离散数学学期总结

时间:2019-05-13 16:39:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《离散数学学期总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《离散数学学期总结》。

第一篇:离散数学学期总结

200820174036何志伍计算机科学与技术

离散数学学期总结

离散数学是描绘一些离散量与量之间的相互逻辑结构及关系的学科。它的思想方法及内容渗透到计算机学科的各个领域中。因此它成为计算机及相关专业的一门重要专业基础课。主要内容包括:集合论、关系、代数系统、图论和数理逻辑五个部分。结构上,从集合论入手,后介绍数理逻辑,便于学生学习。为了能很好的消化理解内容,列举了大量的较为典型、易于接受、说明问题的例题,配备了相当数量的习题,也列举了部分实际应用问题。

一. 知识点

第一章.集合论

集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含集合、元素和成员关系等最基本数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。

本章主要介绍集合的基本概念、运算及幂集合和笛卡尔乘积。这章是本书的基础部分,要学好离散数学就必须很好的掌握集合的内容。集合论的概念和方法已经渗透到所有的数学分支,因而各数学分支的完整体系,都是在所取集合上。

第二章.关系

关系在我们日常生活中经常会遇到关系这一概念。但在数学中关系表示集合中元素间的联系。本章主要学习关系的基本概念、关系的性质、闭包运算、次序关系、等价关系,本章学习的重点:关系的性质、闭包运算、次序关系。

关系这一章是集合论这一章的延伸,对集合论的理解程度对学习关系这一章是非常有影响的。而关系又是学习下一章代数系统必不可少的,所以本章是非常重要的章节。

第三章.代数系统

代数结构也叫做抽象代数,主要研究抽象的代数系统。抽象代数研究的中

心问题就是一种很重要的数学结构--代数系统:半群、群等等。

本章主要学习了运算与半群、群。学习本章需要学会判断是否是代数系统、群和半群,以及判断代数系统具有哪些运算规律,如:结合、交换律等及单位元、逆元。这些都在我们计算机编码中体现出重要的作用。

第四章.图论

图论〔Graph Theory〕起源于著名的柯尼斯堡七桥问题,以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

本章主要学习图的基本概念、路径与回路、图的矩阵表示、平面图和二部图、以及树。学习的重点:图的矩阵表示、平面图和二部图、以及树。

第五章.数理逻辑

数理逻辑又称符号逻辑、理论逻辑。它既是数学的一个分支,也是逻辑学的一个分支。是用数学方法研究逻辑或形式逻辑。数理逻辑是数学基础的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。数理逻辑与计算机科学有着密切的关系,它已成为计算机科学的基础理论。

本章学习的重点:命题及联结词、命题公式及公式的等值和蕴含关系、对偶与范式、命题演算的推理规则、谓词逻辑简介。

二.学习情况

离散数学作为一门必修课,其地位是非常重要的。学习好这门课对于我们也是颇有益处。而且离散数学还是一门有很深内涵的学科。

集合论是本书的这一章节,我们在以前已经学习过集合,为什么现在还要学习呢,这就足见集合在离散数学这门课程中的重要,把集合的知识作为一个基础的知识点,来作铺垫。所以说要想学习好离散数学就必须先将集合的知识掌握好。

关系是集合知识点的延伸,关系是相对于集合而言的。关系也是一个重要的知识点,对后续知识的学习也有重要的作用。后面的代数系统就必须依赖关系才存在的。如果一个系统里不存在关系,那么这个系统也是不存在的。系统里必然存在某种关系,这才使系统存在有意义。

代数系统的学习是对前面的集合论与关系的以个总结。学习了集合论与关系有什么用,在这一章节我们就可以看出来。通过学习这一章,对前面两章有了更深的理解,也对前面所学知识有了一个总结。但同时本章也是本书中比较难以了理解的章节,在本章的学习中遇到一些问题,但是在同学的帮助下都一一解决了。

图论的学习对于我们计算机专业的学生来说是非常的重要的,因为它与我们

计算机专业的关系最密切。在学习中,图不再是我们以前接触的图,而是学习的事如何在点与点之间连结的问题。这对于发散我们的思维有很大的帮助。

数理逻辑是本书最重要的章节,它是培养我们的抽象思维,让我们能在其他学科能够运用一定的思维方式来解决问题。对于计算机专业来说,数理逻辑提高了计算机的工作效率。数理逻辑在计算机专业方面起到了重要的作用。

三.学习体会

学习了离散数学这门课程,对于一个爱好数学的人来说,我是非常受益的。同时,离散数学作为一门与计算机学科相关的专业基础课,对我学专业知识也有很大的帮助。

学习离散数学,可以培养我们的逻辑思维方式,对于我们学习计算机方向的学生来说是非常有用的。尤其是在计算机编程方面对逻辑思维就有一定的要求。离散数学这门课程,是一门比较难学的课程,它有太多的概念、定义,需要我们有很好的记忆力,但是要完全记住这么多的概念、定义是非常困难的。所以说我们在有好的记忆力之外,还要运用理解记忆的方法来解决,这样我们就不必花费过多的时间和精力去记忆这么多的概念和定义了。离散数学作为一门理科学科,在我看来最好的学习方法就是多动手、多做题,在做题得过程中,慢慢积累做题得经验,同时也可以对概念和定义有一个更深层次的理解。

学习各个学科都有其各自的学习方法与思维方式,只有运用对了学习方法才能更好的学习这门课程。学习一门课程都是为了解决实际问题,学习离散数学也不例外。学通了一门课程才能在解决问题的时候不会走弯路。

上面说到了离散数学是一门比较难学的课程,在学习的过程中,也肯定会遇到许多的问题,比如在第三章学习的代数系统中的半群与运算,关于单位元与逆元素这两个知识点遇到一些问题。但是通过反复的理解概念及做练习题和与同学交流,最后还是解决了这些问题。当解决问题的时候心中有一种成就感。

学习离散数学的过程中,也有许多的乐趣。但在轻松学习的过程中,还得从中学到东西,学到道理。我在学习这门课程之后,对我的专业知识方面有了很大的帮助,让我的思维有了进一步的发散,使我在其他的学科中受益匪浅。

第二篇:离散数学总结

一、课程内容介绍:

1.集合论部分: 离散数学学习总结

集合论是离散数学中第一个抽象难关,在老师的生动讲解下,深入浅出,使得集合论成了相当有趣的知识。只是对于以后的应用还不是很了解,感觉学好它很重要。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。例如: 方程x2-1=0的实数解集合;

26个英文字母的集合;

坐标平面上所有点的集合;

集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。

表示一个集合的方法有两种:列元素法和谓词表示法,如果两个集合的交集为,则称这两个集合是不相交的。例如B和C是不相交的。

两个集合的并和交运算可以推广成n个集合的并和交: A1∪A2∪…∪An={x|x∈A1∨x∈A2∨…∨x∈An} A1∩A2∩…∩An={x|x∈A1∧x∈A2∧…∧x∈An}

2.关系

二元关系也可简称为关系。对于二元关系R,如果∈R,可记作xRy;如果R,则记作xy。

例如R1={<1,2>,},R2={<1,2>,a,b}。则R1是二元关系,R2不是二元关系,只是一个集合,除非将a和b定义为有序对。根据上面的记法可以写1R12,aR1b,aR1c等。

给出一个关系的方法有三种:集合表达式,关系矩阵和关系图。设R是A上的关系,我们希望R具有某些有用的性质,比如说自反性。如果R不具有自反性,我们通过在R中添加一部分有序对来改造R,得到新的关系R',使得R'具有自反性。但又不希望R'与R相差太多,换句话说,添加的有序对要尽可能的少。满足这些要求的R'就称为R的自反闭包。通过添加有序对来构造的闭包除自反闭保外还有对称闭包和传递闭包。

3.代数系统

代数结构也叫做抽象代数,主要研究抽象的代数系统。抽象的代数系统也是一种数学模型,可以用它表示实际世界中的离散结构。例如在形式语言中常将有穷字符表记为∑,由∑上的有限个字符(包括0个字符)可以构成一个字符串,称为∑上的字。∑上的全体字符串构成集合∑*。设α,β是∑*上的两个字,将β连接在α后面得到∑*上的字αβ。如果将这种连接看作∑*上的一种运算,那么这种运算不可交换,但是可结合。集合∑*关于连接运算就构成了一个代数系统,它恰好是抽象代数系统--半群的一个实例。抽象代数在计算机中有着广泛的应用,例如自动机理论、编码理论、形式语义学、代数规范、密码学等等都要用到抽象代数的知识。代数结构的主要研究对象就是各种典型的抽象代数系统。

构成一个抽象代数系统有三方面的要素:集合、集合上的运算以及说明运算性质或运算之间关系的公理。请看下面的例子。

整数集合Z和普通加法+构成了代数系统〈Z,+〉,n阶实矩阵的集合Mn(R)与矩阵加法+构成代数系统〈Mn(R),+〉。幂集P(B)与集合的对称差运算也构成了代数系统

。类似这样的代数系统可以列举出许多许多,他们都是具体的代数系统。考察他们的共性,不难发现他们都含有一个集合,一个二元运算,并且这些运算都具有交换性和结合性等性质。为了概括这类代数系统的共性,我们可以定义一个抽象的代数系统,其中 A是一个集合,是A上的可交换、可结合的运算,这类代数系统实际上就是交换半群。

为了研究抽象的代数系统,我们需要先定义一元和二元代数运算以及二元运算的性质,并通过选择不同的运算性质来规定各种抽象代数系统的定义。在此基础上再深入研究这些抽象代数系统的内在特性和应用。

4.图论部分

图论是作为我们计算机专业的一门很有用处的知识,也是新兴的一个数学分支,在计算机迅速发展的同时,图论也迅速发展。因此,图论给我们以一种神奇的感觉,在学习图论中,老师总是把图论分析得很透彻,学起来很有趣,同时也很简单。图论在数据结构方面的应用极其广泛,对我们学计算机专业的人来说,是一门必须要学好的知识。

一个图可以用一个图形表示,定义中的结点对可以是有序的,也可以是无序的,若边所对误码的结点对(a,b)是有序的,刚称L是有向边,a称为L的起点,b称为L的终点,若边L所对应的结点对(a,b)是无序的,则称L是无向边。

5.数理逻辑部分

数理逻辑作为离散数学的最后一部分,充满着对逻辑思维的挑战,同时锻炼了我们思考问题的严密性,当然最重要的是学会如何用数学方法去分析逻辑问题。

数理逻辑又称符号逻辑,它是用数学方法支研究抽象思维的规律的应用学科,1.命题:把能判断真假的陈述句称为命题,作为命题的陈述句表达的判断结果称为命题的真值。命题公式、对偶与范式、命题演算的推理等等。

二、学习总结与体会

在本学期一开始学习这门课程时,老师就明确的告诉我们这门课程很重要,是我们大学中专业课程的核心课程,同时由于难度系数较高,故本门课程较为难学。总的来说,一个学期下来,自认为比较好地掌握了离散数学的基础知识,并在平时的各方面得到了很好的应用。

对于离散数学,在刚开始学习的不知道他的重要性,以为他与高等数学一样,或者学习的时候的时候,一定要有高等数学的知道,其实不然,当我开始学习之后才知道,只有掌握了高等数学以及线性代数等相关知道才能更好的学习离散数学。而且,作为计算机科学专业的学生,离散数学当中所涉及到相关知道,对于我们是至关重要的。比如,关系、群、路径、图的矩阵表示、树等内容,都是在计算机程序设计以及相关

信息当中要用到的内容。

所以学习了离散数学课之后,我的收获是很多的。对于一些数学相关的知识有了不同的理解,学会了用不同的方法去解决程序设计方法以及将计算机和数学有机联系起来,不过在学习的过程中也遇到了一些难题,最为突出的,就是书本上的和老师讲解的都还是比较的简单,自己在课堂上也能听懂,但是到具体的应用就很困难了。

特别是不看书,就很多的东西都还给了老师,所以,我会严格的要求自己,学过的东西,都要下来练习,尽量的多做一些习题,尽量的把学过的数学基础知识练熟悉,这样才能够提高自己专业知识,提高自己解决问题的能力。

有一点让我遗憾的是没有学完这门课程,但在这门课程快要结束的时候,我总结了学习中遇到的一些问题,最为突出的是,书本上的知识与老师讲的都比较容易懂,可是在真正运到实际生活中时,就不能将老师所讲的知识点与书上所罗列的。因此,针对这一情况,在以后的学习中我会严格要求自己,多参加实践,只有这样,才能够提高运用知识,解决问题的能力。

三、教学建议

1.在课程开设方面,对于离散数学等相关基础、重要的课程,应当在大一或大二开设,不应放在大三下期,这样对于我们学习时也有一定的帮助。我希望这一本书上能多一些练习题,以便我们学过了,下课了也有很多的练习题做,来巩固课堂上的新内容。同时,我也希望在有些程序部分,能给出详细的注释语句。

2.相互学习,教师应当努力使现代教学手段与传统教学手段有机结合,相互取长补短。在教学实施中既能发挥教学手段的优势,又能善于运用传统方式,使教学效果达到最佳。建议能给一些学生练习的时间,这样我们才能对学过的新内容有一个巩固的时间,其实这样更有助于以后的教学,前面的基础知识打牢了,后面的学习更愉快。

3.提升技能:教师应重新认识离散数学与计算机联系。同时,要始终把学生放在讲课对象的中心位置,特别是在课余时间,建议由老师组

织学生进行分组,大家共同学习,由于现今的大学学习较为分散,很多时候同学们都不同在课堂上完成任务,只能下来之后继续完成,所以组建学习小组后,通过完成任务等方式,让学生学习到更多的知识点。学会更多的内容。

4.任务引领:充分调动学习学习积极性让学习在完成任务的过程当中,充分学习到多媒体课件的制作以及多媒体信息的处理等等。

第三篇:《离散数学》课程总结

《离散数学》学期总结

转眼之间,这学期要结束了。我们的离散数学,这门课程的学习也即将接近尾声。下面就是我对这门课一些认识及自己的学习心得。

首先我们这门课程离散数学到底包含了哪几大部分?每部分具体又有什么内?这门课程在计算机科学中有什么地位?这门课程在我们以后的学习生活中,以及在将来的工作中有什么帮助?下面我将以上几个方面具体谈一谈并将总结一下自己本人在这门课程学习过程中遇到的一些问题和心得体会。

这门课程有数理逻辑,集合论,代数系统和图论四部分。这四大部分通常被称为离散数学的四大体系。其中每一部分都是一个独立的学科,内容丰富。而我们离散数学中的内容是其中最基本,最重要且和计算机科学最密切相关的内容吸收到离散数学中来,并使它们前后贯通,形成一个有机整体。这门课的主要内容有命题逻辑、谓词逻辑,属于数理逻辑部分,集合论中有集合、二元关系、函数,代数系统包含代数系统基础、群、环、域以及格和布尔代数的知识(这部分我们没有涉及)。

那么这门课程在计算机科学中有着什么样的地位呢,这门课程是计算机科学专业中重要的专业基础课程,核心课程,可以这么说,离散数学,既是一门专业基础课,是一门工具性学科。这门课讲授的内容,与后续专学习业密切相关。在这门课里我们讲授了大量的计算机学科专业必要的基本概念,基本理论和基本方法。为我们以后的学习,工作打下良好基础。在算法设计,人工智能,计算机网络,神经网络,智能计算等学科中有着重要的作用。在计算机科学中有着广泛的应用。通过这门课可以对我们计算机算法的理解和逻辑思维得到提高。

那么我们具体学了什么内容呢?

(一)首先集合论是整个数学的基础,(不管是离散数学还是连续数学)如果没有专门学过,那么出现在离散数学中还是很合适的。至于由集合论引出的二元关系,函数的内容,也是理所应当的。

数理逻辑是一个让人眼前一亮的东西。我第一次发现,原来有些复杂的推理问题是可以通过“计算”的方法解决的。

数理逻辑,又叫符号逻辑。就是依靠专门的数学符号去推导过程对的科学。在推导过程中,我们探索出一套完整的规则。这个规格就是我们的推理规则。竟然为了确保这套规则的,准确性。防止二义性,以至于可以将公理理论公式化,依据各项规则,证得论证的有效性。

这一章里,我们首先学习了,命题逻辑的基本概念。并和一些逻辑连接词。包括真值连接词的否定,真值连接词合取,析取。我们可以用,符号形式写出各种命题,并利用真值表来判断命题的真假。用真值表来判断,命题是十分有效方便的。所以,对于真值表的记忆是十分重要的。命题公式的表示,也是用符号话的需要来给出的。随后我们学习了永真式和永假式,对于永真式和永假式的证明,用制表技术可以方便的给出。对于永真式,因为原子命题变元,不论表示什么命题,是真的还是假的,它总是真的。所以它反映的是命题逻辑的逻辑规律。所以我们着重研究永真式。下面,在一个公式中,如果用另外的是替换其中某个或某些原子命题变元,就会得到全新的公式,这个全新的公式,和原公式什么关系呢?进而引出了我们的代入规则和替换规则。为了更方便的证明各种命题,我们学习了,等价和蕴涵的各种定理,还有范式和范式的判定问题,其中主要是主析取范式和合取范式的概念,定理,证明。证明过程我们在课上都已经证明过了。在这一章还学习了三段式的证明,此证明方法在以后的学习过程中经常使用。

谓词逻辑就是对命题和推理做深一步的研究的学习。在谓词演算中,原子命题分为谓词和个体两部分。谓词逻辑就是将命题的内涵,通过个体和谓词中的表现出来,把同一类命题,用命题函数表示,增强其表达能力。在这里要注意的是,命题还是不是命题,因为其没有确定的真假异议,但是可以将一个命题函数转化为问题,方法有二,(1)用个体域中的特定个体去替换个体变元;(2)这个体域上,将命题函数量化。所谓量化,就是用量词的命题函数中的个体变元进行约束,由此引入了量词的概念。量词分为全称,量词与存在量词,量词反映了个体域与量词间的真假关系。此外,在谓词逻辑中,个体的个体域也是很重要的。将一个命题用谓词,逻辑符号化时,通常经以下步骤(1)确定特性谓词及其他谓词。(2)确定量词。(3)量词与逻辑连接词的搭配。有了量词的概念后,谓词逻辑表达能力就让广泛了,它所刻画的语句也也更为普遍,更为深刻。

代数系统,在计算机科学中也非常重要。在计算机科学中带出系统科,用作研究,抽象数据结构的性能及操作,也是程序设计语言的理论基础。

图论这一章里,我们学习的图并不是几何学中的图形。而是客观世界中某些事物具体联系的一个数学抽象。用点代表事物,用边表示各事物间的二元关系。这一章刚开始学的概念很多,让我感觉有些乱。所以在课后要自己多下功夫了。

然后就是我在学习中出现的一些问题及解决方法了,今天,在学习数理逻辑的时候,觉得离散数学这门课程很简单。但是随着学习的进一步深入,我发现我的想法是错误的。对于后面的一些推理论证,自己缺乏思路。虽然,老师在课上也教给了我们推理的方法,但是,还是忍不住去看书上的证明。这一点在随后的学习中,我一般尽量克服,也是在老师的帮助下,在证明时尽量自己想,憋自己一下,让自己的思维得到训练,自己的推理论证能力得到提高。进而使综合素质,都要提高。

再说一下李勇老师的讲课吧,讲的非常棒。首先它会对每一部分的内容,及,基本概念给大家进行讲解。然后就是强调自己的推理能力。每节课都会让我们自己推理,验证定理。从基础出发,从小定理验证到大定理,由特殊推广到一般。一般都会让我们从两三个开始验证,逐步得到结论,发现规律。一次,李勇老师对,课堂教学有着自己深刻的理解,对这门课的教学方法,教学模式有着独特的看法。还有就是李勇老师,朋辈式的教学方法,在教学过程中,我们共同进步,教学相长,这样是非常好的。

对于老师每节课让我们自己推理的使用模式,我表示非常赞同。我认为,最好的学习办法就是找到合适自己解决问题的方法。学习任何课程都是为了解决实际问题。离散数学也是如此,有了对概念的理解,有了正确的思考问题的方式,解决问题的时候就不会走弯路了,也就是说,基本的解决问题的方法就自然而然的掌握了。对于我们从小缺乏锻炼的推理能力,在这里得到了非常高的提升。

第四篇:学习离散数学总结范文

学习离散数学的心得体会

姓名:

学号:1

班级:计算机

离散数学,对绝大多数学生来说应该都会是一门十分困难的课程,当然也包括我在内。通过这一学期的学习,我对这门课程有一些初步的了解,现在的心情和当初也很不相同。

在还没有接触的时候,看见课本就想退缩,心想:这是什么课程啊,这叫数学吗,这些符号都是之前没有见过的呢!但是既然都说是挑战就没有退缩的道理。虽然不能说是抱着“视死如归”的精神,至少能说是忐忑不安。在听老师讲课的时候有些定义性的东西总会混淆,我自认为是个越挫越勇的人,并没有因此退缩。超乎想象的是,老师讲课好仔细,好详细,因为前面的知识是为后面做铺垫,所以在后面老师经常强调。

而且老师每两次课都会布置作业,这让我们在完成作业的时候对上过的内容进行了加深,有利于我们更好的学习离散数学。而且每次作业老师都很认真批改,错误的地方都会给你圈出来,以便于我们自己更好的完成订正。错误的地方,经过老师认真仔细的讲解,更让我们对知识点及解题技巧有了一定的认知。当一题题目本来不会做错了但是经过老师讲解听讲到会做这题题目的时候,这种成就感还是相当不错的呢。难得有这么认真又负责的老师,让我本来对数学没什么兴趣的人居然也会渐渐地对数学产生了兴趣。有了这些认知,我觉得这门课的难点在于课程比较枯燥,好多理论的知识需要我们去理解。

前三章主要是认识逻辑语言符号,了解了数理逻辑的特点,并做一些简单的逻辑推理和运算。这些知识都是以前所学的进一步转换,只要将数学的函数符号逻辑化就行。也就是说,那些符号知识形式上的不同,实质上是一样的。不同的是,之前的数学只需要运用结论证明其他的案例等。但是逻辑数学不仅要知其然还要知其所以然,运用结论正结论。即使如此,我还是觉得这几章学着很轻松,只要熟练掌握公式定理就会觉得离散数学并不像之前想象的那么困难。

第四章讲的是关系。这一章,进一步认识、运用数理逻辑语言,熟练强化练习,深入理解。这一章的难度相较于前几章要繁琐些,有很多的符号转换,运算,运算过程很复杂。对于计算能力不强的我来说,这一章或许是最吃力的,即使知道原理也需要通过大量的练习强化巩固,而这其中用到的还有线性代数里面的矩阵。

第五章学的是函数,定义和高中所学一样,只不过是把它转换运用于数理逻辑,并用逻辑符号进行运算。虽说如此,但是这其中仍然有更深层次的概念和逻辑公式,如果单纯的用原有的思维是很难想透彻的。

第六章“图”和第七章“树及其应用”可以归为“图论”。在刚接触到“图”这一章的时候我是抱着好奇之心去学习的,因为这章都是关于“图”,想了解一下和几何图形的差别,所以觉得善长几何的我应该能够把它学好。但是不可否认,随着知识的深入,这一章一定会比前面的更难理解,更难学。因此,上课的时候听得格外认真,课后还找了一些相关书籍阅览。在看过这些书籍以后,我才真正了解到它并不是枯燥乏味的,它的用途非常广泛,并且应用于我们整个日常生活中。比如:怎样布线才能使每一部电话互相连通,并且花费最小?从首府到每州州府的最短路线是什么?n项任务怎样才能最有效地由n个人完成?管道网络中从源点到集汇点的单位时间最大流是多少?一个计算机芯片需要多少层才能使得同一层的路线互不相交?怎样安排一个体育联盟季度赛的日程表使其在最少的周数内完成?一位流动推销员要以怎样的顺序到达每一个城市才能使得旅行时间最短?我们能用4种颜色来为每张地图的各个区域着色并使得相邻的区域具有不同的颜色吗?这些问题以及其他一些实际问题都涉及“图论”。

这里所说的图并不是几何学中的图形,而是客观世界中某些具体事物间联系的一个数学抽象,用顶点代表事物,用边表示各式物间的二元关系,如果所讨论的事物之间有某种二元关系,我们就把相应的顶点练成一条边。这种由顶点及连接这些顶点的边所组成的图就是图论中所研究的图。由于它关系着客观世界的事物,所以对于解决实际问题是相当有效的。哥尼斯堡桥问题(七桥问题),这个著名的数学难题,在经过如此漫长的时间最终还是瑞士数学家欧拉利用图论解决了它,并得出没有一种方法使得从这块陆地中的任意一块开始,通过每一座桥恰好一次再回到原点。

树是指没有回路的连通图。它是连通图中最简单的一类图,许多问题对一般连通图未能解决或者没有简单的方法,而对于树,则已圆满解决,且方法较为简单。而且在许多不同领域中有着广泛的应用。例如家谱图就是其中之一。如果将每个人用一个顶点来表示,并且在父子之间连一条边,便得到一个树状图。

图论中最著名的应该就是图的染色问题。这个问题的研究来源于著名的四色问题。四色问题是图论中也许是全部数学中最出名、最难得一个问题之一。所谓四色猜想就是在平面上任何一张地图,总可以用至多四种颜色给每一个国家染色,使得任何相邻国家的颜色是不同的。四色问题粗看起来似乎与我们所讨论的图没有什么联系。其实也是可以转化为图论中的问题来讨论。首先从地图出发来构作一个图,让每一个顶点代表地图的一个区域,如果两个区域有一段公共边界线,就在相应的顶点之间连上一条边。由于地图中每一块区域对应图的一个顶点,两个相邻顶点对应两个相邻的区域。所以对地图染色使相邻的区域染以不同的颜色相当于对图的每个顶点染以相应的一种颜色,使得相邻的顶点有不同的颜色。总之,图论是数学科学的一个分支,而四色问题是典型的图论课题。

通过对图论的初步理解和认识,我深深地认识到,图论的概念虽然有其直观、通俗的方面,但是这许多日常生活用语被引入图论后就都有了其严格、确切的含义。我们既要学会通过术语的通俗含义更快、更好地理解图论概念,又要注意保持术语起码的严格。

本以为枯燥乏味的离散数学竟然会是贴近生活,这些历史难题等等,都让我对它产生了一定的兴趣,虽然不可否认的是,对我来说它确实是一门很难很深奥很抽象的课程,但是仍然不减我对图论产生的兴趣,或许这也就是我选择这门课程最大的收获吧。

第五篇:趣味离散数学学后总结

《趣味离散数学》学后总结

0921111028王蓉

数学与应用数学学习过程是一个扎扎实实积累的过程,不能打马虎眼。离散数学是理论性较强的学科,学习离散数学的关键是对离散数学有关基本概念,如集合论、数理逻辑和图论的准确掌握,对基本原理及基本运算的运用,并要多做练习。

《离散数学》的特点如下:

1、知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。

2、方法性强:离散数学的特点是抽象思维能力的要求较高。通过对它的学习,能大大提高我们本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门计算机科学的专业主干课程时,都不会遇上任何思维理解上的困难。《离散数学》的证明题多,不同的题型会需要不同的证明方法(如直接证明法、反证法、归纳法、构造性证明法),同一个题也可能有几种方法。但是《离散数学》证明 题的方法性是很强的,如果知道一道题用什么方法讲明,则很容易可以证出来,否则就会事倍功半。因此在平时的学习中,要勤于思考,对于同一个问题,尽可能多探讨几种证明方法,从而学会熟练运用这些证明方法。同时要善于总结,在学习《离散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),初学者往往不能在脑海中建立起它们与现实世界中客观事物的联系。这往往是《离散数学》学习过程中初学者要面临的第一个困难,他们觉得不容易进入学习的状态。因此一开始必须准确、全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。

学数学就要做数学,《离散数学》的学习也不例外。学习数学不仅限于学习数学知识,更重要的还在于学习数学思维方法。要做到这一点,学习者将要面临的第二个困难是需要花费大量的时间做课后习题。但是切记离散数学的题目数量自然是无穷无尽的,但题目的种类却很有限。尤其是在命题证明的过程中,最重要的是要掌握证明的思路和方法。解离散数学的题,方法是非常重要的,如果拿到一道题,立即能够看出它所属的类型及关联的知 识点,就不难选用正确的方法将其解决,反之则事倍功半。例如在命题逻辑部分,无非是这么几种题目:将自然语言表述的命题符号化,等价命题的相互转化(包括化为主合取范式与主析取范式),以给出的若干命题为前提进行推理和证明。相应的对策也马上就可以提出来。以推理题为例,主要是利用P、T规则,加上蕴涵和等价公式表,由给定的前提出发进行推演,或根据题目特点采用真值表法、CP规则和反证法。由此可见,在平常学习中,要善于总结和归纳,仔细体会题目类型和此类题目的解题套路。如此多作练习,则即使遇到比较陌生的题也可以较快地领悟其本质,从而轻松解出。

因此,只要肯下功夫,人人都能有扎实的基础,拥有足够的数学知识,特别是能大大提高本身的逻辑推理能力、抽象思维能力和形式化思维能力,从而今后在学习任何一门数学科学的专业主干课程时,都不会遇上任何思维理解上的困难。

下载离散数学学期总结word格式文档
下载离散数学学期总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    离散数学[本站推荐]

    离散数学课件作业第一部分 集合论第一章集合的基本概念和运算1-1 设集合 A ={1,{2},a,4,3},下面命题为真是[ B ]A.2 ∈A;B.1 ∈ A;C.5 ∈A;D.{2}  A。1-2 A,B,C 为任意集合,则他们的共同......

    浅谈离散数学专题

    浅谈离散数学【摘要】离散数学是一门理论性强,知识点多,概念抽象的基础课程,学生学习起来普遍感到难度很高。本文从离散数学内容、学生学习兴趣的激发、教学内容的安排、教......

    离散数学

    离散数学试题(A卷答案) 一、(10分) (1)证明(PQ)∧(QR)(PR) (2)求(P∨Q)R的主析取范式与主合取范式,并写出其相应的成真赋值和成假赋值。 解:(1)因为((PQ)∧(QR))(PR) ((P∨Q)∧(Q∨R))∨......

    离散数学

    第一章数学语言与证明方法 例1 设E={ x | x是北京某大学学生}, A,B,C,D是E的子集, A= { x | x是北京人}, B= { x | x是走读生}, C= { x | x是数学系学生}, D= { x | x是喜......

    离散数学第一章命题逻辑知识点总结

    数理逻辑部分 第1章命题逻辑 1.1 命题符号化及联结词命题: 判断结果惟一的陈述句命题的真值: 判断的结果真值的取值: 真与假 真命题: 真值为真的命题 假命题: 真值为假的命......

    总结离散数学和概率论的应用

    总结离散数学和概率论的应用 马涛 2901312017 摘要:离散数学、概率论是工科基础课程,它们都是后续课程的准备课程,而且各自在实际的生产生活中都有着重要的应用。总结各门课程......

    离散数学第三章

    第三章部分课后习题参考答案 14. 在自然推理系统P中构造下面推理的证明: (2)前提:pq,(qr),r 结论:p (4)前提:qp,qs,st,tr 结论:pq 证明:(2) ①(qr) 前提引入 ②qr ①置换 ③qr ②......

    离散数学心得体会

    离散数学心得体会 离散数学,对绝大多数学生来说是一门十分困难的课程,当然也包括我在内,而当初选这门课是想挑战一下自己。通过这一学期的学习,我对这门课程有一些初步的了解,现......