第一篇:二次函数最问题学生
二次函数最值问题复习一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件,今年计划通过适当增加成本来提高产品档次,以拓展市场,若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11)。
(1)用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元;
(2)求今年这种玩具的每件利润y元与x之间的函数关系式;
(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量。某水果批发商以每箱40元的价格购进一批苹果,后经市场调查发现:
若每箱以50元销售,每天销售90箱,价格每提高1元,平均每天少销售3箱,每箱最高售价55元 求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式 2 求平均每天销售利润w(元)与销售价x(元/箱)之间的关系式 3 当每箱苹果销售价为多少元时,可以获最大利润?最大利润是多少?
.(4分)(2013•莆田)如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为 .
4如图,已知二次函数y= x2+bx+c过点A(1,0),B(-3,0),点D在此二次函数图像上,且D点的横坐标为-2,点P为对称轴上的一个动点。
(1)求此二次函数的解析式;
(2)求PB+PD的最小值。如图,已知二次函数y= X2 +bx+c过点A(1,0),B(0,﹣3)(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标
15、(2013年广东省9分、23)已知二次函数yx22mxm21.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如题23图,当m2时,该抛物线与y轴交于点C,顶点为D, 求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点 存在,求出P点的坐标;若P点不存在,请说明理由.解析:
(1)m=±1,二次函数关系式为yx2x或yx2x;
(2)当m=2时,yx4x3(x2)1,∴D(2,-1);当x0时,y3,∴C(0,3).(3)存在.连结C、D交x轴于点P,则点P为所求,由C(0,3)、D(2,-1)求得直线CD为2222y2x3
当y0时,x 33,∴P(,0).22
第二篇:二次函数最值问题
《二次函数最值问题》的教学反思
大河镇 件,设所获利润为y元,则y=(x-2.5)[500+200(13.5-x)],这样,一个二元二次方程就列出,这也为后面学习二次函数与一元二次方程的关系奠定了基础,针对上述分析,把所列方程整理后,并得到y=-200x2+3700x-8000,这里再利用二次函数y=ax2+bx+c(a≠0)的解析式中a、b、c的大小来确定问题的最值。把问题转化怎样求这个函数的最值问题。
b4acbb4acb根据a>0时,当x=-,y最小=;a<0时,当x=-,y最大=
2a4a2a4a的公式求出最大利润。
例2是面积的最值问题(下节课讲解)
教学反馈:讲得丝丝入扣,大部分学生能听懂,但课后的练习却“不会做”。反思一:本节课在讲解的过程中,不敢花过多的时间让学生争辩交流,生怕时间不够,完成了不教学内容,只能按照自己首先设计好的意图引领学生去完成就行了。实际上,这节课以牺牲学生学习的主动性为代价,让学生被动地接受,去听讲,体现不了学生是学习的主人这一关键环节。
反思二:数学教学的目标不仅是让学生学到一些知识,更重要的是让学生学会运用知识去解决现实问题,让学生“从问题的背景出发,建立数学模型”的基本流程,如例题中,可让学生从“列方程→转化为二次函数解析式→
b4acb当x=-时,y最大(小)=→解决问题”,让学生在实践中发现数2a4a学,掌握数学。
反思三:教学应当促进学生成为学习的主人,离开了学生积极主动学习,老师讲得再好,学生也难以接受,或者是听懂了,但不会做题的现象。传统的教学“五环节”模式已成为过去,新的课程标准需要我们用新的理念对传统的教学模式、教学方法等进行改革,让学生成为课堂的主角。
第三篇:二次函数
2.二次函数定义__________________________________________________二次函数(1)导学案
一.教学目标:
(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯
重点难点:
能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:
二、教学过程
(一)提出问题
某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]
2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]
3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?
[(10-8-x);(100+100x)]
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]
5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]
将函数关系式y=x(20-2x)(0 <x <10=化为:
y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)
(二)、观察;概括
(1)函数关系式(1)和(2)的自变量各有几个?
(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(3)函数关系式(1)和(2)有什么共同特点?(4)这些问题有什么共同特点?
三、课堂练习
1.下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1
(3)y=2x3-3x2(4)y=5x4-3x+1
2.P25练习第1,2,3题。
四、小结
1.请叙述二次函数的定义.
2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。
五.堂堂清
下列函数中,哪些是二次函数?
(1)Y=2x+1(2)y=2x2+1(3)y=x(x-2)(4)y=(2x-1)(2x-2)(5)y=x2(x-1)-1
第四篇:二次函数
?二次函数?测试
一.选择题〔36分〕
1、以下各式中,y是的二次函数的是
()
A.
B.
C.
D.
2.在同一坐标系中,作+2、-1、的图象,那么它们
()
A.都是关于轴对称
B.顶点都在原点
C.都是抛物线开口向上
D.以上都不对
3.假设二次函数的图象经过原点,那么的值必为
()
A.
0或2
B.
0
C.
D.
无法确定
4、点〔a,8〕在抛物线y=ax2上,那么a的值为〔
〕
A、±2
B、±2
C、2
D、-2
5.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是〔
〕
〔A〕y=3〔x+3〕2
〔B〕y=3〔x+2〕2+2
〔C〕y=3〔x-3〕2
〔D〕y=3〔x-3〕2+2
6.抛物线y=x2+6x+8与y轴交点坐标〔
〕
〔A〕〔0,8〕
〔B〕〔0,-8〕
〔C〕〔0,6〕
〔D〕〔-2,0〕〔-4,0〕
7、二次函数y=x2+4x+a的最大值是2,那么a的值是〔
〕
A、4
B、5
C、6
D、7
8.原点是抛物线的最高点,那么的范围是
()
A.
B.
C.
D.
9.抛物线那么图象与轴交点为
〔
〕
A.
二个交点
B.
一个交点
C.
无交点
D.
不能确定
10.不经过第三象限,那么的图象大致为
〔
〕
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
D
11.对于的图象以下表达正确的选项是
〔
〕
A
顶点作标为(-3,2)
B
对称轴为y=3
C
当时随增大而增大
D
当时随增大而减小
12、二次函数的图象如下图,那么以下结论中正确的选项是:〔
〕
A
a>0
b<0
c>0
B
a<0
b<0
c>0
C
a<0
b>0
c<0
D
a<0
b>0
c>0
二.填空题:〔每题4分,共24分〕
13.请写出一个开口向上,且对称轴为直线x
=3的二次函数解析式。
14.写出一个开口向下,顶点坐标是〔—2,3〕的函数解析式;
15、把二次函数y=-2x2+4x+3化成y=a〔x+h〕2+k的形式是________________________________.16.假设抛物线y=x2
+
4x的顶点是P,与X轴的两个交点是C、D两点,那么
△
PCD的面积是________________________.17.(-2,y1),(-1,y2),(3,y3)是二次函数y=x2-4x+m上的点,那么
y1,y2,y3从小到大用
“<〞排列是
.18.小敏在某次投篮中,球的运动路线是抛物线的一局部(如图),假设命中篮圈中心,那么他与篮底的距离是________________________.三.解答题(共60分)
19.〔6分〕假设抛物线经过点A〔,0〕和点B〔-2,〕,求点A、B的坐标。
20、(6分)二次函数的图像经过点〔0,-4〕,且当x
=
2,有最大值—2。求该二次函数的关系式:
21.〔6分〕抛物线的顶点在轴上,求这个函数的解析式及其顶点坐标。
25米x22、〔6分〕农民张大伯为了致富奔小康,大力开展家庭养殖业,他准备用40米长的木栏围一个矩形的鸡圈,为了节约材料,同时要使矩形面积最大,他利用了自己家房屋一面长25米的墙,设计了如图一个矩形的羊鸡圈。请你设计使矩形鸡圈的面积最大?并计算最大面积。
23、二次函数y=-〔x-4〕2
+4
〔本大题总分值8分〕
1、先确定其图象的开口方向,对称轴和顶点坐标,再画出草图。
2、观察图象确定:X取何值时,①y=0,②y﹥0,⑶y﹤0。
24.〔8分〕某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,假设每千克涨价一元,日销售量将减少20千克。
〔1〕现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
〔2〕假设该商场单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多。
25.〔8分〕某市人民广场上要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流〔在各个方向上〕沿形状相同的抛物线路径落下〔如下图〕。假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米。
〔1〕求这条抛物线的解析式;
〔2〕假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外。
26.〔12分〕二次函数的图象与x轴从左到右两个交点依次为A、B,与y轴交于点C,〔1〕求A、B、C三点的坐标;
〔2〕如果P(x,y)是抛物线AC之间的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并写出自变量x的取值范围;
〔3〕是否存在这样的点P,使得PO=PA,假设存在,求出点P的坐标;假设不存在,说明理由。
第五篇:2015二次函数与最值问题
2015年中招专题---二次函数与最值问题
1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;
(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.
2.(2014•四川内江)如图,抛物线y=ax+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
3.(2014•攀枝花)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A在B的左侧),与y
2),顶点坐标为N(﹣1,),轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;
(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;
(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.
4.(2014•襄阳)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为
;抛物线的解析式为
.
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?
5.(2014•德州)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
6.(2014•甘肃兰州)如图,抛物线y=﹣x+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
7.(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴于A、B两点(点A在点B的左边),与y轴交于点C,点D抛物线的顶点.
(1)求A、B、C的坐标;
交为2(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=
2DQ,求点F的坐标.
8.(四川泸州)如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣(1)求二次函数的最大值;
(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x的方程a的值;
(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四
=0的根,求2,0).
边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.