第一篇:三下数学复习计划
2009——2010学年度数学三年级下册
期末复习计划
一、班级情况分析
1、部分学生的口算速度比较慢,笔算正确率不高。
2、不能正确运用所学数学知识解决生活中的实际问题。
3、学生自主能力还比较差。
4、学生的学习习惯不够好,学习积极性不高。
5、学生独立审题的能力还有待加强训练。
为了更好、更有效地组织复习,让学生更系统的掌握本学期的学习内容,特制定本复习计划如下:
二、复习目的和要求:
通过总复习,使学生获得的知识更加巩固,计算能力更加提高,数感、空间观念、统计观念、应用意识等得到发展,能用所学的数学知识解决简单的实际问题,获得学习成功的体验,提高学习数学的兴趣,建立学好数学的信心,全面达到本册教材和第一学段的教学目标。
三、复习内容:
复习共分为八部分:位置与方向,除数是一位数的除法,两位数乘两位数,统计,年、月、日,面积,小数的初步认识,解决问题。复习的重点是除数是一位数的除法,两位数乘两位数,统计,面积以及运用所学的知识解决简单的实际问题。其他内容也比较重要,也要让学生切实理解和掌握。本册第九单元“数学广角”主要是培养学生数学思想方法的,学生只要了解就可以了,因此,在总复习中中安排的课时尽量减少,可让学生通过练习初步了解集合和等量代换的思想方法。
四、总复习时应注意突出以下几点:
1.注意知识间的内在联系,便于在复习时进行整理和比较,以加强学生对所学知识的理解和掌握。如第112页的第1题,既复习了根据给定的一个方向(北、南、东或西)辨认其余七个方向,并能用这些方向词语描绘物体所在的方向;同时也会看简单的路线图。另外,也为今后进一步学习根据方向和距离确定物体的位置,描述简单的路线图等知识打下了基础。
2.注意加强与生活实际的联系,加强估算意识和能力的培养。如第112~113页的第2、4题,第2题设计了估算和笔算3个家庭平均每月用电数的题目,让学生体会除法在生活中的应用。
3.加强统计观念的培养。如第113页的第5题,既复习了对数据进行简单的分析,并根据分析的结果作出简单的判断与预测;也复习了平均数的意义,会求简单数据的平均数。同时渗透了环保教育。
4.加强空间观念的培养。如第114页的第7、8题,既复习有关面积的基本知识,也复习了估计给定的长方形和正方形的面积,能够选择合适的面积单位估计和测量图形的面积。
5.加强解决问题能力的培养。在总复习中,数与计算、空间与图形、统计等内容的应用本身就是解决问题;另外,也单独安排了一些联系生活实际的解决问题的内容,如第115页的第11、12题,让学生了解用连乘、连除可以解决生活中一些简单的问题。
五、各单元复习:
1、复习位置与方向时,结合教科书第112页的第1题,可以先让学
生用八个方向词语说一说小清家的周围有什么;然后再进行小组和全班交流,结合学生表达过程中出现的错误说一说怎样识别方向和用词语描绘物体所在的方向,看懂简单的路线图。教师可以在图上加几条公共汽车路线,丰富情境的内容;也可以根据本地的实际情况,重新绘制简单的地图,让学生描述。
2.复习除数是一位数的除法时,通过让学生做第112页的第2题,了解学生计算时还存在什么问题,启发、引导学生发现自己的错误所在,并通过反思自己纠正;还应注意通过一定的练习使学生达到计算熟练。
3.复习两位数乘两位数时,结合第113页第3题复习口算,结合第4题复习估算和笔算。教师针对计算中出现的问题进行订正,再通过练习二十五中的有关练习或出一些有针对性的练习,使全体学生达到本学期规定的教学目标。
4.复习统计时,让学生分析第113页第5题中的数据,对近年来该地区沙尘天气的发展变化趋势有一个判断;让学生谈谈感想,有什么办法减少沙尘天气,使学生受到环境保护的思想教育。
5.复习年、月、日时,要注意全面复习学过的时间单位和有关知识,可借助表格进行系统整理时间单位,结合实例让学生体会这些单位的大小,培养学生的估计能力。
6.复习面积时,结合第114页第7题,让学生结合实例建立面积单位的表象,知道相邻两个单位之间的进率。第114页的第8题,先让学生独立估计,再合作进行测量,然后进行全班交流;让估计得比较准确的学生说一说自己是怎样估计的,让估计得不够准确的学生说一
说误差出现在什么地方,从而提高学生的估计能力和测量的能力。7.复习小数的初步认识时,除了结合第115页的第9、10题外,还可用一些实例引导学生理解小数的基本含义,体会到小数与分母是10和100的分数的联系。
8.复习解决问题时,可结合第115页的第11、12题,了解学生是否理解题目中的数量关系,能否正确列式计算。启发、引导有困难的学生达到基本要求。注意让学生根据题目中给出的条件和问题,选择正确的自己喜欢的方法进行解答,不要求一个学生掌握多种方法。
六、复习措施:
(一)教师方面:
1、针对各班的学习情况,制定好复习计划,上好每一节复习课。
2、采用各种手段激发学生的学习兴趣,提高教学效果,注意知识的整合性、连贯性和系统性,引导学生对已学过的知识进行归类整理。
3、在抓好基础知识的同时,全面培养学生的数学素养,培养学生总结与反思的态度和习惯,提高学生的学习能力。
4、复习作业的设计体现层次性、综合性、趣味性和开放性,及时批改,及时发现问题,查漏补缺,做到知识天天清。
5、注重培优补差工作,关注学生的学习情感和态度,与家长加强沟通。
(二)学生方面:
1、要求在态度上主动学习,重视复习,敢于提问,做到不懂就问。
2、要求上课专心听讲,积极思考、发言,学会倾听别人的发言。
3、要求课后按时、认真地完成作业,及时进行自我反思。
(三)补差措施
1、对各差生的不同原因,对症下药,从态度、习惯、知识、方法入手,制定不同的目标,目标要小、细、实。
2、将课内课外补差相结合,采用“一帮一”的形式,发动学生帮助他们一起进步,同时取得家长的配合,鼓励和督促其进步。
3、时刻关注这些学生,做到课上多提问,作业多辅导,练习多讲解,多表扬、鼓励,多提供表现的机会。2010、6、10
第二篇:三下数学复习资料
列竖式计算
43×12=
69×23=
824÷8=
验算704÷5=
39×47=
6.2+3.9=
530÷5=
验算967÷8=
23×54=
8.4-7.5=
420÷3=
验算517÷5=
31×12=
6.5-3.6=
3.8+2.3=
验算414÷9=
68×17=
328÷4=
验算402÷5=
3.7+6.8=
50平方米=()平方厘米
0.7米=()厘米
350分米=()米
200分米=()米 30000平方米=()公顷
3公顷=()平方米
500公顷=()平方千米 6公顷=()平方千米36个月=()年
2年=()个月
3年=()个月
5年=()个月
4年=()个月
8平方分米=()平方厘米
8平方分米=()平方米
600平方分米=()平方米
1元5分=()元
3元6分=()元
10元3角=()元
3元7角=()元
在一个长为5分米,宽为3分米的长方形剪下一个最大的正方形,正方形的周长是()分米,面积是()平方分米。
一块正方形菜地,周长是160米,边长是()米,它的占地面积是()平方米。
有一根铁丝,折成一个三角形,这个三角形每条边长8分米,如果把这根铁丝折成一个正方形,正方形的边长是()分米,面积是()平方分米。
边长为3分米的地砖,面积是()平方分米。用这种地砖来铺的720平方分米的卫生间,需要()块。
24计时法指的是0时到24时的计时方法,晚上9时就是(), 16时就是()平平的学校下午1:40开始上课,用24时计时法是(),一节课上40分钟,那么第一节课下课的时间是下午()时()分。
红红下午1:20到校,用24时计时法表示是();16:40放学,用普通计时法表示下午()
□25÷5要使商是两位数,□里最大填();要使商是三位数,□里最小填()小明四年才过一次生日,他的生日是()月()日
第三篇:三下数学总结
三下数学总结
学期工作很快结束,在本学期的教育教学工作中,我坚持认真备课、上课、听课、评课,做好课后辅导工作,严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高,从而不断提高自己的教学水平和思想觉悟,并顺利完成教育教学任务,在与学生们一起相处、教学相长过程中,也有不少的收获。为了今后能更好的工作,促进教学工作更上一层楼,现对本学期的教学工作总结如下:
一、加强业务学习,切实转变教育教学观念,不断完善和丰富教育理论。一个教师的工作思想和教育理念,会直接体现在一切工作之中,只有通过不断的学习,不断接受新观念,充实完善自己的 教育教学思想,才能有不竭的动力和创新的源泉。我和广大教师,不断更新自己的教育观念,新的国家课程标准体现鲜明的时代气息,它的应运而生,为教育注入了新的生机。为此,我们把学习新课程标准作为本学期业务学习的一项重要内容,经常阅读书籍 报刊杂志,经常阅览新课标教学网站,不断地学习新的现代化教学方法,通过学习,不断充实自己,树立新的教学观念,积极探索新的教学路子,努力提高自己的教学水平。
二、以课堂教学为载体,实施新课程标准精神。以课堂教学为载体,实施新课程标准精神。
1、备课认真仔细,尽力做到科学、准确、严密。备课时力求深入理解教材,准确把握重点和难点。认真撰写教案,力争突出新教材新思路新方法。参考优秀的的教案,并对教案中不尽人意的地方作了适当更改。
2、教学工作中,我立足于课堂,努力将新课标的精神体现 于每节课中。(1)在平时的教学过程中,坚持“自主、合作、探究”的教学思想,针对不同的数学内容和孩子的年龄特点,灵活设计教法,积极引导学生在主动探究、合作交流数学知识的过程中,领悟和掌握数学思想方法,注重对学生数学能力的培养。(2)创设生活情境,激发探究欲望。教学中始终围绕学生的日常生活,运用多媒体教学手段,创设大家熟悉的情境,消除了学生对知识的陌生感,让他们感到数学就在我们的身边,激起他们学数学的欲望。总之,本学期我教学态度认真,任劳任怨,不早退、不迟到,能认真落实学校对备、教、批、辅各教学环节的规定,努力向课 堂要质量。当然也有许多值得改进的地方和值得吸取的教训,如: 如何拓宽学生的视野;如何注意平时积累自己的教学资料;如何有效地提高学生的课堂参与意识等等都是我要努力的方向。
三、存在问题及方向。存在问题及方向。本学期学生成绩不够理想,学生应用数学知识解决实际问题的能力不高。今后努力的方向:认真钻研教材,努力提高课堂教学质量,想方设法提高学生应用数学知识解决实际问题的能力。今后我会努力学习,积极实践,勤于积累,争取不断地超越自己。
第四篇:数学复习计划
高等数学
第一章 函数与极限(10天)
微积分中研究的对象是函数。函数概念的实质是变量之间确定的对应关系。极限是微积分的理论基础,研究函数实质上是研究各种类型极限。无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。我们研究的对象是连续函数或除若干点外是连续的函数。
日期 学习时间 复习知识点与对应习题 大纲要求
第一周——第二周 2.5-3.5小时 函数的概念,常见的函数(有界函数、奇函数与偶函数、单调函数、周期函数)、复合函数、反函数、初等函数具体概念和形式.习题1-1:4,5,7,8,9,13,15,18 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
2.5-3.5小时 数列定义,数列极限的性质(唯一性、有界性、保号性)P26(例1,例2)P27(例3)习题1-2:1,3,4,5,6
2.5-3.5小时 函数极限的基本性质(不等式 性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等)P33(例4,例5)P35(例7)习题1-3:1,2,4,6,7,8
2.5-3.5小时 无穷小与无穷大的定义,它们之间的关系,以及与极限的关系习题1-4:1,2,4,5,6,7
2.5-3.5小时 极限的运算法则(6个定理以及一些推论)P46(例3,例4),P47(例6),习题1-5:1,2,3
2.5-3.5小时 两个重要极限(要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式),函数极限的存在问题(夹逼定理、单调有界数列必有极限),利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限
P51(例1)习题1-6:1,2,4
2.5-3.5小时 无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小),重要的等价无穷小(尤其重要,一定要烂熟于心)以及它们的重要性质和确定方法 P57(例1)P58(例5)习题1-7:1,2,3,4
2.5-3.5小时 函数的连续性,间断点的定义与分类(第一类间断点与第二类间断点),判断函数的连续性(连续性的四则运算法则,复合函数的连续性,反函数的连续性)和间断点的类型。例1-例5习题1-8:2,3,4,5
2.5-3.5小时 连续函数的运算与初等函数的连续性(包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性)
例4-例8习题1-9:1,2,3,4,5
2.5-3小时 理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理(零点定理对于证明根的存在是非常重要的一种方法).例1-例2,习题1-10:1,2,3,4,5
3.5小时 总复习题一:1,2,8,9,10,11,12
第二章:导数与微分(7天)
一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线的切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。函数微分是函数增量的线性主要部分。
日期 学习时间 复习知识点与对应习题 大纲要求
第二周-第三周 2.5-3.5小时 导数的定义、几何意义、力学意义,单侧与双侧可导的关系,可导与连续之间的关系(非常重要,经常会出现在选择题中),函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限.会求平面曲线的切线方程和法线方程.例3-例7习题2-1:6,7,9,11,14,15,16,17 1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.。
2.5-3.5小时 复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,(幂、指数函数求导法,反函数求导法),分段函数求导法
例-例17习题2-2:2,3,4,7,8,9,1012)
2.5-3.5小时 高阶导数和N阶导数的求法(归纳法,分解法,用莱布尼兹法则)
例1-例7习题2-3:2,3,4,7,8,9
2.5-3.5小时 由参数方程确定的函数的求导法,变限积分的求导法,隐函数的求导法
例1-例10习题2-4:2,4,7,8,9,11
2.5-3.5小时 函数微分的定义,微分运算法则,一元函数微分学的简单应用
例1-例6习题2-5:1,2,3,4,5,6,2.5-3.5小时 总复习题二:1,2,3,5,6,9,11,1
3第三章:微分中值定理与导数的应用(8天)
连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。微分学的另一个重要应用是求函数的最大值和最小值。
日期 学习时间 复习知识点与对应习题 大纲要求
第三周—第四周 2.5-3.5小时 微分中值定理及其应用(费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义)例1,习题3-1:1-15 5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
2.5-3.5小时 洛比达法则及其应用 例1-例10,习题3-2:1-4
2.5-3.5小时 泰勒中值定理,麦克劳林展开式 例1-例3习题3-3:1-7,10
2.5-3.5小时 求函数的单调性、凹凸性区间、极值点、拐点、渐进线(选择题及大题常考)例1-例12习题3-4:4,5,8,9,11,12,14
2.5-3.5小时 函数的极值,(一个必要条件,两个充分条件),最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题 例1-例6习题3-5:1,4,5,6,7,10,11,14
2.5-3.5小时 简单了解利用导数作函数图形(一般出选择题及判断图形题),对其中的渐进线和间断点要熟练掌握,一元函数的最值问题(三种情形)。例1-例3习题3-6:1-5
2.5小时 总结本章知识点,总复习题三:1-12,19
第四章:不定积分(7天)
积分学是微积分的主要部分之一。函数积分学包括不定积分和定积分两部分。在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。
日期 学习时间 复习知识点与对应习题 大纲要求
第四周—-第五周 2.5-3.5小时 原函数与不定积分的概念与基本性质(它们各自的定义,之间的关系,求不定积分与求微分或导数的关系),基本的积分公式,原函数的存在性,原函数的几何意义和力学意义例1-例16习题4-1:1 1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
2.5-3.5小时 不定积分的换元积分法,第二类换元法 例1-例27
2.5-3.5小时 不定积分的计算习题4-2:2(1-20)
2.5-3.5小时 不定积分的计算习题4-2:2(21-40)
2.5-3.5小时 不定积分的分部积分法 例1-例10习题4-3:1-20
2.5-3.5小时 不定积分计算,总复习题四:1-15
2.5-3.5小时
不定积分计算 总复习题四:16-30
第五章: 定积分(8天)
日期 学习时间 复习知识点与对应习题
大纲要求
第五周—第六周 2.5-3.5小时 定积分的概念与性质(可积存在定理)(定积分的7个性质)
习题5-1:2,3,5,6,7,8 1.理解原函数的概念,理解不定积分和定积分的概念.
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.
3.会求有理函数、三角函数有理式和简单无理函数的积分.
4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.
5.了解反常积分的概念,会计算反常积分.
2.5-3.5小时 微积分的基本公式 积分上限函数及其导数 牛顿-莱布尼兹公式 例1-例8习题5-2:1-5
2.5-3.5小时习题5-2:6-12
2.5-3.5小时 定积分的换元法与分部积分法 例1-例10习题5-3:1
2.5-3.5小时习题5-3:2-11
2.5-3.5小时 反常积分 无界函数反常积分与无穷限反常积分 例1-例5习题:5-4:1-3
2.5-3.5小时 反常积分的审敛法 例1-例8习题5-5:1-3
2.5-3.5小时 总复习题五:1-11 12,1
3第六章:定积分的应用(5天)
日期 学习时间 复习知识点与对应习题 大纲要求
第六周—第七周 2.5-3.5 定积分元素法 一元函数积分学的几何应用(求平面曲线的弧长与曲率,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积,求旋转面的面积)例1-例14 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.
2.5-3.5 定积分应用的一些计算习题6-2:1-15
2.5-3.5 定积分的几何应用相关计算习题6-2:16-30
2.5-3.5 总复习题六:1-6
第十二章 常微分方程(9天)
常微分方程的研究对象就是常微分方程解的性质与求法,本章主要有两个问题,一是根据实际问题和所给条件建立含有自变量、未知函数及未知函数的导数的方程及相应的初始条件;二是求解方程,包括方程的通解和满足初始条件的特解。
学习时间 复习知识点与对应习题 大纲要求
2.5-3.5小时 微分方程的基本概念(微分方程及其阶、解、通解、初始条件和特解),例1、2、3、4,习题12-1:1,2,3,4,5,6 1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程
4.会用降阶法解下列形式的微分方程: .
5.理解线性微分方程解的性质及解的结构.
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
8.会解欧拉方程.
9.会用微分方程解决一些简单的应用问题.
2.5-3.5小时 可分离变量的微分方程(可分离变量的微分方程的概念及其解法),例1、2、3、4,习题12-2:1,3,4,5,6,7
2.5-3.5小时 齐次方程(一阶齐次微分方程的形式及其解法)例1、2、4,习题12-3:1,2,3,4
2.5-3.5小时 一阶线性微分方程(常数变易法,伯努利方程),例1-4,习题12—4:1,2,7,9
2.5-3.5小时 高阶线性微分方程(微分方程的特解、通解),例1—4,习题12—7:1,4,5,6,7
2.5-3.5小时 常系数齐次线性微分方程(特征方程,微分方程通解中对应项),例1,2,3,4,6,7习题12-8:1,2
2.5-3.5小时 常系数非齐次线性微分方程(会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程),例1-5,习题12-9:1,2
2.5-3.5小时 《微积分》9.5节:差分方程的一般概念,例1—4;9.6节:一阶和二阶常系数线性差分方程,例1—9
3.5小时 总复习题十二:1,2,3,4,5,10
第五篇:数学复习计划
五年级数学复习计划
五年级林新矛
很快一学期过去了,又到了总复习的时候,五年级数学特制定复习计划如下: 教材内容涉及的面比较广,基本概念比较多,也比较抽象,很多内容都是今后进一步学习的基础知识。通过总复习把本册内容进行系统的整理和复习,使学生对所学概念、计算方法和其它知识更好地理结合掌握,并把各单元内容联系起来,形成较系统的知识,使计算能力和解答应用题的能力得到进一步的提高,圆满完成本学期的教学任务,另外通过总复习,查缺补漏,使学习比较吃力的孩子,能弥补当初没学会的知识,打好基础。
复习内容、复习时间
1、复习第一单元,简单的统计,以分段统计和求平均数为主。时间:6月7日——6月9日
2、复习第二单元,长方体和正方体,长方体和正方体的特征,以及它们的表面积和体积计算公式和比较。以计算和应用为主,兼顾填空和判断。时间:6月10日——6月12日
3、复习第三单元,约数和倍数,抓住数的整除特征,质数与合数,公约数、公倍数、互质数等这些重要的概念,以判断的形式为主进行复习,求最大公约数和最小公倍数以数目不大太大的,常用的为主,便于今后学习其他知识时应用。时间;6月14日 —— 6月16日
4、复习第四单元,分数的意义和性质,是学生清楚的掌握分数的意义,分数与除法的关系,要会举例说明,学生要清楚分数与整数、小数联系以及分数单位、约分、通分,还有重点是分数的基本性质,经过填空,判断练习,提高学生的熟练程度。时间:6月17 日—— 6月19日
5、复习分数的加、减法,第五单元使学生清楚同分母分数加减法和异分母分数加减法的联系与区别,还又注意使用简便方法。时间:6月21日——6月23日
6、综合复习:复习全册。时间:一周7、复习各单元的同时,通过考查,(用单元、综合练习试卷)再进一步发现薄弱环节,加强练习,争取期末考试得到理想的成绩。