第一篇:第六单元 运算律 加法运算律的应用
第六单元 运算律
课题:加法运算律的应用 第 2 课时
教学目标:
1.让学生经历运用加法运算定律进行简便计算的探索过程,掌握方法,会正确地进行简便计算。
2.在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。教学重点:理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:课件 教学过程:
一、谈话引入
谈话:上节课我们学习了加法的两条运算律,你们还记得是哪两条吗?各是什么意思? 我们在上节课还说到了加法运算律的用途,我们已经知道运用加法交换律可以进行加法验算,这节课我们将学习加法运算律的另一项用途,那就是运用加法运算律进行简便计算(板书课题)。谁知道简便是什么意思?你们喜欢简便运算吗?既然大家都喜欢,我们就一起去探索怎样进行简便运算,我们仍然从解决现实问题做起。
二、交流共享 1.教学例2。
(1)出示例题。提问:谁能说出算式?学生说出算式后,教师板书。(2)谈话:这道算式,按照运算顺序应该怎样算?你觉得还可以怎样算?你能 用两种不同的方法计算吗?要注意的是,要从这个算式接着往下算,而不是另列 算式。
(3)学生计算,教师巡视,选择不同算法的学生把自己的算式抄在黑板上。学生的算式可能有:
29+46+54 29+46+54 29+46+54
=75+54
=29+(46+54)=46+54+29 =129(人)=29+100
=100+29 =129(人)=129(人)(4)让抄写算式的学生说说自己如此计算的理由,包括运算的根据,以及怎么想到把46和54先相加的。(5)讨论:你认为哪种算法简便?为什么?(6)教师小结:在计算几个数连加时,把和是整百的数先加起来,可以使下一步的计算简便。
2.教学“试一试”。
(1)出示算式并提出要求:
①65+79+21
②78+(47+22)用简便方法计算,写出计算过程。
(2)学生计算,教师巡视,对有困难的学生进行指导。
(3)指名把自己的算式写在黑板上。
(4)全班共同检查黑板上的算式。
提问:两道题各应用了什么运算律?(第l题应用了加法结合律,第2题应用了加法交换律和加法结合律)你是怎样看出78和22、79和21的和是100的?(十位上数的和是9,个位上数的和是10)
三、反馈完善
1.完成教材第57页“练一练”第1题。
这道题是找凑成整百数的专项练习。决定是否运用运算律,关键看题中有没有可凑整的数。因此要正确迅速地做出决定,必须加快学生分辨凑整数的速度。
2.完成教材第57页“练一练”第2题。这道题是运用加法运算律进行简便计算。第一小题先进行后两个数的计算比较简便; 第二小题先进行前两个数的计算比较简便;
第三、四题要同时运用加法交换律和结合律才能使计算简便。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
第二篇:第六单元 运算律教学设计
第六单元 运算律
第1课时 加法交换律和结合律
教学内容:加法交换律和结合律(教材第55-56页)。教学目标:
知识与技能:在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
过程与方法:在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,培养学生的符号感。
情感态度与价值观:使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,渗透《中华人民共和国体育法》,使学生热爱体育,懂得锻炼。
教学重点:理解并掌握加法交换律、结合律。教学难点:归纳、概括出加法交换律和结合律。教学准备:课件 教学过程:
一、谈话引入 1.师生谈话。
同学们,学校每天上午都会进行大课间活动,你们喜欢大课间活动吗?瞧,这些同学也在开展活动呢”,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?讲解《中华人民共和国体育法》。2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)
追问:你能根据这些信息,提出哪些用加法计算的问题?(1)跳绳的有多少人?(2)参加活动的女生有多少人?(3)参加活动的一共有多少人? 3.导入新课。
在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题)
二、新课教学 1.加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算?(2)列式解答。
指名学生回答,教师板书:28+17=45(人)追问:还可以怎样列式? 教师板书:17+28=45(人)(3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。引导:我们可以用什么符号将这两道算式连起来呢?(等号)师板书:28+17=17+28(4)照样子写一写。让学生试写等式。
提问:观察这些等式,你有什么发现?(两个加数交换位置,和不变)
(5)指导学生用自己喜欢的方法表示出这种规律。学生在各自的练习本上表示规律后,交流各自的表示方法。(6)用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成: a+b=b+a 教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2.加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。
(3)组织汇报交流。
解法一:先算出跳绳的有多少人。(28+17)+23 = 45+23 =68(人)解法二:先算出女生有多少人。28+(17+23)= 28+40 =68(人)
提问:这两道算式有什么相同的地方和不同的地方? 学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写? 根据学生的回答,师板书:(28+17)+23=28+(17+23)
(4)加深认识、探索规律。
①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。(45+25)+16○45+(25+16)
(39+18)+22○39+(18+22)
②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?
学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,和不变。
追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示? 师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、巩固练习
1,根据运算定律,在下面的横线填上适当的数。369+258+147=369+(____ +147)(23+47)+56=23+(____ + ____)654+(97+a)=(654+____)+____ 2.你能把得数相同的算式连一连吗?
⑴ 72+16 A.(75+25)+48 ⑵ 45+(88+12)B.16+72 ⑶ 75+(48+25)C.(45+88)+12 3.说一说下面的等式各应用了什么运算定律? 80+0=0+80 47+(30+8)=(47+30)+8(26+△)+□ =26+(△+□)75+(48+25)=(75+25)+48
四、全课总结
通过今天的学习,你学到了什么? 能说给老师和同学们听听吗?
五、布置作业
完成教材第58页“练习九”第1、2、3题。板书设计: 加法交换律和结合律
28+17=17+28(28+17)+23=28+(17+23)a+b=b+a(a+b)+c=a+(b+c)
第三篇:《运算律》单元分析
《运算律》单元分析
本单位教学运算律,包括加法交换律、结合律,乘法交换律、结合律、分配律。整数的运算律在小数、分数的运算中同样存在,教材先在整数范围内教学运算律,以后再推广到小数、分数的运算中去,是一种合理的安排。
运算律是整数加法和乘法计算法则的推理依据。多位数加法把相同数位上的数相加,即具有相同计数单位的数直接相加,主要依据了加法结合律,也应用了加法交换律。三位数乘一位数把三位数个位、十位、百位上的数依次分别乘一位数,主要依据了乘法分配律。三位数乘两位数把三位数分别乘两位数个位、十位上的数,再把两次乘的结果相加,也是依据了乘法分配律。小学数学里,计算教学在前,运算律教学在后,计算方法不从运算律推出,是考虑了学生年龄与智力发展的阶段性特点。不过,在教学运算律以后,如果再认计算法则,还会有深一层的理解。
运算律是继续教学某些数学知识的重要基础。尤其是应用运算律进行简便计算,既提高了解决计算问题的效率,更提高了学生的计算能力。
运算律是高度概括的运算知识,是在大量的计算现象中归纳出来的数学内容。运算律是加法、乘法计算中具有普遍意义的规律,经过演绎推理能够运用到具体的计算中去,对发展学生的数学思维十分有益。所以,教学运算律需要联系实际,从现实的解题活动中得出运算律。教学运算律不仅要解释数学规律,还要关注学生的数学思考。全单元编排七道例题,具体安排如下: 例1 加法交换律、结合律
例2 应用加法运算律进行简便计算 例3 乘法交换律
例4 乘法结合律
例5 乘法分配律
例6 应用乘法运算律进行简便计算 例7 相遇问题
从表格里可以看到,教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律和结合律,再教学分配律;先教学运算律的含义,再教学运算律的应用。这样安排有三点原因:首先是由易到难,便于教学。我们知道,交换律的内容比结合律简单,分配律的内容更加复杂,学生对交换律的感性认识比结合律和分配律丰富,先教学比较容易的交换律,有利于激发学生探索运算律的兴趣。其次是提高教学效率,发挥学生的能动性。交换律的教学容易组织和实施,而交换律的教学方法与学习活动经验,可以应用到结合律和分配律的教学中去。这种内在的可迁移性,有利于确立学生的学习主体地位。再次是遵循了学生的认识规律。人们掌握运算律,应该先理解运算律的具体含义,再应用运算律使一些计算简便,小学生学习运算律,也应该达到理解和掌握的程度,也需要有合理的安排。
教材把相遇问题编排在本单元的最后教学,这是因为两个物体作相向运动,如果分别已知它们的运动速度,以及同时相向运动的时间,求它们运动的路程和,通常有两种算法,而两种算法之间可以用乘法分配律沟通、转换。所以,把相遇问题编排在运算律的单元里教学,有助于学生联系实际问题里的数量关系,进一步体验乘法分配律的含义,也有助于学生联系乘法分配律,理解相遇 问题两种解法的关系。
(一)在观察、实验、归纳、类比等学习活动中主动认识运算律 数学教学不仅要学生获得重要的数学知识,还要发挥教学内容的育人功能,使学生在各个方面有所发展。教材希望学生在本单元的教学中,掌握运算律并发展初步的推理能力。为此,设计了一条鲜明的教学线索,在发现运算律、总结运算律的时候,都给学生留出自主探索、独立思考的空间,为他们安排了丰富、多样、有趣、高效的学习活动。教材安排的教学过程是“解决一个实际问题——看到一个数学现象——举出更多的例子——在众多案例中抽象概括——用符号表示发现的规律”,引导学生充分地观察、实验、归纳、类比,形成正确的数学结论。
1.引出一个实例,解决一个实际问题。
教材编排四道例题分别教学加法交换律与结合律、乘法交换律、结合律、分配律。例1教学加法交换律,呈现的实际问题里已知28个男生跳绳,17个女生跳绳,23个女生踢毽子,求跳绳的学生有多少人。解决这个问题,数量关系可以是“男生跳绳人数+女生跳绳人数”,或者是“女生跳绳人数+男生跳绳人数”,即可以列出算式28+17或17+28。由于两个算式的得数相同,这两个算式可以组成等式28+17=17+28,这是加法交换律的第一个实例。
例1接着求跳绳和踢毽子的一共有多少人,数量关系可以是“跳绳人数+踢毽子人数”,列出算式(28+17)+23;数量关系也可以是“男生人数+女生人数”,列出算式28+(17+23)。两个算式的得数相同,也能组成等式(28+17)+23=28+(17+23),这是教学加法结合律的第一个实例。
例4教学乘法结合律,呈现的实际问题是“华丰小学举行跳绳比赛,每个班选派23人参加。每个年级有5个班,6个年级一共选派多少人参加比赛?”解决这个问题的数量关系式可以是“一个年级参加的人数×一共的年级数”或者是“每班参加的人数×一共的班级数”,列出的算式是(23×5)×6或者23×(5×6)。两个算式解决同一个问题,得数相同,能组成等式(23×5)×6=23×(5×6),这是乘法结合律的第一个实例。
例5教学乘法分配律,呈现的实际问题是“四年级有6个班,五年级有4个班。每个班领24根跳绳,四、五年级一共领多少根跳绳?”解决问题的数量关系式是“
四、五年级一共的班级数×每班领的根数”或者是“四年级领的根数+五年级领的根数”,算式是(6+4)×24或者6×24+4×24。两个算式可以组成等式(6+4)×24=6×24+4×24,是乘法分配律的第一个实例。
各个实例的教学要点是等式表达的数学内容。在28+17=17+28这个等式里,等号两边的加数调换了位置;在(28+17)+23=28+(17+23)这个等式里,等号两边的运算顺序不同,分别是“先把前两个数相加,再加第三个数”和“先把后两个数相加,再与第一个数相加”。在(23×5)×6=23×(5×6)这个等式里,等号两边的运算顺序不同,分别是“先把前两个数相乘,再与第三个数相乘”和“先把后两个数相乘,再与第一个数相乘”。在(6+4)×24=6×24+4×24这个等式里,等号左边是“两个数相加的和乘一个数”,右边是“两个加 数分别乘一个数,并把两个乘积相加”。教学应组织学生仔细观察第一个实例的等式,了解等式表示的数学内容,明白知识特点,产生进一步探索规律的积极性。
教学各条运算律的第一个实例要注意两点:一是教师要和学生共同参与列算式的活动。例1的第二个问题“跳绳和踢毽子的一共有多少人”可以列出许多个算式,但不都是研究加法结合律所适宜的算式。这时,教师与学生一起列式,可以避免列算式环节上不必要的纠缠,及时排除与结合律无关的那些算式。二是挖掘等式里的数学内容十分重要。必须把学生的注意力引导到对运算律的研究上去,看到等式两边的加数位置调换了,看到等式两边的运算顺序变了。但是,挖掘数学内容应紧密联系算式实际,尽量具体一些,不要太多、太早地抽象概括,更不要仅此一例就得出运算律。要充分联系熟悉的问题情境与数量关系,使学生在首次感受运算律时能体会到它的合理性。2.举出更多的例子。
从第一个实例中看到的数学现象是不是普遍规律,还需要在类似的情况里验证。教学加法交换律,例1要学生“再写几个这样的等式”,在众多实例中证实“两个数相加,交换加数的位置,和不变”。教学加法结合律,例1让学生分别计算(45+25)+16与45+(25+16)、(39+18)+22与39+(18+22),看看每组的两道算式中间能不能填上等号,在较多的实例里体会“三个数相加,可以先加前两个数,再加第三个数,也可以先加后两个数,再加第一个数”。例
3、例
4、例5分别教学乘法交换律、结合律、分配律,教材都要求学生仿照第一个实例,“再写几个这样的等式”,证实在有关乘法算式里都存在交换律、结合律、分配律,体验第一个实例中的数学现象在类似的例子中同样存在,具有普遍性。
加法和乘法的交换律比较简单,学生寻找其他实例也比较容易。结合律和分配律比较复杂,例1教学加法结合律,教材给出两组算式,让学生通过计算证实同组的两道算式得数相同,组成的等式与解决实际问题的等式有相同的数学特征。例4、5教学乘法结合律、分配律,教材要求学生列举实例进行验证,引导他们把加法结合律的活动经验应用到学习乘法运算律上来,体现了学习水平的层次性。教学应帮助学生写出算式、算出得数、比较结果、形成等式。同组的两道算式之间不能随意写出等号,必须分别计算两道算式,比较得数以后才确定。这一步教学,从个案的等式关系到若干同类现象的等式关系,丰富了对运算律的感性认识,也体现了科学的认知方法与态度。3.在丰富的案例中概括。教学每一条运算律,教材都要联系实际问题里以及继续列举的那些等式,说说“有什么发现”,引导学生对众多案例进行概括,把同一类案例的共同特征提取出来,并用数学语言描述。
与过去教材不同的是,新教材没有用文字语言讲述各条运算律的内容。这并不是不需要概括性的描述,而是把概括运算律的活动留给学生进行,以避免机械接受、死记硬背。学生经过自己的观察、验证,再用自己的语言讲述运算律的
内容,才是他们对运算律实实在在的理解。教学应十分重视这个环节,给学生提供充分的思考、交流时间,这是锻炼数学思维的极好时机。当然,对学生的口头表述不应提出过高的要求,能说得基本正确、能说得基本清楚就可以了。概括要联系等式,在教学的各个环节有计划地进行,逐步达到要求。4.用字母表示运算律。
用字母表示运算律,可以视为建立关于运算律的数学模型。它简明、准确、概括地表达了各条运算律的本质数学内容,有助于学生记忆与交流。教学加法交换律,教材鼓励学生“用自己喜欢的方法表示”。可以像“番茄”卡通那样用语言叙述,可以像“蘑菇”卡通那样用图形组成的式子表示,也可以像“辣椒”卡通那样用文字写成的等式表示,还可以用其他方法表示。学生采用任何一种方法表示,都反映了“交换两个加数的位置,和不变”的规律,都经历了建立数学模型的过程。用含有字母的等式表示运算律,是人们已有的约定。教材指出,如果用字母表示加数,运算律可以写成字母表示的等式,体现了这种表示方法的优越性,既能加强对运算律的理解,又有利于培养符号意识,发展符号感。
用符号表示各条运算律的教学过程不尽相同。加法交换律先用图形表示,再用字母表示。因为图形比字母生动、有趣,学生容易接受,也喜欢采用。而字母表示,则相当简明、方便。其他各条运算律,直接用含有字母的等式表示,跳过了用图形或别的方法表示的环节,这是考虑到学生已经具有用字母表示运算律的体验与能力,不必在其他表示方法上花费时间和精力了。5.根据结合律和分配律进行逆向推理。
加法、乘法的结合律以及乘法分配律都可以逆向理解与应用,逆向理解能深刻认识运算律,逆向应用能提高计算效率。三个数相加(或相乘),先把后两个数相加(乘),再加(乘)第一个数,可以改变成先把前两个数相加(乘),再加(乘)第三个数。两个乘式相加,如果有一个相同乘数,那么可以先把不同的乘数相加,再乘相同的乘数。教材把这些逆向推理安排在练习里教学。
(二)体验简便运算,培养主动应用运算律的意识
应用运算律能使一些计算简便,这是计算能力的重要组成部分。采用简便运算不应是教材或教师对学生的规定,而应是学生的主动追求和自觉行为。教材只编排少量例题作为简便计算的引导,而在练习里提供了许多实施简便计算的机会,让学生主动进行简便运算。关于应用运算律的简便计算,分四步教学: 第一步是渗透简便运算。第二步是教学简便计算第三步是灵活进行简便计算。第四步是拓展简便运算。
(三)应用解决问题的策略,联系乘法分配律,探索相遇问题的解法
例7是相遇问题的一种情形:小明和小芳同时从家出发走向学校,经过4分钟两人在校门口相遇。已知两人的行走速度,求两人行走的路程和。学生解决相遇问题,应该了解相遇问题的运动特点,理解其数量关系。教材在文字叙述实际问题以后,画出小明和小芳同时从家出发走向学校的示意图,并分别给出两人行走的速度,帮助学生直观了解相遇问题的运动方式与特点。要求学生按解
决问题的一般步骤,先整理实际问题里的数学信息,准确理解题意;再根据整理的条件与问题,分析数量关系,形成解决问题的思考,并采用两种不同的解法解决问题;然后回顾解决问题的方法与过程,交流体会,认识相遇问题的特点,积累解决问题的经验。
整理实际问题里的条件与问题,可以采用画图形式,也可以采用列表形式。在线段图上可以把两家的房屋、学校等简化成端点、小旗等符号,清楚地表示出小明从家到学校走了4个70米,小芳从家到学校走了4个60米。在表格里应该分别列出小明和小芳各人行走的速度与时间。无论采用哪一种形式整理,都应让学生看着自己的线段图或表格复述题意,说出相遇问题的运动特点——两人从两地同时出发,相对而行,在途中相遇;说出相遇问题里的数量——两人的行走速度各是多少,经过多少时间两人相遇;说出相遇问题的所求问题——两人一共行走多少路程。
分析数量关系应充分利用线段图和表格。从线段图上可以很清楚地看出:求两家相距多少米就是求两人一共行走多少米,其中小明走了4个70米,他一共走了(70×4)米;小芳走了4个60米,她一共走了(60×4)米;两人一共走了(70×4+60×4)米。在表格里不仅能够看到两家相距4个70米与4个60米的和,还能看出两家相距4个130米(70米+60米)。教材呈现的“番茄”卡通的想法,在线段图上容易形成,需要三步计算才能解决问题。“蘑菇”卡通的想法,在表格里容易想到,只需要两步计算就能解决问题。
例题要求学生“先用不同的方法解答,再想一想两种解法有什么联系”。这里用不同方法解答,并不是对相遇问题“一题多解”,而是希望通过两种解答,理解相遇问题里的“路程和”是“两人分别运动的路程之和(一人的路程加另一人的路程)”也是“两人速度和(一人速度加另一人速度)的若干倍”。研究两种解法的联系,发现两种解法的综合算式可以用乘法分配律沟通,一个算式能转化成另一个算式。这种沟通有利于学生理解相遇问题里的数量关系以及相遇问题的两种解法,也有助于学生联系相遇问题进一步体验乘法分配律的内涵。“蘑菇”卡通的解法虽然只要两步,但形成和理解这种解法的思考过程比较难。
第三,用乘法分配律沟通两种解法的综合算式,70×4+60×4=(70+60)×4,从左边算式的两个乘式有相同乘数“4”,体验右边算法的合理性。
相遇问题常见的情形有三种:一种求两个物体的路程和;一种求两个物体的相遇时间;一种求某个物体的运动速度。本单元只出现第一种情形的问题,要求学生掌握求“路程和”的方法,另两种情形的问题,在后面教材里会陆续出现。不过,教材里属于相遇问题第一种情形的实际问题仍然有较多的变化。如,由两人的相向运动到两人的相背运动;由直线道路上的相遇到环形跑道上的相遇或相背运动;由两人的相对运动到两人做同一件事情„„这些情节和题材的变化都没有改变相遇问题的本质特点和基本解法,都出现在练习里,都应让学生主动适应、主动掌握。
(四)单元《整理与练习》进一步明确知识、技能的教学要求,进一步明晰知识结构,进一步加强运算规律的应用。
第四篇:《加法运算律》教学设计
《加法运算律》教学设计
【教学目标】:
1、在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
2、在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透数学思想,培养学生的符号感。
3、使学生感受数学与生活的联系,自主探索初步获得成功的体验,增强学习数学的信心。
【教学重点】:
理解并掌握加法交换律和加法结合律。
【教学难点】:
归纳概括出加法交换律和加法结合律。
【教学过程】:
一、谈话导入
1、师生谈话。
师:同学们,你们有大课间活动吗?有什么项目?有没有小朋友喜欢跳绳和踢毽子的?(学生自由发言)
2、自主提问。
课件出示教材第55页例1情境图,你能从图中获取哪些数学信息?(学生自由说)追问:你能根据这些信息提出哪些用加法计算的问题?
生回答:(1)跳绳的有多少人?
(2)参加活动的女生有多少人?(3)跳绳和踢毽子的一共有多少人?
3、导入新课。
师:在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中的运算规律。(板书课题:加法运算律)
二、探究新知
1、加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算?
(2)列式解答:指名学生回答,教师板书:28+17=45(人)或17+28=45(人)(3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。
引导:我们可以用什么符号将这两道算式连起来呢?(等号)师板书:28+17=17+28(4)照样子写一写。
师:你能再写几个这样的算式吗?(学生写写)(5)让学生用自己喜欢的方法表示出这种规律。
提问:观察这些等式,你有什么发现?(两个加数交换位置,和不变)学生在各自的练习本上表示规律后,投影展示并交流学生不同的表示方法。(6)教学用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成: a+b=b+a 教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2、加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?
学生独立列式计算。教师巡视,并指名两人板演不同的方法。
(2)汇报交流。
法一:先算出跳绳的有多少人。法二:先算出女生有多少人?
(28+17)+23 28+(17+23)= 45+23 =28+40 = 68(人)=68(人)提问:这两道算式有什么相同的地方和不同的地方? 学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写? 根据学生的回答,师板书:(28+17)+23=28+(17+23)(3)探索规律。
①出示下面两道算式,让学生算一算,下面的○里能填等号吗?(45+25)+16○45+(25+16)(39+18)+22○39+(18+22)
②组织观察:比较上面的三组算式,和同学说说有什么发现。学生交流得出:每组两个算式中的三个加数相同。
先把前两个数相加,或者先把后两个数相加,和不变。追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示? 师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、练习巩固
1、完成教材第56页“练一练”。
让学生说说每个等式各运用了什么运算律及判断的依据。师重点强调第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。
2、完成 “练习九”第1题。
重点引导学生观察最后一小题,运用了加法交换律和结合律。
3、完成“练习九”第2题。
这种验算方法在以前学过,通过这几题的练习加深学生的认识,明确可以运用加法交换律进行验算。
4、完成“练习九”第3题。
让学生通过计算和观察、比较,进一步认识加法交换律和结合律。让学生计算,并说说每组中两题的联系。
比较每组中的两题,说说哪一题计算起来更加简便。明确可以利用加法的交换律和结合律进行简便计算。
四、反思总结
通过本课的学习,你有什么收获? 还有哪些疑问?
【教材简析与说明】:
《加法运算律》是苏教版小学四年级数学下册第六单元第1课时的内容,这部分内容看似简单,却是后面的运算律的铺垫,因此学好这个内容至关重要。在加法运算律的教学中,教材首先创设操场上跳绳和踢毽子的情境,贴近学生的生活,能够激起学生学习的积极性,有探究新知的欲望。其次鼓励学生算法多样化,得出不同的解题方法,进而引导学生观察发现,比较归纳得出加法的运算律。在探索规律时,以学生为主体,由浅入深,循序渐进,符合小学生的思维发展和认知特点。在初步发现加法交换律时,引导学生用自己喜欢的方式表示,再统一用字母表示,既尊重了学生,又能很好地让学生接受字母表示的方法。最后教材出示了一些练习,突出重难点,层次分明,形式多样,及时巩固了所学的加法运算律。
第五篇:加法运算律教学设计
加法运算律
【教学内容】义务教育课程标准实验教科书(西师版)四年级上册第46~ 48页例
1、例2的教学内容。
【教学目标】1.使学生理解和掌握加法交换律和结合律,懂得用字母表示的意义。2.通过经历对加法运算定律的探究、发现过程,培养学生观察、分析、比较、概括的能力。3.在学生学习加法运算定律的过程中,培养其数学交流的能力和合作的意识。【教学重难点】理解和掌握加法交换律和结合律。【教具学具准备】多媒体课件 【教学过程】
一、探究加法结合律
1.出示情景图:三年级89人,二年级96人,一年级104人,问题是:3个年级共有学生多少人?
2.教师:该怎样列式? 89+96+104 3.教师:请同学们再想想该怎样计算?(1)学生独立思考。(2)(2)分组讨论。
(3)全班交流。教师:谁代表你们这组说一说是怎样计算的? 学生1:我们先计算89+96算出二、三年级共有185人,再用185+104算出3个年级一共有289人。
学生2:我们先计算96+104算出一、二共有200人,再用89+200算出3个年级一共有289人。教师:同学们的方法都正确,下面请你们在书上完成“填一填”。4.学生填空后对答案。
5.引导归纳。教师:从上面两组的计算中,你发现了什么? 教师:那么左、右两个算式之间可以用什么符号连接? 教师:对,能写成一个等式,89+96+104=89+(96+104)。教师:你们的发现是不是适合其他算式,请自己举例验证。如果适合,请用一个等式表示。教师:看来,你们的发现都适合三个数相加的情况。恭喜同学们又发现了加法的一个运算定律。为了简便易记我们需要几个字母表示? 学生分组用字母表示。汇报并板书:(a+b)+c=a+(b+c)。教师:想给这个定律起什么名? 教师:同学们起的名字都很好,我们就按约定俗成的叫法,把它称作加法结合律吧。学生齐读加法结合律,(a+b)+c=a+(b+c)。
6今天我们学习的内容就是教科书上第46、47页的内容,请同学们把书上的重点句勾画出来理解并记忆。
二、巩固规律1.第47页,课堂练习第1题。学生独立填空,再集体评讲。2.第48页,课堂练习第2题。(1)理解题意。(2)学生独立完成。(3)集体校对。
(4)问:136+89+64与 89+(136+64)用等号相连的依据是什么?3.练习九第1题。独立完成,集体评讲校对答案。
四、全课小结教师:通过今天的学习,你知道了什么?教师:结合律是加法运算。
(板书:加法运算律)它们在计算中怎样应用呢?下节课我们继续学习