第一篇:《圆柱的体积》.学情分析doc(定稿)
《圆柱的体积》学情分析:
六年级的学生已经掌握了一些数学基础知识和学习数学的基本方法,具备了一些基本的解决数学问题的能力和技巧。大部分学生具有较强的自我发展意识,对有挑战性的任务很感兴趣。这使得我们在学习活动的安排上除了关注数学的用处之外,也应当设法给学生经历做数学的机会,使他们能够在这些活动中表现自我、发展自我,从而感受到数学学习是很重要的活动,初步形成并学会数学的思考。此外,学生已经学过长方体等基础的立体图形,因此对本节课的内容理解起来并不是很困难,关键是如何利用他们对实践及探究活动的热情,让他们在活动中建立数学模型的数学发展的过程。
六年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。
第二篇:《圆柱的体积》效果分析
《圆柱的体积》效果分析
本节课的教学内容是:圆柱的体积计算公式的推导及练习,本节课的教学目标是:使学生知道圆柱体体积的推导过程,理解并掌握求圆柱体体积的计算公式,并能正确地应用公式计算圆柱体积。本节课的教学重点是:圆柱体体积计算公式。教学难点是:圆柱体割拼组合教学。第一方面:成功之处
1、教师能围绕本节课的教学内容有目的、有针对性地进行复习,为后面圆柱体体积的计算埋下伏笔。
2、传统教学与现代化教学相结合。圆柱体体积的推导过程中,教师首先把实物圆柱体模型进行分解,再组合成一个已学过的长方体进行推导,但南老师觉得还不够透彻,因此,又利用多媒体现代化教学手段把推导过程重新回顾一遍,这样就把传统教学与现代化教学有机地结合再一起,突破了教学难点。
3、针对本节课所学知识内容,安排练习,由易到难,由浅入深,使学生当堂掌握所学的新知识,并通过练习达到一定技能。
4、本节课,让学生动手、动脑,参与教学全过程,较好地处理教与学,练与学的关系,达到了一定的教学效果。第二方面处:探讨之处
1、课堂教学环节如能先复习圆的面积计算公式及立体图形的体积计算公式,再出示课题进而传授新知识,整堂课的结构应该会更完整一些。
2、本节课学生的主体性没有充分展示出来,例如:在体积公式的推导过程中,教师如能让学生自己去探讨长方体的底面积和高与圆柱的底面积和高的关系,从而推出圆柱体的体积公式,这样学生在课堂中的主体性就能充分发挥出来。
3、在“讨论”这一环节中,应该是“已知圆柱的底面半径和高,怎样求圆柱的体积”而不是“已知圆的半径和高”,圆哪来的高,因此这里表述的不够准确。
总之,这节课从学生的练习来看,达到了预定的教学效果,是一堂成功的课,也希望年轻的南老师今后继续发扬教学激情,发挥自己的个人专长,在教学上有新的突破。
第三篇:圆柱体积教案
《圆柱的体积》教学设计
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想——验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。教学工具
推导圆柱体积公式的圆柱教具一套。教学过程
【复习导入】
1.口头回答。
(1)什么叫物体的体积?你会计算下面哪些图形的体积?
(2)怎样求长方体和正方体的体积?圆柱的体积怎样计算呢?能将圆柱转化成一种学过的图形,计算出它的体积吗?
(3)首先让我们回忆一下圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2.引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱的体积计算公式呢? 教师板书:圆柱的体积(1)。【新课讲授】
1.教学圆柱体积公式的推导。(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形? 学生:近似的长方体。
②通过刚才的实验你发现了什么? 教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢? 学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的? ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的? ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的? 2
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2.教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①1250×2.1=2625(cm3)
答:它的体积是2625cm3。
②2.1m=210 cm
1250×210=262500(cm3)
答:它的体积是262500cm3。
③1250cm2=0.125m2 0.125×2.1=0.2625(m3)
答:它的体积是0.2625m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
如果知道圆柱底面的直径d和高h,圆柱的体积公式还可以写
d2V=π()× h成: 2如果知道圆柱底面周长C和高h,圆柱的体积公式还可以写 成: V=(C÷π÷2)2×h
【课堂作业】
教材第25页“做一做”第1、2题。课件上练习题。学生独立做在练习本上,做完后集体订正。
【课堂小结】
通过这节课的学习,你有什么收获?你有什么感受? 【课后作业】
完成练习册中本课时的练习。
人教版六年级下册
第三单元圆柱的体积
(一)教学设计
桐河一小 刘 倩2018年8月
第四篇:圆柱的体积
《圆柱的体积》教学设计及教学反思
一、教学内容
人教版十二册圆柱的体积(P36例4,练习八1—2题)。
二、教学目标
1、运用迁移规律,借助圆面积计算公式的推导方法理解并推导圆柱的体积计算公式,学会转化的数学思想。
2.会用圆柱的体积公式计算圆柱形物体的体积和容积,解决生活中简单的实际问题,体会数学与生活的密切联系。
3.借助观察、操作和实物演示,发展抽象、概括的思维能力。关键:借助直观
三、学法引导
学生通过操作、实验,形成表象,建立空间观念,掌握圆柱体积的计算。
四、教学重、难点
1、重点:圆柱体体积的计算公式的推导及其应用。
2、难点:理解圆柱体体积公式的推导。
五、教具准备:圆柱教具、计算机、CAI课件、实物展台、投影。
六、学具准备:实物圆柱体、长方体水槽、橡皮泥制作的圆柱、小刀、直尺。
七、教学过程
(一)、创设情境,引入新课。
(二)、实际操作,探求新知。
1、根据已有的知识基础请同学们大胆猜想,圆柱体的体积可能等于什么?
2、你们的大胆猜测正确吗?请各小组利用不同的学习材料,合作想办法加以验证。
3、让学生看书自学,按照书中介绍的方法利用手中的学具自己推导出圆柱体的体积公式。边说说:
(1)切割后拼成了一个近似于什么的形体?(2)圆柱的体积与拼成后的长方体的体积有什么关系?(3)这个长方体的底面积等于圆柱的什么?(4)长方体的高与圆柱体的高有什么关系
4、课件演示圆柱体分、切、拼成近似长方体动画过程,引导学生细心观察。
5、思考回答:要求圆柱体的体积,必须知道哪些条件?
(三)、新知内化,形成技能。
1、教学P36例4:(屏幕显示)一个圆柱形的钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
(1)理解题意,尝试练习。(2)展示自己的解答方法
(3)比较两种方法。说说解题时应该注意什么?
(4)想一想:如果已经圆柱底面的半径r和高h,圆柱体积的计算公式是怎样的? 小结:题目中的计量单位不一致时,首先要统一单位;最后答案必须要用体积单位。
2、练一练: P37“做一做”第一题。
3、抢答:练习八第一题。
4、巩固练习
计算下面圆柱体的体积。
(1)底面半径3厘米,高8厘米。(2)底面周长628毫米,高2厘米。
5、发展练习
一个圆柱形玻璃鱼缸,里面装水,水面高35分米,鱼缸里放入一块石头后,水面升高到45分米,如果这个鱼缸的底面积是25平方分米,这块石头的体积是多少?
(四)总结评价 片断一:
1、创设情景、感知圆柱体积的概念。
教师拿出一个装了半杯水的玻璃杯,拿出一个圆柱形的物体,准备投入玻璃杯中。
师:同学们想一想会发生什么情况?(教师将圆柱形的物体投入水中。)请仔细观察后,说一说你有什么发现?
生:水面上升一些。
生:圆柱形的物体挤掉了原来水占有的空间。
生:圆柱体占有一定空间。
师:我们通常把这个空间叫体积。
生:我发现上升的水的体积和圆柱形物体的体积是相等的。
师:同学们发现得都很精彩,谁来说一说什么叫圆柱的体积。
生:圆柱所占空间的大小就叫圆柱的体积。
2、比较大小、创设求圆柱体积的情景。
教师又拿出一个圆柱。(底面略小而高长一些,体积相差不多)
师:这两个圆柱的体积,哪个比较大一些?
生:第一个比较大,因为它高一些。
生:第二个比较大,因为它粗一些。
生:他们都是猜的。第一个圆柱它虽然高一些,但底面小一些;第二个圆柱虽然底面大一些,它是的高矮了一些。无法准确地比较它们的大小。
师:有什么办法能比较它们的大小呢?(小组讨论)
生:准备半杯水,将第一个圆柱物体浸没水中,作好标志,再把第二个圆柱物体浸没水中,作个标志,哪个水面上升的高一些,哪个圆柱的体积就比较大。
师:这个方法好。如果要准确地知道哪个圆柱的体积大,大多少,你有什么好办法?(小组讨论)
生:要学会计算圆柱的体积后就好解决了。
教学反思:
以前,我在教学“圆柱的体积”时,一直认为掌握计算公式最重要。所以基本是先通过练习复习圆的面积计算方法,再复习圆柱的特征,从圆柱的侧面积和表面积计算入手,引出圆柱的体积也可以通过公式来计算。在强化训练下,学生对计算公式固然掌握得很好。但是学生的求知欲望却在枯燥的计算中慢慢丧失。在新课标理念的影响下,我深切地领悟到“兴趣是最好的老师”这句话的真正含义。小学生的数学学习兴趣是学好数学的前提,是学生积极主动学习的内部驱动力,当学生对数学学习感兴趣时,才会集中注意力学数学,才会把数学学得更好。导入新课时,我采用“创设情景----发现问题----提出问题”的三步模式,充分体现以学生为主体,抱着相信学生、尊重学生的态度,合理地开发学生的课程资源。一是在感知体积的概念时,我通过做圆柱放入水的实验,实实在在地让学生用生活经验感知体积的存在;二是在猜想体积公式时,学生一般的经验是如果一个圆柱高(底面)不变,底面(高)越大体积越大,学生自然地就会利用自己的经验想到圆柱的体积的大小与底面和高有密切的联系。
片断二:
师:你们的大胆猜测正确吗?请各小组利用不同的学习材料,合作想办法加以验证。
(然后给每组同学提供不同的学习材料,让他们自己想办法加以验证。)生:我将圆柱体容器中的水倒入长方体的容器中,再分别测量出长方体容器中水的长、宽、高,计算出了圆柱体容器中水的体积。
生:我将圆柱体橡皮泥捏成长方体,计算出了橡皮泥的体积。
生:我将圆柱体铁块浸入长方体容器的水中,通过计算上升的水的体积计算出了圆柱体铁块的体积。
生:我比较过报告单上圆柱体的底面积、高与体积的关系,圆柱的体积真等于圆柱底面面积乘圆柱的高。
生:对„„(大多数的学生非常激动)
师:你们说得太精彩了。我为你们的发现而自豪。下面请同学们看书自学,按照书中介绍的方法利用手中的学具自己推导出圆柱体的体积公式。边说说(课件)
(1)切割后拼成了一个近似于什么的形体?(2)圆柱的体积与拼成后的长方体的体积有什么关系?(3)这个长方体的底面积等于圆柱的什么?(4)长方体的高与圆柱体的高有什么关系
3、课件演示圆柱体分、切、拼成近似长方体动画过程,引导学生细心观察。教学反思:
以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习。新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。因此我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。注重数学思想方法和学习能力的培养。能力的发展决不等同于知识与技能的获得。能力的形成是一个缓慢的过程,有其自身的特点和规律,它不是学生“懂”了,也不是学生“会”了,而是学生自己“悟”出了道理、规律和思考方法等。这内容沿着“猜想-验证”的学习流程进行,给学生提供较充分的探索交流的空间,组织、引导学生“经历观察、实验、猜想、证明等数学活动过程”,并把数学推理能力有机地融合在这样的“过程”之中,有力地促使了学习改善学习方式。
第五篇:圆柱的体积
圆柱的体积
教学目标:
1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。
2.让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
教学重点:掌握和运用圆柱体积计算公式
教学难点:圆柱体积公式的推导过程。
课前准备:课件。
教学过程:
一、创设情景
提出问题
情境引入:某玩具厂厂长,他们厂新近开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?
二、交流共享
1.观察、比较,建立猜想
引导生观察例4中的三个几何体,提问:
(1)长方体、正方体的体积相等吗?为什么?
(板书:长方体的体积=底面积×高)
(2)圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?
2.实验操作,验证猜想
让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等
教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的?可以模仿这样的方法来转化。
(1)小组合作研究怎样将圆柱体转化成一个长方体
(2)小组代表汇报,全班交流
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)
演示操作
a\请一名学生演示用切插拼的方法把圆柱体转化成长方体。其他学生模仿操作。
b\思考:这是一个标准的长方体吗?为什么?如果分割得份数越多,你会有什么发现?
c\电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)
3.观察比较,推导公式
a\圆柱体转化成长方体后,什么变了,什么没有变?
b\
根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积×高
圆柱的体积
=
底面积×高
c\你的猜想正确吗?圆柱体的体积计算公式我们是怎样推导出来的?
d\小结:要想求出一个圆柱的体积,需要知道什么条件?
e\学生自学第15页例4上面的一段话:用字母表示公式。
学生反馈自学情况,师板书公式:v=sh
三、巩固练习,拓展应用
1.出示试一试,学生理解题意,独立完成。
集体订正,说一说每一步列式的根据是什么?使学生明确应用体积公式求圆柱的体积一般需要两个条件,即底面积和高。
2.完成“练一练”的第1题。
先看图说说每个圆柱中的已知条件,再各自计算,计算后,说一说计算的过程,强调:计算圆柱体的体积要先算出底面积。
3.完成“练一练”的第2题。
读题后强调说说为什么电饭煲要从里面量底面直径和高,然后列式解答。
4、把直尺绕着它的一条边旋转一圈得到了一个什么图形?它的体积你会计算吗?
四、总结回顾
评价反思
提问:这节课我们学习了什么内容?有什么收获和体会?