第一篇:2013年CUMCM,B题评阅要点
2013高教社杯全国大学生数学建模竞赛B题评阅要点
[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。本题要求对数据提取合适的特征、建立合理有效的碎纸片拼接复原模型。
可以考虑的特征有邻边灰度向量的匹配、按行或按列对灰度求和、行距等。
关于算法模型,必须有具体的算法过程(如流程图、算法描述、伪代码等)及设计原理。虽然正确的复原结果是唯一的,但不能仅从学生提供的复原效果来评定学生解答的好坏,而应根据所建的数学模型、求解方法和计算结果(如复原率)三方面的内容做出评判。另一方面,评判中还需要考虑人工干预的多少和干预时间节点的合理性。
问题1.仅有纵切文本的复原问题
由于“仅有纵切”,碎纸片较大,所以信息特征较明显。一种比较直观的建模方法是:按照某种特征定义两条碎片间的(非对称)距离,采用最优Hamilton路或最优Hamilton圈(即TSP)的思想建立优化模型。关于TSP的求解方法有很多,学生在求解过程中需要注意到非对称距离矩阵或者是有向图等特点。
还可能有种种优化模型与算法,只要模型合理,复原效果好,都应当认可。本问题相对简单,复原过程可以不需要人工干预,复原率可以接近或达到100%。
问题2.有横、纵切文本的复原问题
一种较直观的建模方法是:首先利用文本文件的行信息特征,建立同一行碎片的聚类模型。在得到行聚类结果后,再利用类似于问题1中的方法完成每行碎片的排序工作。最后对排序后的行,再作纵向排序。
本问题的解法也是多种多样的,应视模型和方法的合理性、创新性及有效性进行评分。例如,考虑四邻近距离图,碎片逐步增长,也是一种较为自然的想法。
问题3.正反两面文本的复原问题
这个问题是问题2的继续,基本解决方法与问题2方法相同。但不同的是:这里需要充分利用双面文本的特征信息。该特征信息利用得好,可以提升复原率。
在阅卷过程中,可以考虑学生对问题的扩展。例如,在模型的检验中,如果学生能够自行构造碎片,用以检验与评价本队提出的拼接复原模型的复原效果,可考虑适当加分。
阅卷时应有程序,程序的运行结果应和论文给出的结果一致。
第二篇:2010高教社杯全国大学生数学建模竞赛B题评阅要点
2010高教社杯全国大学生数学建模竞赛B题评阅要点
[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题是一道比较开放的题目,同学对问题的理解和所关注的侧面(角度)的不同,会导致答卷的多样性。以下几点在评阅中值得特别关注:
1.影响力的定义,即因素的选定:考虑到3天时间不太可能进行一个全面的影响力分析,如何恰当地选择一个影响力的侧面极其相关因素是解题的基本前提。容易考虑到的影响力包括经济、旅游、社会、文化等多个方面,也可以是一个较小的侧面(比如表演、自愿者、摄影)。要求有明确具体的定义,要有合理的论证,要有数据支撑。
2.因素的组织结构模型和有关信息的搜索:因素的相关性、信息的完备性等都是值得注意的问题。鼓励直接从网络采集因素数据,比如词汇搜索量、点击率等等。
3.定量建模,数据的收集和分析:要注意模型的合理性,注意数据之间的可比性与归一化。鼓励纵向(时间)和横向(其它重大事件)的比较。
4.科学、直观地表达结论:结论一般不应该是一个简单常识。
第三篇:全国大学生数学建模竞赛2011D题评阅要点
2011高教社杯全国大学生数学建模竞赛D题评阅要点
[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题主要有两种解法。
方法一,主要思路为首先求出三种规格成品的最大捆数,然后求出每捆成品不同长度肠衣的搭配方式。
具体做法为:
1,以现有三种规格对应原料长度和根数为约束,分别建立求三种规格成品捆数最大的整数规划模型,利用软件求解。
2,建立组合或优化模型,计算步骤1得到的各种规格成品每捆中不同原料的搭配方式。
3,根据适当规则调整步骤2得到的各种规格成品每捆中不同原料的搭配方式,使最短长度最长的捆数最多。
上述三步骤应完整,模型应清晰,算法应合理实用。
方法二,主要思路为首先计算三种规格成品的所有可能的不同的原料搭配方式,然后用捆数最大作为目标,同时求出成品的最大捆数和每捆成品的捆扎方式。
具体做法为:
1,用组合方法计算每种成品对应的所有可能的原料搭配方式。组合模型要明确并体现原料根数和总长度的约束和允许的误差,算法的合理性和可实现性也是重要的。
2,对各种规格成品建立并求解各种搭配的最优组合使成品捆数最多的整数规划模型。要注意模型中体现原料根数的约束条件的正确性。
在上述两种方法中均应首先考虑原料最长的成品(第三种规格)的捆扎,剩余的材料降级后参与次长的成品的捆扎,再有剩余部分降级参与最短成品的捆扎。
第四篇:2013高教社杯全国大学生数学建模竞赛A题评阅要点
2013高教社杯全国大学生数学建模竞赛A题评阅要点
[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题的难点在于通过视频资料获得车流数据,并以此为基础建立数学模型,分析部分车道被占用后,道路拥塞程度与上游来车量的关系。评阅时请关注如下方面:建模的准备工作(视频中车流数据的提取,包括视频缺失及错误的处理),模型的建立、求解和分析方法,结果的表述,模型的合理性分析及其模型的拓广。问题1.1.1.道路被占用后,实际的通行能力需要通过视频中的车流数据得到,不能仅由交通道路设计标准估计;1.2.应该根据视频信息给出不同时段、不同情况下车流量的变化,需要给出通行能力的计算方法、理由的陈述或分析;1.3.在被占用道路没有车辆排队时,通行能力等同于单车道情形,但当被占用道路有车辆排队时,由于被占用道路车辆的变道抢行,会使道路的通行能力下降,好的结果应该明确指出这一点。问题2.2.1.对于视频2的分析同视频1,需要通过视频2与视频1的数据对比给出通行能力的差异及原因分析;2.2.由于事故横断面下游交通流方向需求不同,会导致上游每条车道分配到的车辆数不同,使两种情况事故所处道路横断面形成多车道排队的机率不同,从而影响实际通行能力。如果在模型中注意到这一点则更好。问题3.3.1.建立数学模型,给出交通事故所引起的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系;3.2.模型的形式可以多样,但需要包含上述各种因素。关键考察模型假设的合理性、参数确定的原则、及模型的可计算性。问题
4.4.1.本问题是问题1及问题3的扩展,可利用问题1得到的通行能力及 问题3的模型计算结果;4.2.和问题1、3不同,当事故横断面离红绿灯路口较近时,司机无充分时间调整车道,会增大多车道占用情形,影响通行能力,模型计算中应考虑这一点;4.3.附件中给出了上游路口信号灯的控制方案,会影响上游来车的流量分布,如果学生能够利用附件给出上游路口信号灯配时方案和交通组织方案则更好。据得到,不能仅由交通道路设计标准估计;1.2.应该根据视频信息给出不同时段、不同情况下车流量的变化,需要给出通行能力的计算方法、理由的陈述或分析;1.3.在被占用道路没有车辆排队时,通行能力等同于单车道情形,但当被占用道路有车辆排队时,由于被占用道路车辆的变道抢行,会使道路的通行能力下降,好的结果应该明确指出这一点。问题2.2.1.对于视频2的分析同视频1,需要通过视频2与视频1的数据对比给出通行能力的差异及原因分析;2.2.由于事故横断面下游交通流方向需求不同,会导致上游每条车道分配到的车辆数不同,使两种情况事故所处道路横断面形成多车道排队的机率不同,从而影响实际通行能力。如果在模型中注意到这一点则更好。问题3.3.1 .建立数学模型,给出交通事故所引起的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系;3.2.模型的形式可以多样,但需要包含上述各种因素。关键考察模型假设的合理性、参数确定的原则、及模型的可计算性。问题4.4.1.本问题是问题1及问题3的扩展,可利用问题1得到的通行能力及 问题3的模型计算结果;4.2.和问题1、3不同,当事故横断面离红绿灯路口较近时,司机无充分时间调整车道,会增大多车道占用情形,影响通行能力,模型计算中应考虑这一点;4.3.附件中给出了上游路口信号灯的控制方案,会影响上游来车的流量分布,如果学生能够利用附件给出上游路口信号灯配时方案和交通组织方案则更好。
第五篇:2004高教社杯全国大学生数学建模竞赛A题评阅要点
2004高教社杯全国大学生数学建模竞赛A题评阅要点
[说明] 根据各赛区的建议,从2004年起全国组委会不再提供赛题参考解答,只给评阅要点。本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
本题构思立足开放、科学和结合时事。设计原则力求“浅无边,深无底”,可以使用各种不同层次的方法建模和求解,得到不同的结果。
1. 解题思路
按照题目的步骤可以分成4部分:从已给问卷调查数据寻找尽可能充分的能够决定人流量的规律;依此计算出图2中各个商区的人流量分布;从人流量分布,提出建立MS的简化假设,形成数学模型并求解;评价自己的方法的科学性和结果贴近实际的水平,并进行修正。这4个部分应该完整地反映学生的建模构思素质和具体实现能力。
2.方法建议
1)从已经给出的1万多条记录的数据,找出尽可能多的出行、餐饮规律和购物欲规律,如不同性别和不同年龄段的人有怎样不同的出行方式(公交、地铁、出租车、私车)、餐饮方式(中、西餐、超市餐饮)和购物欲(用购物额反映)。可以用统计方法或数据挖掘等。要注意:找出的规律是否足够全面,是否都与人流量形成有关。
2)将上面得到的规律用于2008年的情况时,可以作合理的修正,并可认为不同性别和不同年龄段的人均匀分布在与图2中20个商区对应的20个看台上,再根据题目给出的每人平均出行两次且只走最短路线的条件,计算出20个商区的人流量分布。由于出行方式、餐饮方式和购物欲与人的性别和年龄有关,可以引入“标准人”(如某年龄段的男性,而将其他人群折合成标准人),以标准人为计算人流量的单位。
人流量分布是设计MS网点的数据基础,不同方法得到的结果不同,主要是精细程度不同,1)得到的结果将直接影响分布。
3)提出合理的假设,并建立模型。这是题目开放性的主要体现。假设至少包括两部分:第一是对商店类型的假设,一种类型或两种类型,以及各种类型商店的成本(包括投资、运营等所有投入)、利润率和可容纳顾客的饱和值。第二是对商店分布的假设,要考虑“分布基本均衡”的要求,例如,不可能因为某区人流量大而安排大量的MS,不仅商区面积受限,而且整体不均衡,这种做法是由于没有充分考虑“人是从高密度向低密度流动的”这个基本事实。
建模应该满足三个基本要求,例如,可以以“满足购物需求”和“分布基本均衡”为约束,以“商业上赢利”为目标,形成一个整数规划。建模的关键是数学上恰当地描述“满足需求”和“赢利”。
4)模型的自我评价与修正。基本原则是建模和解题的科学性,以及在满足三个基本要求方面贴近实际的程度。
本题由多种数学方法组合而成,某一种方法不充分显然会影响以后的结果,但是希望不过分影响对后续方法的水平的评价。