学生的感性认识,然后逐步抽象,引入概念 。

如,在三年级教学三角形的特性时,可以让学生想想,在实际生活中你见过哪些地方用到了“三角形”? 根据学生的回答,教师提出问题,自行车的三角架,支撑房顶的梁架,电线杆上的三角架等,它们为什么都要 做成三角形的而不做成四边形的呢?进而揭示三角形具有稳定性的特性。这样,利用学生的生活实际和他们所 熟悉的一些生活实际中的事物或事例,从中获得感性认识,在此基础上引入概念,是符合儿童认知规律的。

现代心理学认为,实际操作是儿童智力活动的源泉。通过学生的'实际操作引入概念,可以使抽象的概念具 体化。操作活动,对学生的思维能力的发展有着极大地推动作用。教学中,可以让学生亲自动手,量一量、分 一分、算一算、摆一摆,从而获得第一手感性材料,为抽象概括出新概念打下基础。

如教学“圆周率”的概念时,可以让学生做几个直径不等的圆,在直尺上滚动或用绳子量出圆的周长,算 一算周长是直径的几倍。让学生自己发现得知圆的大小虽然不同,但周长总是其直径的3倍多一些, 这时,教 师揭示:圆周长是同圆直径的3倍多,是个固定的数, 我们称它为“圆周率”。

2.计算引入。

当通过计算能揭示数与形的某些内在矛盾或本质属性时,可以从计算引入概念。

如,教学“互为倒数”这个概念时,教师先出示一组题让学生口算:3×1/3,1/7×7,3/4×4/3,9/11× 11/9……,算后让学生观察这些算式都是几个数相乘,它们的乘积都是几。根据学生的回答,教师指出:象这 样的乘积是1 的两个数叫做互为倒数。其它如比例、循环小数、约分、通分、最简分数等都可以从计算引入。

3.在学生原有概念的基础上引入。

有些概念与学生原有的旧概念联系十分紧密,可以从学生已有的概念知识基础上加以引伸,导出新概

[1] [2] [3]

篇8:例谈小学数学概念的教学

例谈小学数学概念的教学

例谈小学数学概念的教学

广州市天河区华景小学朱海英

数学概念是数学知识结构中非常核心的内容。学生对数学概念的理解与掌握是否准确、清晰和完整,将直接影响到各种数学公式的学习和数学问题的解决。因此,数学教师上好概念课是非常重要的。本文将结合具体的教学案例谈谈如何有效进行概念教学。

一、创设情景,诱发需要,激起学习概念的欲望。数学概念的学习往往是比较抽象、枯燥的。如果在学习中能充分调动学生学习的积极性,常常能收到事半功倍之效。例如在教学“平均分”的认识时,我们创设了学生喜闻乐见的春游前分发物品的情景,问学生怎样分才公平?同时对教材进行了必要的补充,提供给学生的物品既有可以分完的,也有分不完的。由于情景富于吸引力,学生跃跃欲试,在尝试用学具操作的过程中体悟到每份要分得同样多“才公平”.通过观察、操作、归纳、分析,学生对平均分的理解呼之欲出,这时老师再适时引入“平均分”就水到渠成了。同时,在分一分中客观存在的“分不完,有剩余”的现象又为学生的后续学习有余数的除法做了铺垫。与此同时,在分的过程之中,教师有意识地将学生每次分的结果通过列表集中在一起,借助观察表中的`数量关系,学生很容易就发现当刚好分完的时候,可以用学过的求几个几的方法算出分的总量,这又自然沟通了乘法与除法之间的数量关系。而对于分不完有剩余的情况,学生也很自然想到要把不能继续再分的部分(即余数)加进去才可以算出原来的总量。

可见,恰当的教学情境既可以调动学生学习的积极性又可以帮助突破教学重难点。又如在教学百分数时,教师并没有直接出示百分数的概念,而是创设了妈妈去商店选购羊毛衣的生活情境,询问学生“一件羊毛衣上标着100%的纯羊毛,另一件标着87%的纯羊毛,你建议妈妈买哪件?为什么?”借助这种源于生活的讨论,学生通常会感到趣味盎然,在不知不觉中学会了概念。

反之,不是源于学生认知需要的学习,教学效果就大打折扣了。如关于“倍”的认识,有老师先摆了2朵红花,然后又摆了3个2朵蓝花,然后告诉学生这时蓝花是红花的3倍。学生没有认识“倍”的内在需要,而是硬生生地被告知这就是“倍”,这种毫无感情色彩的概念教学,实践证明学生会在后续的相关练习中经常出错。

二、创设多种情景,利用丰富的认知材料,在充分动手操作中感悟概念的本质特征。

总所周知,小学生的思维特征是形象直观思维为主,抽象概括能力还比较有限,而低中段的学生尤为突出,这对概念的学习无疑是一种制约。因此教师在概念教学中应尽可能地创设多种情景,让学生在充分的动手操作中感悟概念。如前面所说的平均分的认识,我们不但根据教材让学生用学具分一些很直观的东西,同时我们还考虑到学生比较欠缺的一些生活中可能会接触的与平均分相关的生活情景,如“每瓶水2元,12元可以买几瓶水?”“15位同学坐船,每3人做一只小船,需要几只小船?”“每天吃6粒药丸,1瓶30粒的药可以吃几天?”在分一分中感悟这也是平均分的现象;由于在倍的初步认识中我们有意识的拓宽平均分的生活情景,学生对平均分的认识就不在局限于“分苹果”这样显而易见的情景,在后续的问题解决中难度自然降低。

三、在形成概念之后再回到具体化。

学习数学概念是为了解决数学问题。概念的形成是将具体事物抽象概括的过程,在形成概念之后,要把这些本质属性推广到同类的事物中,这样才有助于学生加深对概念的理解和利用。如平均分的学习并没有在学生二年级时认识了平均分的概念以后就结束了,到了三年级学习除数是一位数的除法时,教师应帮助学生在解决问题的过程中进一步巩固对除法意义的认识。

总和言之,我们认为在数学概念的教学中,教师应根据学生的认知规律充分调动学生的积极性,利用各种变式材料,帮助学生掌握概念的内涵与外延,并学以致用,利用对概念的理解解决相应的数学问题,从而真正掌握数学概念。

参考文献

1、怎样让低年级学生理解概念,金雪根,徐丽莉《中小学数学小学版》2009年底1、2期

2、数学概念可以直接告诉学生吗---《倍的认识》教学例谈万培珍蔡海根《教学与管理》2006年3月15日

篇9:概念复习教学下小学数学的论文

概念复习教学下小学数学的论文

一、注重概念意象

(一)让学生们形成清晰的概念表象

概念表象指的是学生们以前所学过的概念在脑中再现的形象。表象并不是一种简单的再现,它属于感性认识,是一种从感性知觉到思维,由印象到概念的过渡环节。例如在复习“分数的意义”时,当学生看到便会在脑海中建立这样的一个形象:“把一个物体平均分成4份表示这样的1份”。当学生们在信中睡起这样的一个表象后,就能够更加容易的理解分数的意义“表示把一个物体平均分成几份表示这样一份的数”这一句话时就会更加的容易了。

(二)帮助学生再现概念形成与同化的过程

概念的形成,其指的是人们对于同类事物中的不同例子,在进行感知、分析、比较与抽象后,对这类事物的属性进行概括,从而形成概念的方式。概念同化是一种概念学习的方式。它是在教学的过程中,利用学生现有的知识经验,通过定义的方式直接提出概念,同时再揭示概念的本质属性,由学生主动的地与原认知结构中的有关概念相联系去学习和掌握概念的方式。因此在数学的概念复习的过程中,必须要为学生们再现概念的形成与同化的过程,以此来加深概念在学生心中的印象,让学生们能够知其然再知其所以然。例如在复习“平面图形面积”时,首先,先让学生们自己回忆到底学过多少中平面图形,让回让他们回忆这些平面图形的面积公式是如何来的,并让他们用自己的语言来描述这些面积公式得来的过程,并发现自己是否还有什么不理解的地方。这个过程就是一个概念的再一次形成与同化过程。在这一个过程中教师需要从其中发现学生们所掌握的知识是否还存在缺陷,并引导他们进行改进。

二、帮助学生形成一个系统的概念系

这里的概念系指的是在个体头脑中所形成的一个概念网络,在这个网络中的概念相互之间都存在着一些联系。对于概念的学习就必须要理清概念之间的相互联系,只有这样才能够更加牢固的掌握概念。

(一)为学生提供探究素材,理清概念之间的相互关系

例如在复习“量与计量单位”时,我们可以设计这样的一个教学过程:在课前让学生自己整理、了解量与计量单位的相关概念,以及相互之间的概念;进行转换摸底,了解学生对这两者的概念的掌握程度;通过教学突出量与计量单位这两者概念之间的关系,让学生自己形成一个系统的模式。例如帮助学生认清长度单位、面积单位和体积单位之间的关系,整合长度、面积、体积单位的进率和各自进率的联系。

(二)联系现实,让学生触类旁通

概念的复习其重点应该帮助学生去努力的建立起关系体系,而不是鼓励他们成为一个方法的熟练操作者。概念的复习是为了让学生们更好的掌握概念。通过这训练,让学生们对分数、比例的概念已经它们之间的关系了解的更加的深刻,同时让学生们学会在进行概念的复习的时候要举一反三,并能够触类旁通。

三、帮助学生对一些概念的等价定义形成知识网络

在概念复习的过程中,要帮助学生对那些概念的多个等价定义在头脑中形成一个个完整的知识网络。

(一)帮助学生加强对相似概念的辨析

在小学数学中,有一些概念,他们含义接近,但是在具体的.本质上却又有一些区别。对于这些概念,学生们背诵了、记住了字面意思,并不等于他们就真正的理解了概念了。教师们必须要痛实例来突出这些概念的特征,帮助学生们真正的理解概念的内涵,区分这些概念的区别,以此来加强对概念的掌握。例如在复习“小数的性质”时,可以让学生去判断“0.40,0.03,20.020,2.800,10.404,5.000”这一组数中的那些“0”可以去掉,哪些“0”不能去掉?为什么能去掉(或不能去掉)?利用这种练习来让学生们对小数的性质有更加深刻的理解。再例如奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数与质因数,周长与面积等等这些概念有很多都是那种乍看上去都很相似,但实际上却又有很多的不同之处,这类概念学生们在学习的时候很容易产生混淆,从而影响到他们后面的数学学习,因此必须要及时的让他们区分这些概念,以避免相互干扰

(二)加强变式,帮助学生掌握概念的本质特征

在学习概念的时候,小学生有一个显著的特点,那就是对某一个概念的内涵不是很清楚,掌握的也不全面,常常将一些非本质的特征来作为概念的本质特征。例如,有一些学生存在着这样的一种认识,那就是只有水平放置的长方形才叫长方形,斜着放的长方形就不知道叫什么了。为此在进行复习的时候,我们应该将概念的叙述或者表达方式进行一定变化,让学生们从各个侧面去理解概念,其主要目的是让学生从变式中去理解概念的本质属性,以便于排除各种非本质属性的干扰。

四、帮助学生构建完善的概念网

概念以及各种陈述性的知识,都是关于事物及其关系的知识,或者说是关于“是什么”的知识,包括对事实、规则、事件等信息的表达。它们主要是通过网络化与结构性来表示观念之间的各种联系。因此,我们必须要在复习的过程中,帮助学生们构建一个完善的概念网。这个过程教师只能够引导,因为这张“网”必须要根据学生的知识掌握程度,来构建他们自己的知识链、知识网及知识存放的序。

(一)帮助学生找接点

设计开放题来了解学生的知识结构与概念掌握情况,并帮助学生将已经学过的各种概念知识点串联到一起。例如在复习“比”的概念的时候,可以设计这样的一道开放题:“学了“比”你能联想到哪些知识?”看到这道题学生们自然就会联想到分数、除法。而除法、分数、比这三者之间的相似之处就是我们需要抓住的连接点。然后在通过有的放矢地将分数、除法、比等知识散点组串起来。

(二)帮助学生抓住连接群

教师必须要通过各种方法来了解学生们对各种知识在脑海中存放的“序”,以便于帮助学生根据概念知识的相关性来建立连接群。这个可以通过与学生的交流谈话来了解。例如在复习“分数”时,自己有序的说出应该复习到哪些知识,学生们有可能是按照知识的编排顺序来复述,也有可能是按照他们脑海中相关知识的熟悉程度等等。而教师则应该从中掌握学生们是否还有遗漏的地方,便于教师了解学生概念意象建立的程度,利于查漏补缺,接点连群。

篇10:小学数学概念的教学探究的分析论文

关于小学数学概念的教学探究的分析论文

一、小学数学概念的构成

小学数学概念是由内涵和外延两个方面构成的。概念的内涵是指概念反映的所有对象的共同本质属性的总和。如平行四边形有很多属性,但它的本质属性有两点:第一,它是四边形;第二,它的两组对边分别平行。平行四边形必须具备这两个属性,否则就不是平行四边形。而反映的所有对象的全体叫作这个概念的外延。例如平行四边形这一概念的外延包括一般的平行四边、长方形、菱形、正方形等。概念的内涵是概念的“质”的反映,概念的外延是概念的“量”的反映,二者相互依存,是构成概念的不可分割的两个方面。

二、优化小学数学概念教学的有效策略

小学生对数学概念的掌握,既依赖于他们已有的认知结构和学习动机,同时,教师的教学方式和方法也起着重要作用。小学数学概念的教学,一般要经过概念的引入、概念的.形成、概念的巩固和深化等阶段。

(1)概念的形成———抓住本质

小学数学概念刚引进时,学生对概念的认识只是停留在感性阶段,比较肤浅和不全面。因此,概念的形成是从了解事物的外部、具体的属性,到认识事物的内部、抽象、本质的属性这样一个深化的过程。因此,教师在引导过程中,要做到以下几点:

①“抓”概念中的关键词

小学数学中包含着大量的数学概念,而有些概念往往是由若干个词或词组组成的定义。因此,可以通过“抓”关键词来帮助学生建构新的概念。例如学习“认识三角形”时,引导抓住“三条线段”“围成”“每相邻两条线段”这些词组,帮助学生建立三角形的概念。

②运用概念,正反例比较

正例有利于概念的概括,帮助学生正面理解;反例有利于概念的辨析。例如方程的定义是“含有未知数的等式”,学了这个概念后,可举许多的正例和反例:x-y=4、3(a+2)=15、16+b>28、y+105、7×8=56……让学生加以辨认,从等式、未知数两个方面导入,加以辨析,加深对方程概念的理解。

(2)概念的巩固———注重应用

在概念引入、形成的基础上,概念的保持是比较困难的,而概念的建立还在于能运用概念,同时巩固概念,发展概念。主要策略有:

①强化运用策略

在运用中加强对概念的理解,强化对概念的掌握,这种运用可以是对概念的一些简单的填空、选择和判断。如教学完“圆的周长”知识后,可让学生做以下练习:填空:画一个半径是20厘米的圆,周长是()厘米。判断:直径越大,圆周率也越大()。

②在实践中运用概念

学数学,更要学会用数学,学会运用概念去解决生活实际问题,这样才能激起学生学习数学的兴趣,同时也能提高学生运用概念的能力。如学习了“长方形面积”后,可以让学生亲手去测量并计算一下自己房间有多大,让学生不断发现新问题,提供充分的创新空间。总之,在小学数学概念教学过程中,我们应从学生的实际掌握的知识和现有经验出发,在概念的引入、形成、巩固的过程中优化教学方法,进行概念教学,精心演绎概念本质,使学生能准确掌握应用概念,从而提高学生分析问题和解决问题的能力。

下载浅谈小学数学概念教学word格式文档
下载浅谈小学数学概念教学.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈小学数学概念的教学

    在实施新课改和素质教育的今天,培养具有创新型的人才已成为社会共识。创新的人需要优秀的思维品质。而数学是思维的科学,在数学教学中渗透数学的思想方法对于创新型思维的培养......

    小学数学概念教学总结

    小学数学概念教学总结 数学是由概念与命题等内容组成的知识体系,它是一门以抽象思维为主的学科,而概念又是这种思维的语言。因此概念教学是小学数学中至关重要的一项内容,是......

    浅谈小学数学概念教学[全文5篇]

    浅谈小学数学概念教学 小学低年级的数学概念,大部分是具体的,可以直接感知。从四、五年级起,抽象程度较大的要领逐步增加,要让四、五年级学生掌握这些抽象的概念,有一 定的困难。......

    小学数学概念教学的探讨范文

    小学数学概念教学的探讨 【附小教研片】下宫小学俞裔银 【内容摘要】数学课堂教学无论是形式、还是内容都随着新课程理念推行,过去的教学方式正受强有力的冲击。在新课程理念......

    如何进行小学数学概念教学

    如何进行小学数学概念教学 小学数学教学过程,就是“概念的教学”。一个数学教师,要把概念教学放到突出地位。小学数学中的一些概念,对小学生来说,由于年龄小,知识不多,生活经验不......

    小学数学概念教学的总结

    小学数学概念教学的总结 数学概念是小学数学知识的基本要素。小学数学是由许多概念、法则、性质等组成的确定体系。每一个法则、性质等实际上都是一个判断,而且离不开概念。......

    关于小学数学概念教学的探析

    关于小学数学概念教学的探析 摘 要:在小学数学教学中,每当教授新内容的时候,数学概念是学生首先学习的一项内容。作为构成数学体系基础的数学概念,是奠定学生数学学习的基础,对学......

    小学数学概念教学研究成果总结

    大宁县东关小学 数学“概念教学”研究成果 小学数学“概念教学”这个课题的研究价值在于探讨、解决小学数学概念教学课堂教学中的一些具体问题。本课题的研究目标指向不仅......