第一篇:虚拟仿真实验教学中心遍地开花
近期,教育部批准100个实验教学中心为国家级虚拟仿真实验教学中心、批准100个实验教学中心为国家级实验教学示范中心。陕西省12所高校8个实验教学中心获批国家级实验教学示范中心、9个实验教学中心获批国家级虚拟仿真实验教学中心。
陕西批准为国家级实验教学示范中心的有:西北大学电子信息技术实验教学中心、西安交通大学机械工程专业实验教学中心、西安电子科技大学计算机网络与信息安全实验教学中心、西安工业大学电工电子实验教学中心、西安建筑科技大学冶金技术实验教学中心、陕西师范大学地理学实验教学中心、第四军医大学基础医学实验教学中心、空军工程大学通信工程实验教学中心。
陕西批准为国家级虚拟仿真实验教学中心的有:西安交通大学应急管理决策虚拟仿真实验教学中心、西安电子科技大学集成电路设计与制造虚拟仿真实验教学中心、西安建筑科技大学土木工程虚拟仿真实验教学中心、西安科技大学矿山建设工程虚拟仿真实验教学中心、长安大学工程机械虚拟仿真实验教学中心、西北农林科技大学森林生物学虚拟仿真实验教学中心、陕西师范大学心理学虚拟仿真实验教学中心、第四军医大学口腔医学虚拟仿真实验教学中心、第二炮兵工程大学导弹测试与控制虚拟仿真实验教学中心。
【西安交通大学】机械工程专业实验教学中心、应急管理决策虚拟仿真实验教学中心获批。机械工程专业实验教学中心面向“中国制造2025”战略,依托该校机械工程一级学科,通过统筹校内高端制造装备、三维(3D)打印、制造系统等高水平科研基地和校外国家级工程实践教育中心等优质资源而建设。中心坚持“专业与素质并重、实践与实战创新”的理念,以构建“硬件设施一流、资源融合充分、结构体系完整、学科特色鲜明”的机械工程专业实践教学平台为核心,积极推进实践教学模式改革,形成了专业实验能力、工程实践能力、创新实践能力培养三位一体的实验教学体系,探索得到了一系列行之有效的实践教学新方法,建立了相应的以工程教育认证为导向的实践教学质量标准,为培养引领未来的机械工程专业拔尖创新人才提供有力支撑。应急管理决策虚拟仿真实验教学中心总占地面积约3500平方米,拥有实验室24间,设备固定资产总值1600余万元。面向管理科学与工程类、工商管理等2大类7个专业开展虚拟仿真实验教学,已建设30个真实实验无法展开的虚拟仿真综合实验项目,如“突发事件预测预警实验”“应急联动多部门协作实验”“应急物流运力交易实验”“应急决策仿真实验”等,其中50%以上实验项目为自主研发。通过实验教学,缩短了理论学习和现实应用之间的距离,可以帮助学生更加深入的理解课本知识,同时培养学生的动手能力。突发事件的频发要求管理类学生需要掌握和具备处理突发事件的能力。针对我国社会发展与应急管理的重大现实需求,管理学院成立了学科交叉的科研与教学协同的应急管理决策虚拟仿真实验教学中心。该中心的建设核心目标是提高管理类学生应对突发事件、实时综合管理决策的能力,培养具有国际化视野及社会责任感的创新型管理人才。
【陕西师范大学】心理学虚拟仿真实验教学中心、地理学实验教学示范中心获批。心理学虚拟仿真实验教学中心按照“以实为本,以虚为媒,虚中求实”的建设原则,遵循“内隐加工形象化,发展进程短时化,特殊案例再现化,风险情境安全化,技能训练系统化”的建设理念,形成了“认知与行为基础实验能力培养平台”“现代认知神经科学创新能力培养平台”“航空航天心理学及人因工程仿真实验平台”和“病理心理虚拟实验平台”四个虚拟实验教学仿真平台,实现了传统实验教学与现代教学手段的有机融合,丰富了心理学实验教学内容,提高了教育教学水平,发挥了辐射示范带动作用。地理学实验教学示范中心依托该校地理学一级学科、历史地理学国家重点学科、地理科学国家级特色专业,按照“室内实验与野外实践一体化”的实验教学理念,立足黄土高原和秦巴山地,抓住西部资源环境与经济社会发展热点,创新了自然地理学、人文地理学、遥感与地理信息系统实验教学内容与方法,成为我国西部地区创新型地理学人才培养的核心基地。中心形成了立足地理科学,实现多学科实验教学融合;立足校内平台,实现多元化实验教学拓展;立足黄土高原,多渠道服务西部发展;立足学生发展,多层次创新人才培养的特色。
该校相关负责人表示,此次两个国家级实验教学示范中心的获批,是陕西师大多年来一贯重视实验教学工作结出的硕果,是相关学科集体智慧的结晶。截至目前,陕西师大建成了4个国家级实验教学示范中心(化学实验教学中心、数字传媒技术实验教学中心、跨学科X-物理实验教学中心、地理学实验教学示范中心),3个国家级虚拟仿真实验教学中心(化学虚拟仿真实验教学中心、生物学虚拟仿真实验教学中心、心理学虚拟仿真实验教学中心)。国家级实验教学中心的建设,推动了学校实验教学和实验教学改革,促进了学校人才培养水平的不断提升,标志着该校实验教学水平迈上了一个新的台阶。
【长安大学】工程机械虚拟仿真实验教学中心获批。工程机械虚拟仿真实验教学中心是长安大学“211工程”及“985优势学科平台”重点建设实验室之一,成立于2012年6月,2016年1月成为国家级虚拟仿真实验教学中心。目前有实验教学人员55人,其中教授12人,副高职29人,中级职称及其他14人,获得博士学位的47人,硕士学位及其他7人,平均年龄43岁。中心用房面积近1200m2,仪器设备1432台,价值1800余万元。近期获得省级教学成果奖6项,省级教改项目5项。获得省级及以上科学技术奖5项,编写教材17部,发明专利46项,现拥有工程机械关键零部件现代虚拟制造平台、工程机械原理展示、工程机械结构设计及其分析计算、工程机械电液控制系统、工程机械拆装与驾驶、工程机械施工控制等共6个虚拟仿真实验平台、开设近百项虚拟仿真实验项目。
【西北大学】电子信息技术实验教学中心获批。至此,该校国家级实验教学示范中心数量达到7个,在全国高校中并列第六,在全国地方高校排名第一。电子信息技术实验教学中心成立以来不断加强内涵建设和改革创新,按照《高等学校基础实验教学示范中心建设标准》要求进行了资源整合,形成了以“加强基础,强化应用,提高素质,注重创新,激励个性,体现特色”的人才培养思路,构建了分模块、分层次、分阶段的“立体化”的实验教学体系,培养了一大批信息学科高素质创新型人才。该校相关负责人表示,此次获批为国家级实验教学示范中心,将进一步推动该校本科实验教学改革,提高人才培养质量。学校也将一如既往高度重视实验教学示范中心建设,在“十三五”期间,依托“教学实验室提升计划”,全面改善教学实验室基本条件,推进实验教学整体改革,进一步提高学生创新精神和实践能力。
【西安科技大学】矿山建设工程虚拟仿真实验教学中心获批。西安科技大学矿山建设工程虚拟仿真实验教学中心是依托该校国家级采矿工程实验教学示范中心、国家煤炭工业采矿工程重点实验室、教育部西部矿井开采及灾害防治重点实验室、陕西省岩层控制重点实验室和陕西省岩土工程教学示范中心建设完成的。该中心面向矿山建设、土木工程、采矿、安全、地质、测绘等专业开设虚拟仿真实验教学课程,为学生开设虚拟仿真实验项目46个,其中科研转化实验教学项目18个。针对本科教学实验高难度、高危险、高成本的特点,按照“虚实结合、相互补充、能实不虚、以虚扩实”的建设原则,创新性的构建了“三层次,四类型、四结合”一体化的虚拟仿真试验教学体系,强化矿山建设工程特色,建立了现代化矿山工程虚拟仿真、矿山建设工程施工工艺与检测技术虚拟仿真、矿山建设工程优化设计虚拟仿真及矿山建设工程数值模拟等四个各具特色、相互补充的矿山建设工程虚拟仿真实验教学平台。近年来,实验中心承担国家级、省级、校级大学生创新实验课题1000余项,获得科技作品竞赛国家级、省级奖350余项,承担国家级项目100余项,获省级以上奖项34项,出版学术专著10部,获国家发明专利17项,实用新型专利、软件著作权等50余项。作为陕西地区首批省属高校及西北地区唯一一家矿山建设专业的国家级虚拟仿真中心,其具有受众面广、辐射面宽、综合效益高等特点,对促进学校及陕西省信息技术与优质实验教学资源深度融合,改革试验教学方法和教学手段,创新人才培养模式,提高创新性人才培养质量方面发挥积极作用。
第二篇:生物学虚拟仿真实验教学中心
华中农业大学是教育部直属、国家“211工程”建设的全国重点大学,在近120年的办学历史中,积淀了“勤读力耕、立己达人”的办学传统;形成了以农科为优势,以生命科学为特色,多学科协调发展的学科体系和用现代生物技术提升传统农科、培养高素质创新人才的办学特色。
华中农业大学生物学实验教学中心成立于2001年,2005年获批为湖北省高校首批实验教学示范中心,2007年获批为国家级示范中心。中心总面积4500平方米,设有植物学、微生物学、细胞与遗传学、生化与分子生物学、生物信息学、学生创新等8个功能分室;仪器设备台件数1929台,总价值达1530万元。每年承担全校15个生物类专业的相关实验,完成实验教学任务30万人学时。中心有教师96人,包括国家名师、长江学者、国家杰青等一批高层次人才,为开展高质量的实验教学提供了坚实的保障。
中心坚持“理论教学与实践教学并重、实验技能训练和科学思维训练并举”,根据生物学学科特点,由浅入深,构建了从群体到分子水平的“3+3+1”的实验教学体系。2009年以来,中心教师先后主持省级教改项目9项,建成国家精品及视频公开课7门,发表教改论文10余篇,获省级以上教学成果奖6项。
随着实验教学改革的不断深入,教学资源分散,综合设计性实验周期长、成本高,高精尖设备本科生无缘接触等实体实验教学的局限性日益凸显。如何应用信息技术集成优势、破解发展瓶颈,成为中心思考和实践的重要课题。
2014年,在教育部虚拟仿真实验教学中心建设思想的指导下,学校按照 “统一规划、分期实施;集成优势,共享资源”的建设思路,依托作物遗传改良国家重点实验室、农业微生物学国家重点实验室、微生物农药国家工程研究中心等国家和省部级研发平台,以生物学实验教学中心为主干,集中作物学、水产养殖、动物医学等3个国家级和6个省级实验教学中心的力量,建成校内8个与生命科学相关学院共享的生物学虚拟仿真实验教学中心。
虚拟仿真中心以“学科特色、产业实践、技术前沿、创新能力”为导向,建立了包含四大模块的虚拟仿真实验资源:
I 综合设计性虚拟实验项目模块
本模块以生物学所属12个二级学科为边界,针对生命科学技术呈现向多学科、多领域综合发展的特点,充分挖掘本校特色学科资源开发综合设计性虚拟项目,培养学生综合创新能力。目前已开发了果蝇综合实验、水稻遗传转化等经典或前沿综合设计性虚拟实验项目。其中,水稻遗传转化虚拟仿真实验项目依托“国家转基因重大专项”和我校全球领先的转基因水稻研发技术成果,让学生全面理解和掌握愈伤组织的诱导及继代、农杆菌侵染、共培养、抗性愈伤组织筛选、外源基因转化瞬时表达检测、转基因植株的分化及移栽、外源基因稳定表达检测等水稻遗传转化的全程技术,使学生尽早接触学科前沿。
II校内外实习实训虚拟仿真模块
本模块立足于为学生创造一个开展宏观生物学学习、实践和了解、掌握生物技术产业化应用的环境。校园及神农架国家生物学野外实习基地数字植物地图仿真项目,目前已涵盖校园内200余种植物的形态特性、生物学特性及分布地点。学生可通过植物在校园或实习点的位置查询掌握植物的分类及生物学特性。
藻类是目前生物工程中进行规模化培养以获得特定产物的一个典型代表类群,经济价值前景广阔。藻类规模化培养虚拟仿真实验项目,可让学生了解从藻类细胞制种、扩大培养、规模化培养、诱导、收获和提取加工等整个藻类细胞培养和利用的流程,使学生从宏观上了解生物技术从理论走向实践的全过程。
III 尖端仪器设备虚拟仿真模块
随着生命科学研究的不断深入,生物学研究手段也不断更新。本模块围绕本校用于生物学研究的尖端仪器设备,开发虚拟仿真实验项目,让学生掌握操作原理,熟练操作过程,接触前沿实验技术,为进入实验室预约使用设备、开展科研训练和后续深造打下基础。目前该模块已将学校蛋白质平台的流式细胞分选仪、分析超速离心机、蛋白质纯化仪开发成虚拟仿真项目,很好的满足了本科生对这类尖端设备的使用需求。
IV 生物学资源拓展模块
本模块主要是整合全校相关的生物学资源,为师生搭建共享学习的平台。动植物数字切片平台,提供了动物、植物、微生物等形态切片300余份,可满足各专业学生对其形态、功能的学习需求。建设中的校园数字博物馆平台,将提供数万份珍贵动物、植物、土壤与地质矿藏数字标本资源。
虚拟仿真中心已建立了功能齐全的综合管理平台,不仅可以对实体实验中心资源进行系统管理,还可以对学生参与虚拟仿真实验项目进行测试考核,在线管理师生互动交流,从而建立起“虚-实-虚”有机结合的实验教学体系和考核体系。
中心的建设与改革为学校培养生物学创新人才提供了有力支撑,发挥了重要示范辐射作用。国家生物学理科基地曾两次被评为全国优秀,100余所高校来校交流。2009年以来,“三生”专业本科生在《核酸研究》等国际杂志发表论文50余篇,先后摘取IGEM、美国数学建模等多项赛事桂冠,每年出国和深造率超60%。
虚拟仿真中心将秉承我校生命科学的优势和特色,瞄准学科和产业发展前沿,不断推进资源整合、校企联合、开放融合,构建“经典与现代、虚拟与现实”相融通的实验教学体系,打造教研产协同的创新人才培养环境,努力实现人才培养的现代化与国际化。
第三篇:国家级虚拟仿真实验教学中心入选名单
北京大学 地球科学虚拟仿真实验教学中心教育部
中国人民大学基于大数据文科综合训练虚拟仿真实验教学中心教育部 清华大学 材料科学与工程虚拟仿真实验教学中心教育部 北京交通大学交通运输国家级虚拟仿真实验教学中心教育部 北京化工大学化工过程虚拟仿真实验教学中心教育部 北京邮电大学电子信息虚拟仿真实验教学中心教育部
中国农业大学机械与农业工程虚拟仿真实验教学中心教育部 中央美术学院艺术、设计与建筑虚拟仿真实验教学中心教育部 华北电力大学电力工业全过程仿真实验教学中心教育部 南开大学 经济虚拟仿真实验教学中心教育部 天津大学 化学化工虚拟仿真实验教学中心教育部 大连理工大学化学虚拟仿真实验教学中心教育部 东北大学 机械装备虚拟仿真实验教学中心教育部
吉林大学 地质资源立体探测虚拟仿真实验教学中心教育部 东北师范大学生物学虚拟仿真实验教学中心教育部 东北林业大学森林工程虚拟仿真实验教学中心教育部 同济大学力学虚拟仿真实验教学中心教育部
上海交通大学机电学科虚拟仿真实验教学中心教育部
华东理工大学石油和化工过程控制工程虚拟仿真实验教学中心教育部 东华大学 管理决策虚拟仿真实验教学中心教育部
南京大学 社会经济环境系统虚拟仿真实验教学中心教育部 东南大学 机电综合虚拟仿真实验教学中心教育部
河海大学 力学与水工程虚拟仿真实验教学中心教育部 南京农业大学农业生物学虚拟仿真实验教学中心教育部 中国药科大学药学虚拟仿真实验教学中心教育部 浙江大学 化工类虚拟仿真实验中心教育部 厦门大学 机电类虚拟仿真实验教学中心教育部 山东大学 医学虚拟仿真实验教学中心教育部
武汉大学 电力生产过程虚拟仿真实验教学中心教育部 武汉理工大学水路交通虚拟仿真实验教学中心教育部 华中师范大学心理与行为虚拟实验教学中心教育部 中南财经政法大学经济管理行为仿真实验中心教育部 湖南大学 机械工程虚拟仿真实验教学中心教育部
中南大学 矿冶工程化学虚拟仿真实验教学中心教育部 中山大学 医学虚拟仿真实验教学中心教育部
华南理工大学机械工程虚拟仿真实验教学中心教育部 四川大学 华西临床虚拟仿真实验教学中心教育部
重庆大学 能源与动力电气虚拟仿真实验教学中心教育部 西南交通大学交通运输虚拟仿真实验教学中心教育部
电子科技大学电子与通信系统虚拟仿真实验教学中心教育部 西南大学 药学虚拟仿真实验教学中心教育部
西南财经大学现代金融虚拟仿真实验教学中心教育部
西安交通大学通信与信息系统虚拟仿真实验教学中心教育部
西安电子科技大学电子信息与通信虚拟仿真实验教学中心教育部 长安大学 道路交通运输工程虚拟仿真实验教学中心教育部 陕西师范大学化学虚拟仿真实验教学中心教育部 兰州大学 化学化工虚拟仿真实验教学中心教育部
中国石油大学(华东)石油勘探开发工业虚拟仿真实验教学中心教育部 中国矿业大学 采矿工程虚拟仿真实验教学中心教育部
中国地质大学(武汉)矿产资源形成与勘查开发虚拟仿真实验教学中心教育部 哈尔滨工业大学市政环境虚拟仿真实验教学中心工信部 北京航空航天大学航空科学技术虚拟仿真实验中心工信部 北京理工大学武器系统虚拟仿真实验教学中心工信部
哈尔滨工程大学核科学与技术虚拟仿真实验教学中心工信部 南京理工大学现代制造企业虚拟仿真实验教学中心工信部
西北工业大学机械基础与航空制造虚拟仿真实验教学中心工信部 中国人民公安大学公安执法虚拟仿真实验教学中心公安部 中国人民武装警察部队学院消防虚拟仿真实验教学中心公安部 中国科学技术大学物理虚拟仿真实验教学中心中科院 大连海事大学海运工程虚拟仿真实验教学中心交通部 中国民航大学机务维修工程仿真教学中心民航局 北京工商大学经济管理虚拟仿真实验教学中心北京 北京工业大学土木工程虚拟仿真实验教学中心北京 北京建筑大学建筑全过程虚拟仿真实验教学中心北京 北京石油化工学院石化工程仿真教学与实践中心北京 天津中医药大学中医学虚拟仿真实验教学中心天津 天津工业大学纺织虚拟仿真实验教学中心天津 大连交通大学轨道车辆虚拟仿真实验教学中心辽宁
长春理工大学计算机信息安全与网络攻防虚拟仿真实验教学中心吉林 哈尔滨商业大学现代企业商务运营虚拟仿真实验教学中心黑龙江 东北石油大学石油与天然气工程虚拟仿真实验教学中心黑龙江 上海中医药大学中医药虚拟仿真实验教学中心上海 上海海事大学航海虚拟仿真实验教学中心上海
南京邮电大学网络通信与控制虚拟仿真实验教学中心江苏 南京师范大学虚拟地理环境实验教学中心江苏
南京信息工程大学大气科学与气象信息虚拟仿真实验教学中心江苏 常州大学化工虚拟仿真综合实训中心江苏
杭州电子科技大学电子信息技术虚拟仿真实验教学中心浙江 宁波大学土木工程虚拟仿真实验教学中心浙江 浙江工业大学化学化工虚拟仿真实验教学中心浙江 浙江理工大学服装设计虚拟仿真实验教学中心浙江
福建师范大学生物技术与生物化工虚拟仿真实验教学中心福建 福州大学企业经济活动虚拟仿真实验教学中心福建 南昌大学力学与工程虚拟仿真实验教学中心江西
山东建筑大学建筑工程及装备虚拟仿真实验教学中心山东 山东科技大学煤矿安全开采虚拟仿真实验教学中心山东 烟台大学工程力学虚拟仿真实验教学中心山东
武汉科技大学冶金工业过程虚拟仿真实验教学中心湖北 中南林业科技大学森林防火虚拟仿真实验教学中心湖南 长沙理工大学电力生产与控制虚拟仿真实验教学中心湖南 广东财经大学企业综合运作虚拟仿真实验教学中心广东 南方医科大学医学形态学虚拟仿真实验教学中心广东 成都医学院医学虚拟仿真实验教学中心四川
西南石油大学油气开发虚拟仿真实验教学中心四川 贵州财经大学经济管理虚拟仿真实验教学中心贵州 重庆科技学院钢铁制造虚拟仿真实验教学中心重庆
西北大学文化遗产数字化保护虚拟仿真实验教学中心陕西 第三军医大学军事作业医学虚拟仿真实验教学中心解放军 国防科学技术大学数理虚拟仿真实验教学中心解放军
解放军理工大学通信与电子信息虚拟仿真实验教学中心解放军
第四篇:材料科学与工程虚拟仿真实验教学中心的建立
材料科学与工程虚拟仿真实验教学中心的建立
摘 要 材料科学与工程作为一门实验性较强的学科,需要进行大量的实际操作实验,才能使学生对一些材料的结构与形成原理有清楚的了解,然而材料科学的实验往往需要一定的特殊环境条件,这些条件限制了实验的教学体验,产生昂贵的教学费用,同时加大了安全隐患。通过建立虚拟仿真实验教学中心,不仅使学生能够更好地学习材料的结构与原理,而且实现绿色节约、安全可靠和可视化的虚拟仿真实验教学平台。
关键词 材料科学与工程;虚拟仿真实验室;实验教学
中图分类号:G642.423 文献标识码:B
文章编号:1671-489X(2017)08-0011-02
前言
近年来,以自身的科研与教学需求为依据,国内外很多高校对材料科学与工程的仿真实验项目进行了开发,并建设起相应的虚拟仿真实验室。虚拟仿真实验室这一概念最早是由美国学者William Wolf(1989)提出的,它是理论与实验之外的另一种形式与设计方式。实验的设计人员利用对真实实验场景的模拟,对多种仅局限于构思层面的实验项目予以完成,这有利于真实直观实验效果的获取,赋予原理与结构可视化的特征,能够在很大程度上对实验教学的要求进行快速响应与满足。
虚拟仿真实验教学的优势在于其有着高效率、高扩展性、高安全性、高开放性、高资源共享性以及低成本等特征。通过此种教学,学生可以更好地进行自我训练,这有利于强化其创新意识,最终实现实验教学工作的虚实互补。因此,材料科学与工程虚拟仿真实验室建设逐渐发展为高校建设工作的一个重要努力方向。虚拟仿真实验室建设内容
作为一门有着较强实验性特征的学科,材料科学与工程的实验教学环节对于高素质人才的培养来说必不可少。随着材料科学与工程的发展,微结构的分析手段使用越来越频繁,在纳米―微米空间尺度,原子、分子和电子的层次上来解析材料的结构与物理、化学过程。这些材料的微观过程,在仪器测量中通常不能够直接感知,所以在实验中学生很难将实际与理论知识结合起来;许多材料的制备成本和实验设备昂贵,不能够做到大量配置;还有部分实验耗费时间,同时包含许多的内容需要精细调节;一些学生以前没有接触过实验装置,所以调整实验过程和实验参数浪费大量时间,很难确保在实验课规定时间中完成;部分部件,如原子力显微镜探针等,安装时很容易损坏,且更换费用很高。
综上所述的实际限制,在往常的实验课程中,教师通常先完成相关硬件调试部分,学生只进行一些参数的设置、数据的获取。这样往往导致学生实验达不到预定的教学效果,在一定程度上限制了学生训练独立操作的能力。通过材料科学与工程虚拟仿真实验教学中心的建立,可以在规定的时间以及适当的成本范围下,使学生对实验操作和实验设备有更直观的了解,并通过更系统的训练,大大提高学生的实际动手能力和对实验原理的深刻理解,同时提高实验装置的利用率。
针对高危实验的虚拟仿真实验教学平台 在材料科学工程中,部分实验会涉及一些放射性的内容,例如:在放射性的环境中对材料性能的改变进行观察与分析;跟踪一些由放射性的元素构成的材料所经历的扩散、相变以及重新组织的过程等。在这些特定的实验环境与条件下,学生能够更好地把握材料组织与演变的规律,但其危险性很强,全国高校因为此类实验出现安全事故的例子也比较多,现阶段,很多高校明令禁止让学生进行此类危险系数极高的真实实验。这就对?算机虚拟仿真实验的出现提出要求,借助于放射性实验的虚拟仿真,对原子的扩散、相变和组织形成等实验过程予以展现。
针对高成本实验的虚拟仿真实验教学平台 在材料工程的专业课程中,有些实验的进行是以一定实验材料的消耗为前提的。但是,重复性的消耗会加剧实验的成本,这在一定程度上限制一般实验教学工作的持续发展。虚拟仿真实验对绿色节约理念的实验教学予以实现,例如:在进行“三维晶体结构”实验之时,利用Materials Studio软件构建形态多变的晶体结构;在“工艺过程仿真”“材料加工”这些实验中,利用FA-STAR软件观察研究对象的逐渐成形过程。通过学习模拟仿真软件,高校学生能够理解材料制造中的传热过程、充型流动、微观组织、应力应变和缺陷形成的知识点。这一仿真实验中心的建立大大节约了真实实验中的成本,而且体现了绿色环保的理念。
针对极端条件下的实验的虚拟仿真实验教学平台 材料科学与工程有些实验材料的制备是需要在特定的条件下才能完成的,如高温、高压等极端环境条件,然而真实的实验环境很难实现这样的条件,而且这样的环境在真实中也存在很大的安全隐患。采用虚拟仿真实验教学平台则可以将这些实验转变为能够实际观察到的实验。如在“高分子自组装过程”实验中,利用分子动力学对高分子的自动组装进行模拟与演示,这样能够加深学生的理解,使其掌握分子与原子的运动过程,从而更好地掌握在这些极端条件下的实验。打造卓越的虚拟仿真实验师资力量
材料科学虚拟仿真实验室中心的建立从层次、结构、数量以及学科分布等环节把握,要求对有着高教学与管理能力的实验教师队伍进行建设,主要的师资应包括主讲教师、实验技术员以及助教等。
主讲教师主要负责高校学生实验课程的教学,包括实验操作过程中的一些规范操作和安全注意事项。主讲教师主要是一些从事多年相关专业教学的教授、副教授和科研一线人员等,他们通过一些国家重大内容的训练,积累了丰富的基础知识与实践经验,能够清楚地把握材料科学的发展方向,并推动实验课程进行更新与改革,最终将教学工作真正融入科研环节。
实验技术人员通常对实验的课前准备、过程指导、实验设备管理以及实验室建设等负责。材料科学与工程虚拟仿真实验室中心的建立以发展与提高为宗旨,在多种形式的开展中对技术人员的专业素质予以提升,如开办学术会议和课题组会,并做好学习报告与交流等。此外,对优秀实验技术人员颁发奖金,鼓励其对实验教学的创新与设计进行积极探索,这能够在一程度上推动研究能力强、教学方法好以及管理经验足的专业实验教师团队的建设。
实验助教的组成人员通常为在读的硕士生或博士生。实验助教需要通过学校岗前的培训,主要要求对学科专业有很清楚的了解,对实验操作流程很明确,实验中要求注意的事项也了如指掌,平时要协助实验主讲教师的实验教学任务,以及做好学生的辅导和考核。实验助教在相关领域有较长时间的学习,可以开阔实验教学设计的思路,同时为师生的互动提供很好的纽带。结语
为建立材料科学与工程虚拟仿真实验中心,需要面向高校工科专业开设30多门相关课程。虚拟仿真实验中心通过吸收拥有丰富经验的卓越师资团队,制定出一套高效率的管理方法与实验教学运行机制,通过对精品课程进行设置,配合实验教学特色稳步推进师资队伍建设、实验教学成果和实践合作等项目,使得高校以外的实践基地成为综合型的多功能教育教学、社会实践和服务的重要基地。
这一虚拟仿真实验中心的建立强化培养了学生实践创新能力,锻炼了创新思维,正确处理了实验教学与理论教学的结合,深化了实验教学的改革与创新。这是一项系统的建设工程,需要不断努力探索和研究,不断推进教育事业发展,培养创新型人才。
参考文献
[1]余建星,赵伟,李辉,等.深化实践教学改革 形成实践育人氛围[J].中国高等教育,2012(13):18-20.[2]蔡卫国.虚拟仿真技术在机械工程实验教学中的应用[J].实验技术与管理,2011,28(8):76-78.[3]石松泉,沈红卫,梁伟,等.虚实结合的电工电子实验教学体系的设计[J].实验技术与管理,2008,25(8):184-186.
第五篇:医学虚拟仿真实验具体内容介绍
虚拟实验具体内容介绍
(1)机能学基础性虚拟实验教学软件包含四个相对独立的操作实验:家兔的基本实验虚拟操作、蟾蜍的基本实验虚拟操作、大鼠的基本实验虚拟操作、小鼠的基本实验虚拟操作。所有内容全部采用人机互动的虚拟仿真操作来完成,同时配合动画演示,相关仪器设备的使用和操作知识。我们以大小鼠和蟾蜍的基本实验虚拟操作举例说明:
《大、小鼠基本操作综合实验》介绍了大、小鼠在实验中经常用到的几种基本操作,通过虚拟操作的演示和互动,把实验中的重点、难点表示出来,使学生通过该虚拟实验,熟悉大小鼠实验的各项基本操作,掌握实验的重点。
虚拟实验操作流程及技术点描述:
大小鼠的捉持主要采用动画演示的形式,生动体现了捉持的要点。
大小鼠的固定,又分为徒手固定,固定板固定,头部固定以及固定器固定。学生可以自行选择固定方式,对大小鼠进行固定。
大小鼠的分组与编号;分组演示了如何使用Excel软件取得随机数字后分组。编号着重介绍了背毛单色标记法。
常用给药方法的虚拟操作:灌胃法,皮下注射法,皮内注射法,肌肉注射法,腹腔注射法,静脉注射法.部分采用透视或同步放大局部让学生更直观更系统的学习以上的给药方式及注意事项。
常用麻醉方法的虚拟操作:通过虚拟实验——吸入麻醉和腹腔注射麻醉,让学生熟悉并掌握常用麻药的使用及配制方法。
大小鼠取血的虚拟操作:分为摘眼球取血法,眼眶后静脉丛穿刺取血法,心脏取血,腹主动脉采血法。
大鼠处死方法的演示,脊椎脱臼法,急性失血法,麻醉致死法,气体窒息致死法,击打法。
大鼠主要脏器摘取:学生可动手摘取虚拟大鼠的主要脏器,可掌握各主要脏器的位置和摘取后的性状。
家兔的基本实验虚拟操作内容包括:
家兔麻醉方法,颈部手术包含颈部皮肤切开、分离皮下筋膜、气管插管、颈动脉插管、颈外静脉插管、颈部迷走神经、交感神经、降压神经分离等内容,家兔腹部手术包含回盲部肠系膜分离术、输尿管插管术、膀胱插管术等内容,家兔腹股沟手术主要含分离股动脉股、静脉插管或股神经,以备动脉放血、静脉输血输液、注射药物等内容。
(2)在《离体心脏灌流实验》的虚拟实验软件中,包含四个基本实验元素:离体心脏制备操作录像;8种药物对蛙心灌流影响的虚拟子实验;8种未知药物对蛙心灌流的虚拟实验;以及每个子实验完成后的知识点自测。在已知药物对蟾蜍心脏灌流的虚拟实验中,为同学提供了心脏灌流的动画与3D心脏的虚拟环境,学生亲自动手在虚拟空间内使用8种不同的药物分别加入灌流液中,观察不同药物、不同剂量对离体心脏功能的影响,实验操作过程基本不受时间限制。
(3)在《坐骨神经-缝匠肌实验》的虚拟实验软件中,包含三个基本实验元素:坐骨神经-缝匠肌制备与实验操作录像;五种不同条件下,坐骨神经-缝匠肌虚拟实验;每个子实验完成后的知识点自测。在坐骨神经-缝匠肌虚拟实验中,采用了3D的神经冲动与骨骼肌收缩的机制模式图,以及实验机制解释的3D原理图构建逼真的虚拟环境。例如,在终板电位实验中,学生可以在显微镜下亲自动手操作玻璃电极进行实验,不同的子实验都有详尽实验原理解释和知识点测试题。
(4)在《多因素对呼吸系统功能的影响》的虚拟实验软件中,首先是建立了数字化虚拟3D透明家兔模型,在此基础之上完成大型、综合性呼吸功能虚拟实验。其包含三个基本实验元素:家兔呼吸功能实验操作过程录像;虚拟实验中含有9个不同的子实验,如气道延长、气道狭窄、吸入氮气、吸入CO2、代谢性酸中毒(含纠正酸中毒)、气胸(开放性与张力性)、肺水肿等,以及每个子实验完成后的知识点自测。学生在实验操作中,可观察到透明兔的呼吸(肺泡)运动变化、呼吸与血压曲线变化、血气与电解质变化,以及呼吸的声音变化。
(5)在《微循环灌流与血液动力学实验》的虚拟实验软件中,建立了数字化虚拟3D微循环血液灌流模型,并配合虚拟3D透明兔模型组建大型、综合性血循环虚拟实验。在此虚拟教学软件中包含三个基本实验元素:微循环灌流与血液动力学实验操作录像;虚拟实验中含有5个不同类型的子实验,如失血10%、失血30%、失血50%、过敏性休克、心源性休克,每个子实验完成后的知识点自测。在实验操作中,学生可以自主设计治疗方案,如失血导致休克时,源于同学选择药物、时间节点不同,虚拟实验结果也不尽相同,此时虚拟动物的呼吸运动变化、腹腔内脏血管变化、呼吸与血压变化、微循环与微血流变化,血液pH、Na+、K+、HCO3-、CO2都会发生不同的改变。
(6)《行为药理学实验》的虚拟实验教学软件是以抗老年痴呆药物石杉碱甲的药效学研究--Morris水迷宫实验为主线,涵盖三个基本实验元素:水迷宫实验的基本原理与操作录像;老年痴呆动物模型的制作与虚拟实验具体操作;以及抗老年痴呆相关领域的研究进展和知识点自测。虚拟操作部分包括石杉碱甲对三种老年痴呆模型(东莨菪连续注射、鹅蒿蕈氨酸基底前脑注射及双侧穹窿伞切断)的药效学研究,通过虚拟操作,可产生大量实验数据,学生上机操作得到的结果非单一结果,而是随机化,不同同学不同情况的操作,产生的实验数据也不同,同时也可对实验数据进行统计分析,这充分体现了药理学实验的特点。该软件可使操作者在短时间内掌握抗老年痴呆药物药效学研究的基本方法并获得大量的相关知识信息。
(7)在《影响尿液的生成实验》的虚拟实验教学软件中,含有三个基本实验元素:影响尿液的生成实验操作录像;虚拟实验中含有7个不同类型的子实验,如输入0.9NaCl溶液、输入20%葡萄糖、注射利尿药、注射去甲肾上腺素、刺激迷走神经、失血和尿路机械性梗阻,每个子实验完成后的知识点自测。
(8)在《肠道平滑肌受体动力学实验》的虚拟实验教学软件中,含有三个
基本实验元素:肠道平滑肌受体动力学实验操作录像;虚拟实验中含有2个不同类型的子实验:如神经体液因素对消化道平滑肌收缩与慢波的影响、ICC起搏电位或电流的观察,实验完成后的知识点自测。
(9)医学行为药理学—抗抑郁药的药效学评价实验包括以下内容:
强迫游泳实验:当实验动物放进一个有限的空间使之游泳,动物在该环境中拼命挣扎试图逃跑又无法逃脱,一段时间后,就变形成漂浮不动状态,仅露出鼻孔保持呼吸,四肢偶尔划动以保持身体不至于沉下去,这种状态叫做 “不动状态”,一种 “行为绝望”行为,这种行为绝望模型与抑郁症类似,而且对绝大多数抗抑郁药物敏感,其药效与临床药效显著相关,被广泛用于抗抑郁药物的初选。
小鼠悬尾实验:小鼠在悬尾状态下很快会出现绝望行为,表现为不再挣扎,呈现特有的安静不动状态,抗抑郁药和中枢兴奋药可以明显缩短不动状态的持续时间。绝大多数抗抑郁药物既能缩短不动状态,又能减少或不影响小鼠的自主活动。
大鼠学习无助:当动物置于一种不可逃避的厌恶刺激环境(如足电休克)时,会产生一种绝望行为,表现为对刺激不再逃避,并干扰了以后的适应性反应。此时动物脑内儿茶酚胺水平降低,被公认为是一种抑郁状态,抗抑郁药可以对抗这种状态。
虚拟实验操作流程及技术点描述:该实验需要把实验对象(大/小鼠)进行分组(阳性对照组,用药组、空白对照组)训练,按照实验受试药物进行用药造模,然后,把每组的老鼠分别放入相应的实验装置进行单项实验(强迫游泳/静止悬尾/学习无助),然后根据老鼠的运动轨迹和运动状态(静止/运动,但是学习无助实验是统计逃逸成功的次数和质量),来统计各组老鼠实验数据上的规律,从而通过多次大量的实验后,来评价受试药物抗抑郁的实效性。虚拟实验可以让实验者随时停止实验或查资料,也可以把数据进行归纳统计好另外储存用作分析。
整个虚拟实验开发的难点是对虚拟实验对象(大/小鼠)的动作形态上要保持真实性和科学性。要实现这个功能必须根据大量的真实实验数据,从而分析出实验对象不同组别的运动规律,然后利用Flash中as3编程语言工具进行建立模型,此数据模型主要从3个参数指标来表现区别不同组别的运动规律:实验对象随机运动轨迹区域分布,随机运动状态时间分布和随机运动生物动作科学真实性(水平运动和垂直运动)。比如一只空白组大鼠进行穿梭箱实验,在未放电情况下,它的运动轨迹应该以箱底边缘为主,触壁身体上探次数在3-5次,当放电之后,逃逸成功26-30次。我们以它的参数为标准模型,然后根据用药的不同,适当的调整这个参数,这样系统就可以随机产生相应的数据值。
(10)心血管活动调节综合实验
利用虚拟动物实验,模拟哺乳动物动脉血压的直接测量方法的全过程,以动脉血压为指标,观察某些因素对家兔心血管活动包括血压和心率的影响。
虚拟实验操作流程及技术点描述: 主要有以下内容: 夹闭右颈动脉 刺激右侧降压神经 刺激右侧迷走神经 药物作用
虚拟实验难点,我们将实验家兔透明3d化,使学生在操作的同时可以直观的看到血管神经和跳动的心脏。学生通过选择相应工具,对家兔进行以上各种不同的刺激作用,同时血压曲线和心力环及3d家兔发生相应的变化。
(11)中枢神经系统综合实验内容:
实验一 反射弧的分析;
实验二 脊髓半离断动物的观察; 实验三 去小脑动物的观察; 实验四 大脑皮层运动功能定位与去大脑僵直; 实验五 豚鼠大脑皮层躯体感觉诱发电位; 实验六 自发脑电波及致痫时脑电波的分析。
虚拟实验操作流程及技术点描述:在中枢神经系统的参与下,机体对各种刺激发生的反应过程称为反射。反射弧是反射发生的结构基础。反射弧包括感受器、传入神经、反射中枢、传出神经和效应器五部分。反射弧完整是引发反射的必要条件,一旦其中任何一个环节的解剖结构和生理完整性受到破坏,反射活动就无法实现。硫酸对皮肤的伤害性刺激可以引起受刺激肢体的反射性屈曲,本实验以此屈曲反射来分析反射弧的组成,通过利用不同浓度的硫酸(0.5%-2%,)在正常状态下直接刺激实验对象(青蛙)的身体部位(腹部皮肤和下肢趾尖),通过实验对象的刺激反应(曲腿反射)来观察神经反射效果,然后再通过利用硫酸对剪断右侧坐骨神经后做同样的刺激实验,从而得出反射弧的完整性与反射活动的关系。
本虚拟实验开发的难点是对虚拟实验对象身体不同的刺激部位做出不同的动作反应,并且随着刺激时间的长短而反应也不同。开发的思路是主要根据大量真实实验的录像,分析记录实验对象的动作特点,并给与对象相应的动作库,让实验对象根据实验操作者的操作而做出适当的动作反应。
(12)医学化学基础操作类综合实验包括以下内容:
常压蒸馏实验操作; 酸碱滴定实验操作;
有机物熔点沸点的测定实验操作; 重结晶的实验操作;
色谱分析的实验操作;
用PH计测定醋酸的电离常数的实验操作; 分光光度法测定Fe3+的含量的实验操作。虚拟实验操作流程及技术点描述:
将医学化学常用的基础操作实验虚拟化,学生通观看实验演示部分,学习实验流程了解实验中的注意事项后,再到虚拟实验中进行考核,学生自己使用虚拟实验器材后,产生自动计算的实验数据,并相应实现对实验的虚拟操作,系统通过对学生的实验情况进行评分,以方便教师掌握学生的学习情况。(13)细菌的形态学综合实验包括以下内容:
革兰染色法;抗酸染色法;负染色法;镀银染色法;姬姆萨染色法; 鞭毛染色法;芽孢染色法;荚膜染色法;Albert染色法; 悬滴法和压滴法;光学显微镜的使用;暗视野显微镜的使用。虚拟实验操作流程及技术点描述:
本虚拟实验将细菌的形态学虚拟化,使学生在动手操作的过程中,同步观察到细菌的具体动态,将“看不见”变为随时可以看见,而不是以往的要实验结束了才能到显微镜下看一眼,生动的对比了各个实验对不同细菌的优劣。使学生们对细菌有了生动具体的认识,加深了学生学习的兴趣,取得了更好的教学效果。(14)医学寄生虫学综合实验包括以下内容:
生理盐水直接涂片法;饱和盐水漂浮法;粪便沉淀孵化法;厚涂片透明法; 肛周检查虫卵;血液检查;骨髓穿刺;皮内试验;环卵沉淀试验; 旋毛虫动物模型;日本血吸虫动物模型;鼠疟原虫动物模型; 刚地弓形虫动物模型。
虚拟实验操作流程及技术点描述:
虚拟医学寄生虫学实验采用了视频,动画演示和交互游戏多种方式。使学生可以从直观,微观,亲自操作多个角度体验虚拟实验,将一些学生难以参与的实验如“骨髓穿刺”这种临床上难以展开的实验,我们采用了虚拟实验可以让学生反复操作,掌握实验要点重点。虚拟动物实验正顺应了国际动物保护组织的呼声,而且更加生动。
(15)医学细胞培养综合实验包括以下内容: 细胞培养是从生物体内取出细胞或组织,在体外模拟体内生理环境,在无菌、适当温度和一定营养条件下进行孵育培养,使之生存和生长,并维持其结构和功能的一种培养技术。采用虚拟实验主要模拟内容为:
细胞培养所需的较大型仪器设备的使用; 实验的准备工作; 细胞的换液; 细胞的传代; 细胞的计数; 细胞的接种; 细胞的冻存和复苏。
虚拟实验操作流程及技术点描述:本实验是重在对细胞的培养(换液、传代、储存和复苏)等常用实验室操作的技能培养,本虚拟实验主要是建立了一个仿真实验室场景,把实验用到的设备、工具和药品都放到实验的虚拟场景中去,虚拟实验的操作者可以根据本实验的具体流程,把“细胞的换液”、“细胞的传代”、“细胞的冻存和复苏”、“细胞的转染”等实验流程全部操作一遍。所用到的设备参数和实验数据都可以通过虚拟实验室的场景对设备和工具进行模拟输入设定。
本实验的主要难点是针对操作失误会导致错误的结果,本实验总结了大量的真实实验,通过统计和筛选设置了实验中容易出现的12个错误方向,并对错误值进行两个等级的设定,一旦实验操作者进入错误区域,就标志着本次实验的失败。实验中显微镜和其他仪器设备所看到的都是真实的实验图片。
(16)标准化病人PBL教学实验—心衰类疾病与水肿
根据临床对标准化病人的需要,结合PBL的教学理念和模式,配合病理生理学的教学内容,开发模拟PBL的教学软件,来模拟心力衰竭患者就诊、体检、实验室辅助检测、诊断和案例分析与讨论(含文献检索、文献阅读、发病机制的演示等)全过程的PBL教学模式。
虚拟实验操作流程及技术点描述:本PBL主要通过患者唐某,因为感冒发烧到医院来就诊,虚拟医生(就是虚拟实验操作者)根据患者的病理特点,决定进行选择初步体检和判定,然后根据结果再选择实验室检查,然后根据实验室的各项指标数据进行判定发病原因和就诊方法。本PBL设定四个学员为一组,共同讨论共同决策,其中提交的数据以组长为准,PBL虚拟实验可以随时停止给学员以查资料讨论的时间,同时系统支持学员间的在线即时交流。
本实验的难点是对急性心力衰竭的发病原因要进行充分透彻的解释,就必须借助虚拟心脏的三维动画,一个标准的心脏内外部件都完整的模型在国内都还没有出现,必须在临床心脏专家指导下进行从头开始,还要进行虚拟动画制作,难度很高,工作量也很大。
另外一个难点是是对讨论组出现判断错误的设定和引导。对于病例的会诊,经常会让学员组进入到一个其他类似病例的误区,本PBL在临床医学专家的资料和建议下,设置了4个容易误判的病例,并设置了3个等级的错误阶段,当学员组进入到误判病例3级分析时,即宣告本次课题学习失败。
(17)标准化病人PBL教学实验—细胞增殖分化凋亡异常与疾病
根据临床对标准化病人的需要,结合PBL的教学理念和模式,配合病理生理学的教学内容,开发模拟PBL的教学软件,来模拟白血病患者就诊、体检、实验室辅助检测、诊断和案例分析与讨论(含文献检索、文献阅读、发病机制的演示等)全过程的PBL教学模式。
虚拟实验操作流程及技术点描述:本PBL主要通过患者小谭,因为有皮肤出血点等症状,到医院来就诊,虚拟医生(就是虚拟实验操作者)根据患者的病理特点,决定进行选择初步体检和判定,然后根据结果再选择实验室检查,然后根据实验室的各项指标数据进行判定发病原因和就诊方法。本PBL设定四个学员为一组,共同讨论共同决策,其中提交的数据以组长为准,PBL虚拟实验可以随时停止给学员以查资料讨论的时间,同时系统支持学员间的在线即时交流。
本实验的难点是对白血病的发病原因要进行充分透彻的解释,就必须借助三维动画表现细胞增殖分化凋亡的原因及机制。
另外一个难点是是对讨论组出现判断错误的设定和引导。对于病例的会诊,经常会让学员组进入到一个其他类似病例的误区,本PBL在临床医学专家的资料和建议下,设置了4个容易误判的病例,并设置了3个等级的错误阶段,当学员组进入到误判病例3级分析时,即宣告本次课题学习失败。(18)标准化病人PBL教学案例—中风病人的中医诊断与治疗
本案例从老年人常见的中风病出发,探索老年性疾病的中医辨证论治,藉此锻炼学生的中医辨证论治思维和方法。模拟中风患者就诊、中医望闻问切、实验室辅助检测、诊断和案例分析与讨论(含文献检索、文献阅读、发病机制的演示等)全过程的PBL教学模式。
通过启迪和促使学生了解和掌握中医基本思辨规律和方法。其软件操作与以上二个软件的操作类似,学生分组讨论,主要实现以下教学目的:
1、中风的主要临床表现、发作的常见病因、中医的辨证论治主要有哪些方法。
2、中风的治疗过程及各种注意事项
3、中风恢复期的治疗方法及注意事项。