第一篇:【高三数学复习计划】高考二轮数学考点突破复习
【高三数学复习计划】高考二轮数学考点突破复
习
2018年高考二轮数学考点突破复习:数学思想方法
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的.函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标.函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线.这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决.尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理.方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决.
第二篇:2012高三数学二轮复习计划
2012高三数学二轮复习计划
第一轮的复习已经结束,在这个过程,我们是以教材为基本内容,以教学大纲以及当年的考试说明,作为我们参考的依据,将整个高考知识点做了全面的复习,下面就开始进入二轮复习。
高三第二学期复习在上学期第一轮复习的基础上进行第二、第三轮复习,第二轮主要是专题复习,第三轮是综合复习,第二轮复习是起承上启下,使知识系统化、条理化,促进灵活应用的关键时期。我们以《导与练》为主线,穿插各地模拟卷和针对性练习,结合本校学生特点,建立以 “强化基础夯实,重点突出,难点分解,各个击破,综合提高。注重化归、整体、分类、数形结合等数学思想方法的渗透,及注重通性通法,淡化特殊技巧,优化思维品质”的二轮复习思路。
具体安排:
章节内容提要
专题一集合与常用逻辑
专题二平面向量,三角函数
专题三数列
专题四、五不等式、概率与统计
专题六函数的应用
专题七导数及应用
专题八立体几何、解析几何
专题九算法与推理
专题十选择题的解题技巧
专题十一小题限时集训
具体地说,每星期一到两个专题,一次高考模拟题测试与讲评,一或二份基础题练习与讲评,期间参插联考等模拟卷的练习与讲评,了解最新复习动态,掌握主动权。至于第三轮综合复习,实际上在第二轮复习时参插同步进行的。针对学生平时做的大量的习题,模拟试题,老师也讲评了很多试卷,我们要及时总结,不但要讲,更重要的是评,评题目用到什么知识,用什么方法去解,同时也要评学生,这道题学生为什么会错?是知识性错误还是能力性错误?是不会做失分还是审题不清失分?是计算问题还是解题方法问题?有多少分是可以挽回的?怎样避免再次失分?复习时使知识系统化,形成网络,纲举目张,让学生拿到题目善于归类,第一时间拿出对付的办法,这样才能提高能力,以少胜多。
注重题后反思。
出现问题不可怕,可怕的是不知道问题的存在,在复习中出现的问题越多,说明你距离成功越近。平时要养成对重点题目一定要算出答案的习惯,哪怕问了或者看了解答,也应该自己再动手演算,即做到“考后满分”;要反思所做重点题目的背景、解题方法、思路形成过程以及和它相关的题型等,做到“一题通一类”;对错题从各种角度反复处理,争取“相同的错误只犯一次”;及时处理问题,争取“问题不过夜”。
注重学法指导——抓住四个三
①内容上要充分领悟三个方面:理论、方法、思维;
②解题上要抓好三个字:数,式,形;
③阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言); ④学习中要驾驭好三条线:知识(结构)是明线(要清楚);方法(能力)是暗线(要领悟、要提炼);思维(练习)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)
注重数学新题型的练习,近几年,以高考试题为代表,涌现了一批新题型。
近年来考题的考题的顺序并不完全是按先易后难的顺序,在答题时要按安排时间,不要在某个卡住的难题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了,造成“隐性失分”,解答题一般都设置了层次分明的“台阶”,入口难,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处,所以尽量做到中等题少丢分,难题多得分。希望能在这短短的二、三个月时间内,把学生的数学成绩再提高一步,在高考中考出好成绩。
第三篇:高三数学二轮复习计划
高三理科数学二轮复习计划
高三数学一轮复习一般以知识,技能方法的逐点扫描和梳理为主,通过一轮复习,学生大都掌握基本概念、性质、定理及一般应用,但知识较为零散,综合应用存在较大的问题。二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平提高学生综合能力的关键时期,对讲练检测要求较高。所以制订高三数学二轮复习计划如下。
根据本学期的复习任务,将本学期的备考工作划分为以下四个阶段:
第一阶段(专题复习):从2018年2月22日~2018年4月30日完成以主干知识为主的专题复习
第二阶段(选择填空演练):从2018年3月1日~2018年5月20日完成以选择填空为主的专项训练
第三阶段(综合训练):从2018年5月~2018年5月26完成以训练能力为主的综合训练
第四阶段(自由复习和强化训练):从2018年5月27日~2018年6月6日。高三数学二轮复习计划 第一阶段:专题复习(一)目标与任务:
强化高中数学主干知识的复习,形成良好的知识网络。强化考点,突出重点,归纳题型,培养能力。
根据高考试卷中解答题的设置规律,本阶段的复习任务主要包括以下七个知识专题:
专题一:集合、函数、导数与不等式。此专题函数和导数以及应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。每年高考中导数所占的比重都非常大,一般情况是在客观题中考查导数的几何意义和导数的计算,属于容易题;二是在解答题中进行综合考查,主要考查用导数研究函数的性质,用函数的单调性证明不等式等,此题具有很高的综合性,并且与思想方法紧密结合。
专题二:数列、推理与证明。数列由旧高考中的压轴题变成了新高考中的中档题,主要考查等差等比数列的通项与求和,与不等式的简单综合问题是近年来的热门问题。
专题三:三角函数、平面向量和解三角形。平面向量和三角函数的图像与性质、恒等变换是重点。近几年高考中三角函数内容的难度和比重有所降低,但仍保留一个选择题、一个填空题和一个解答题的题量,难度都不大,但是解三角形的内容应用性较强,将解三角形的知识与实际问题结合起来将是今后命题的一个热点。平面向量具有几何与代数形式的双重性,是一个重要的知识交汇点,它与三角函数、解析几何都可以整合。
专题四:立体几何。注重几何体的三视图、空间点线面的关系及空间角的计算,用空间向量解决点线面的问题是重点。
专题五:解析几何。直线与圆锥曲线的位置关系、轨迹方程的探求以及最值范围、定点定值、对称问题是命题的主旋律。近几年高考中圆锥曲线问题具有两大特色:一是融综合性、开放性、探索性为一体;二是向量关系的引入、三角变换的渗透和导数工具的使用。我们在注重基础的同时,要兼顾直线与圆锥曲线综合问题的强化训练,尤其是推理、运算变形能力的训练。专题六:概率与统计、算法与复数。要求学生具有较高的阅读理解和分析问题、解决问题的能力。高考对算法的考查集中在程序框图,主要通过数列求和、求积设计问题。
专题七:系列选讲。包括极坐标与参数方程、不等式选讲(二)方法与措施:
1、任务完成要求
把专题内容包含的考点或题型划分为若干课时,本专题内容的考情简析,专题知识要点融合,近五年真题回放,选题要以常规题型为主,注重知识之间的交叉、渗透和综合,严格控制解答题难度,中低档题的比例应占到80%左右,要有利于中等学生水平的提升;所选参考书上的例题及作业题要有详解答案。
2.强化集体学习。认真研读《考试大纲》,研究学习2017年数学学科《考试说明》,认真研究各地模拟卷,准确掌握各章内容的高考要求,以便在学习中把握方向;每位高三考生要把近3年的新课程高考试卷重做一遍,仔细剖析每类题的题型特点,考查重点、考查方向、命题规律,弄清试题的变化分布规律,分析总结出共同的特征,收集整理出有用的高考信息,提高自身解题能力并制定相应的有针对性的复习方案
3.抓好两课(即复习课、习题讲评课)(1)听复习课力求做到:①系统性:将老师所讲的知识前后衔接,梳理归纳成串;②综合性:将各间章节,和题型纵横联系,知识交叉,多角度、多层次;③基础性:着眼双基,中档为主,面向多数;④重点性:突出主干知识,把重点知识有详有略进行巩固与总结,以便复习之用。
(2)听习题评讲课应该做到:①针对性:抓住各种题型的方法,消除疑问,解其多难;②诊断性:找出失分原因,找出正确思路,总结方法,以防重犯;③辐射性:以点带面,画龙点睛,举一反三;④启发性:启发思维,点拨思路,发散开拓。
4.落实好常规学习,抓好学习过程中的各个环节。课堂中,能自己能解决的就自己解决;把握好每一次自习课,遇到问题及时向老师提出,认真对待每一科,每一次的作业,在答题时做到表述规范及计算准确。
5.切实抓好强化训练,注重知识的巩固和滚动
每章一次综合测试、每一次月考、对每次训练要做到及时总结,发现问题,查漏补缺,及时反馈。并同时要反思错解原因,以达到巩固知识,提高能力的目的,力争做到练有所得,听有所获。
做练习量要求限时完成,认真作答。一是强化学科能力训练,有意识地提高自身综合运用知识分析、解决实际问题的能力,提高自身的思维能力;二是培养规范、完整、准确地答题习惯。
6.处理好模拟考试和专题复习的关系 除了正常的考后试卷分析,我们对每次考试、练习都要分析自己知识点的得分情况,分析各次考试自己的得分点是否有变化、有提高,并采取相应措施。把能够得分的题型通过考后练习、讲评后一一突破。要有目的解决学习中存在的一些突出问题。
7.注重心理训练。学习实力与心理状态是高考成功的两大基本要素,良好的心态是高考制胜的法宝。有意识的锻炼自己心理素质,增强应变能力和知识迁移能力,提高应试技巧。此阶段的学习要特别注意研究各地的模拟试题,细心揣摩,进一步加强对重点内容,学科思想,学科方法的研究,密切关注知识的交叉点和结合点,关注新课程的新重点,牢牢把握好复习的方向;此阶段还要解决好热点问题-开放型问题、探索性问题、存在性问题等。
第二阶段:选择填空专项训练 针对我学学生特殊情况,选择填空专项训练不设定时间界限。每周一次选择填空训练,做到涵盖所有考点,限时完成,强调常考题型做法和特殊情况处理,逐步提高学生的正答率。必要时懂得取舍,节约时间。
第三阶段:综合演练
(一)目标与任务:模拟训练,强调规范,查找问题,完善提高
(二)方法与措施:根据各地的高考拟模拟试卷,通过规范训练,训练考试技巧和学生的应试心理,发现平时复习的薄弱点和思维的易错点,提高实战能力,走近高考。
该阶段需要解决的问题是:
1、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。
2、检查复习的知识疏漏点和解题易错点,探索解题的规律。
3、检验知识网络的生成过程。
4、领会数学思想方法在解答一些高考真题和新颖的模拟试题时的工具性。通过应试技能的训练,在考试中要求学生注意如下几点: 1.容易题争取不丢分规范表述少跳步 2.中等题争取少丢分得分点处写清楚 3.较难题争取多拿分知道一点写一点 4.克服会而不对,对而不全的问题 第四阶段:自由复习
(一)目标与任务:自由复习,自主整理,要求回归课本,回归基础,收拢、巩固已有知识,同时进行适度训练做好心理的调试,逐步达到最佳状态。
(二)方法与措施:制定出自由复习和考前计划。参考教师建议,自主复习,主动做到:
1.检索自己的知识系统,紧抓薄弱点,并针对性地做专门的训练。2.抓思维易错点,注重典型题型及解题方法。3.浏览自己以前做过的习题、试卷、改错本,回忆自己学习相关知识的历程,做好再纠错工作。
4.不做难题、偏题、怪题,保持情绪稳定,充满信心,准备应考。
第四篇:高考二轮数学考点突破复习:平面几何选讲及数学思想方法
高考二轮数学考点突破复习:平面几何选讲及数学思想方法
高考二轮数学考点突破复习:数学思想方法
函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题.方程思想,是从问题中的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.有时,还通过函数与方程的互相转化、接轨,达到解决问题的目的.函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图象与x轴的交点的横坐标.函数是高中数学的重要内容之一,其理论和应用涉及各个方面,是贯穿整个高中数学的一条主线.这里所说的函数思想具体表现为:运用函数的有关性质,解决函数的某些问题;以运动和变化的观点分析和研究具体问题中的数学关系,通过函数的形式把这种关系表示出来并加以研究,从而使问题获得解决;对于一些从形式上看是非函数的问题,经过适当的数学变换或构造,使这一非函数的问题转化为函数的形式,并运用函数的有关概念和性质来处理这一问题,进而使原数学问题得到顺利地解决.尤其是一些方程和不等式方面的问题,可通过构造函数很好的处理.方程思想就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.尤其是对于一些从形式上看是非方程的问题,经过一定的数学变换或构造,使这一非方程的问题转化为方程的形式,并运用方程的有关性质来处理这一问题,进而使原数学问题得到解决.函数与方程的思想在解题中的应用十分广泛,主要有以下几方面:
高考二轮数学考点突破复习:平面几何选讲
第五篇:高考二轮数学考点突破复习:概率与统计+解析几何
高考二轮数学考点突破复习:概率与统计+解析几何
高考二轮数学考点突破复习:解析几何
解析几何是高考的必考内容,它包括直线、圆、圆锥曲线和圆锥曲线综合应用等内容.高考常设置三个客观题和一个解答题,对解析几何知识和数学思想方法的应用进行考查,其分值约为27分,约占总分的16%.近年高考解析几何试题的考查特点,一是设置客观题,考查直线、两直线位置关系、点线距离、圆有关的概念、性质及其简单应用;考查圆锥曲线即椭圆、双曲线、抛物线的概念、性质及其简单应用等基础知识;二是以直线与圆位置关系、直线与圆锥曲线位置关系为载体,在代数、三角函数、向量等知识的交汇处设置解答题,考查圆锥曲线性质和向量有关公式、性质的应用,考查解决轨迹、不等式、参数范围、探索型等综合问题的思想方法,并且注重测试逻辑推理能力.1.2011年高考试题预测纵观近年高考解析几何试题的课程特点和高考命题的发展趋势,下列内容仍是今后高考的重点内容.(1)直线斜率的概念及其计算,直线方程的五种形式;两条直线平行与垂直的条件及其判断,两条直线所成的角和点到直线的距离公式;线性规划的意义及其简单应用.(2)圆的标准方程、一般方程、参数方程的概念、性质及其应用.(3)椭圆、双曲线、抛物线的定义、标准方程及其几何性质和椭圆的参数方程.(4)圆锥曲线的初步应用,即以直线与圆锥曲线位置关系为载体,考查轨迹问题,圆锥曲线与平面向量、不等式、参数范围、探索型等综合问题.(5)函数方程思想、数形结合思想、分类讨论思想在解析几何中的应用.高考二轮数学考点突破复习:概率与统计
1.高考对两个原理的考查主要集中在排列、组合及其综合题方面,题目灵活多样.2.二项式定理重点考查二项展开式中的指定项及二项式的展开式系数问题.3.概率统计内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容,纵观全国及各自主命题省市近几年的高考试题,概率与统计知识在选择、填空、解答三种题型中每年都有试题,分值在17分到20分之间.主要考查以下三点:
(1)会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;
(2)理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率;
(3)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些相应的实际问题.1.2011年高考试题预测
(1)高考对两个原理及二项式定理的考查.以基础题为主,考查形式比较稳定.①从内容上看,主要考查分类计数原理和分步计数原理,排列、组合的概念及简单应用.例如2010全国Ⅰ,6;2010山东,8.②从考查形式上看,多为选择题和填空题.例如2010北京,4;2010浙江,17.③从能力要求上看,主要考查学生理解问题的能力、分析和解决问题的能力及分类讨论的思想.例如2010江西,14;2010上海,14.④从内容上看,高考对二项式定理的考查,主要涉及利用通项公式求展开式的特定项,利用二项展开式性质求系数或与系数有关的问题,利用二项式定理进行近似计算.例如2010全国Ⅰ,5.⑤从考查形式上看,以选择、填空为主,少有综合性的大题.例如2010江西,6;2010全国Ⅱ,14.