第一篇:分析国内外压铸模具发展历程及现状
分析国内外压铸模具发展历程及现状
中国压铸行业是一个新兴的行业,在上个世纪八十年代,中国只有几家单位有1000吨以下的压铸机,国内只能制造最大630吨压铸机,并且大部分压铸机合模机构还是全液压的,非
常落后。压铸领域仅限于个别军工或大型国营企业,压铸行业非常落后。随着80年代末,中国摩托车行业的发展,中国陆续引进了国外的大批500至1000吨压铸机,国内首台1000
吨压铸机也在90年开发成功,中国压铸行业因此得以快速发展,由此也拉动了中国压铸模
具企业。
在上世纪九十年代,大部分压铸模具依赖进口,特别是台湾进口居多。中国压铸模具企
业特别是宁波北仑压铸模具企业快速发展真正开始起步应该是在九十年代末,基本上都是以
摩托车配件压铸模具开始,应该说基本上都是小型压铸模具,基本上在280吨至800吨压铸
机上使用的压铸模具为主,这时的压铸模具企业无论是从加工设备、检测设备等硬件,还是
压铸人才都处于初始阶段,模具制造水平都相对较低。
自2000年开始,随着中国汽车行业开始发展,国内开始引进1000吨以上压铸机,国内
外资企业如力劲公司等压铸机企业也开始生产1000吨以上压铸机。这个期间企业引进的基
本上在1000吨至1600吨压铸机,而模具基本上全部是随着设备一同引进,国内很少能够生
产。在经历了一轮引进后,因为国外压铸模具价格较高,个别企业为了降低成本开始寻求国
内能够复制汽车配件的模具企业。为此包括合力模具公司在内的部分较大一点的模具企业看
准市场,积极应对挑战,加大了先进、大型装备的投入,购置了三坐标检测等先进检测设备,开始复制汽车配件压铸模具。在这个过程中,企业加以吸收消化,逐步开始转型,以生产中
型包括汽车手动变速箱壳体压铸模具为主,带动了模具企业快速发展,模具企业装备水平明
显提高,模具制造水平以及制造能力大幅提高。目前这类模具已基本上没有企业从国外引进。随着国内汽车行业近几年的快速发展,特别是国内民族品牌汽车的崛起,中国汽车行业
竞争越来越大。原来的外资企业原来的汽车缸体基本上是采用低压浇注或从国外进口,压铸
汽车缸体由于投入大,加上外国企业从自身利益出发,很少国内生产。而汽车自动档变速箱
更是全部进口,并且作为从中国赚钱的工具。随着国内汽车企业,如吉利公司先后成功开发
了自动档变速箱和汽车压铸缸体,国内其它企业也纷纷寻求国产化,以降低成本,提高竞争
力。近两三年,国内汽车行业以及相关的压铸企业纷纷购买大型压铸机从2000吨到3800
吨,基本上都是以生产自动档变速箱壳体和汽车发动机缸体为主。但是国内能够生产汽车缸
体以及自动档变速箱的模具企业很少,如已生产1.3、1.4、1.6、1.8、2.0、2.4各排量的汽车
四缸体以及3.2排量的V6缸体压铸模具的只有辉旺公司一家,而大部分这类模具主要依赖
进口,进口模具价格是国内的1-2倍。随着今年国家出台的诸多利好政策,中国汽车行业今
年上半年小排量的汽车增长迅速,而小排量的汽车以家庭居多,小排量汽车发动机缸体为减
低成本势必要采用压铸,另外自动档的需求也会逐步成为主流。因此,汽车发动机缸体、自
动档变速箱壳体压铸模具市场空间巨大。国内对于大型精密压铸模具的需求将会越来越大。另一方面,国外的模具市场竞争日趋激烈,特别是由于金融危机的影响,汽车行业竞争加剧。
为了减低成本,必然要降低模具价格,因此国外模具业也在努力降低生产成本。模具行业是
人力成本较高的行业,国外的人力成本是中国及东南亚地区的十几倍,而人力成本中有70%
以上是非核心技术人员。因此,现在国外模具业正逐渐将模具转向人力成本低的地区生产。
其次是国外使用模具的主要企业有加快向国外转移的趋势。因此,无论是国内还是国外,大
型精密压铸模具的市场前景广阔。
第二篇:论文 国内外模具材料的发展及现状
模具材料的现状及发展趋势
摘要:随着模具市场的需求越来越大,各种新兴的模具材料应时而生,合理的选择模具材料和工艺成为我们研究的课题。另外,模具材料的性能、质量对模具的使用寿命也有极大的影响,因此,本文对我国及国外模具材料发展的现状进行阐述,并对其发展趋势进行了分析。关键词:模具材料;现状;发展趋势
The Status and Development Trend of the Mold Material
Abstract:With the growing market demand for mold,a variety of mold material is emerging.We focus our attention on reasonable choice of mold materials and workmanship.In addition, the mold material performance and quality also have a great impact on the life of the mold.Therefore, this paper present situation in home and the development of foreign elaborate mold material, and analyzed its development trend.Key words: mold material;present situation;development trend
1、引言
改革开放以来,我国钢铁工业得到了迅猛的发展,进而模具钢市场面临了更多的机遇与挑战,为了能够开发出质量合格、使用寿命长的模具,对于模具材料的选择和加工工艺要求越来越高。很多模具材料生产企业都在不断的研发新材料、新技术,就是希望能够在模具生产上达到提高模具使用性能,增加模具使用寿命,降低模具生产成本,提高企业经济效益。
中国模具潜在的市场很大,近年来中国已迅速地发展成为模具制造大国,在世界模具制造业产值中,所占的比例逐年上升,模具材料的用量也逐年增长。工业技术不断向前发展,对模具要求在更苛刻、更高速的工况条件下工作。模具材料目前主要以模具钢为主,虽然我国模具钢的产量已经在国际上处于领先位置,但是由于生产技术及加工工艺的不完善,很多精密模具、大型模具、长寿命模具的模具钢还仍需要进口。所以很多模具材料生产或加工企业在新模具材料的研发和生产上投入了大量的精力,目前已经在质量和工艺上得到了很大的提高,缩小了与国外发达国家技术水平的差距。我们相信通过努力,未来我国模具产业将得到更大的进步与发展。
2、国内模具材料现状及发展趋势
2.1国内模具材料现状
近几年,我国模具工业一直以每年15%左右的增长速度发展,在世界模具产值中所占
比例
显著提高。经过几次钢种整顿的标准修订,在GB/T1299-2000《合金工具钢》标准中包含了37 个钢种,基本上形成了我国特色的模具钢系列。据中国冶金工业联合会调研,我国模具钢按照使用状态主要分为:塑料模具钢约占60%; 冲压模具钢约占20%;压铸模具钢占6%~8%。目前我国模具用钢广泛,除了工具钢(碳素工具钢、合金工具钢、高速工具钢)外,还有轴承钢、弹簧钢、调质钢、渗碳钢、不锈钢等,钢种达数十种之多,但常用的只有20余种,而用量最多的是Cr12、Cr12MoV、CrWMn、3Cr2W8V、5CrMnMo、5CrNiMo、45、40Cr等。其中Cr12、Cr12MoV的应用量大面广,但在冶炼、铸造、锻造、热处理等方面存在一系列问题,模具使用寿命较低,特别是产品结构和应用方面还存在一些问题[1,8]。
国内大多数冶金厂设备、工艺较落后,大多采用电炉冶炼,钢的纯度差,表面脱碳层深、碳化物级别高、疏松超标。钢材的冶金质量低、成材率低,一般质量的模具钢多,高质量的模具钢材少。而国外模具钢生产80 %以上采用真空精炼和电渣重熔生产,钢材纯度、等向性高。而国内通过电渣重熔生产的模具钢所占的份额很少,大约1/10。国外发达国家的模具钢成材率在85 %~90 % ,而国内成材率仅为70 %。与国外相比存在很大差距[3]。2.2塑料模具材料
由于塑料模具的快速发展,目前塑料模具材料已逐渐形成了较独立的体系,但国内塑料成型
第三篇:压铸模具毕业论文
沈阳工业大学本科生毕业设计
第1章 绪论
1.1课题意义
1.1.1 压力铸造的特点
高压力和高速度是压铸中熔融合金充填成型过程的两大特点。压铸中常用的压射比压在几兆帕至几十兆帕范围内,有时甚至高达500MPa。其充填速度一般在0.5~120m/s范围内,它的充填时间很短,一般为0.01~0.2s,最短的仅为千分之几秒。因此,利用这种方法生产的产品有着其独特的优点。可以得到薄壁、形状复杂但轮廓清晰的铸件。其压铸出的最小壁厚:锌合金为0.3mm;铝合金为0.5mm。铸出孔最小直径为0.7mm。铸出螺纹最小螺距0.75mm。对于形状复杂,难以或不能用切削加工制造的零件,即使产量小,通常也采用压铸生产,尤其当采用其他铸造方法或其他金属成型工艺难以制造时,采用压铸生产最为适宜。铸件的尺寸精度和表面粗糙度要求很高。铸件的尺寸精度为IT12~IT11面粗糙度一般为3.2~0.8μm,最低可达0.4μm。因此,个别压铸件可以不经过机械加工或仅是个别部位加工即可使用[1]。
压铸的主要优点是:
(1)铸件的强度和表面硬度较高。由于压铸模的激冷作用,又在压力下结晶,因此,压铸件表面层晶粒极细,组织致密,所以表面层的硬度和强度都比较高。
压铸件的抗拉强度一般比砂型铸件高25%~30%,但收缩率较低。(2)生产率较高。压力铸造的生产周期短,一次操作的循环时间约5 s~3 min ,这种方法适于大批量生产。
虽然压铸生产的优势十分突出,但是,它也有一些明显的缺点:(1)压铸件表层常存在气孔。这是由于液态合金的充型速度极快,型腔中的气体很难完全排除,常以气孔形式存留在铸件中。因此,一般压铸件不能进行热处理,也不宜在高温条件下工作。这是由于加热温度高时,气孔内的气体膨胀,导致压铸件表面鼓包,影响质量与外观。同样,也不希望进行机械加工,以免铸件表面显露气孔。
(2)压铸的合金类别和牌号有所限制。目前只适用于锌、铝、镁、铜等合金 1
沈阳工业大学本科生毕业设计 的压铸。而对于钢铁材料,由于其熔点高,压铸模具使用寿命短,故钢铁材料的压铸很难适用于实际生产。至于某一种合金类别,由于压铸时的激冷产生剧烈收缩,因此也仅限于几种牌号的压铸。
(3)压铸的生产准备费用较高。由于压铸机成本高,压铸模加工周期长、成本高,因此压铸工艺只适用于大批量生产[2]。1.1.2压铸模具设计的意义
模具是压铸件生产的主要工具,因此在设计模具时应尽量注意使模具总体结构及模具零件结构合理,安全可靠,便于制造生产,压铸模浇排系统需合理设计。模具的加工、装配要到位,配合需适当,压铸模具的优化也是一个重要方面。压铸模具的优良程度很大程度上取决浇注系统以及排溢系统的设计。压铸生产中,因为模具浇道形状、浇口与排溢口位置及压铸力等控制参数选择不合理导致压铸件缩孔、冷隔或者气孔等缺陷的情况常有出现。而对浇道和排溢口的形状、大小、位置以及压铸机压射工艺参数经过优化后可以大大减少这些缺陷[3]。综上所述,压铸模具的合理设计对于生产出高质量的铸件具有重要意义。
1.2压铸发展历史、现状及趋势
1.2.1压铸的发展历史
压铸始于19世纪,其最初被用于压铸铅字。早在1822年,威廉姆·乔奇(Willam Church)博士曾制造一台日产1.2~2万铅字的铸造机,已显示出这种工艺方法的生产潜力。1849年斯图吉斯(J.J.Sturgiss)设计并制造成第一台手动活塞式热室压铸机,并在美国获得了专利权。1885年默根瑟(Mersen-thaler)研究了以前的专利,发明了印字压铸机,开始只用于生产低熔点的铅、锡合金铸字,到19世纪60年代用于锌合金压铸零件生产。压铸广泛应用于工业生产还只是上世纪初,用于现金出纳机、留声机和自行车的产品生产。1904年英国的法兰克林(H.H.Franklin)公司开始用压铸方法生产汽车的连杆轴承,开创了压铸零件在汽车工业中应用的先例。1905年多勒(H.H.Doehler)研制成功用于工业生产的压铸机、压铸锌、锡、铜合金铸件。随后瓦格纳(Wagner)设计了鹅颈式气压压铸机,用于生产铝合金铸件。这种压铸机是利用压缩空气推送铝 2
沈阳工业大学本科生毕业设计
合金经过一个鹅颈式通道压入模具内,但由于密封、鹅颈通道的粘咬等问题, 这种机器没有得到推广应用。但这种设计是生产铝合金铸件的第一次尝试。20世纪20年代美国的Kipp公司制造出机械化的热室压铸机,但铝合金液有浸蚀压铸机上钢铁零部件的倾向,铝合金在热室压铸机上生产受到限制。1927年捷克工程师约瑟夫·波拉克(Jesef Pfolak)设计了冷压室压铸机,由于贮存熔融合金的坩锅与压射室分离,可显著地提高压射力,使之更适合工业生产的要求,克服了气压热压室压铸机的不足之处,从而使压铸技术向前迈出重要一步[3]。20世纪50年代大型压铸机诞生,为压铸业开拓了许多新的领域。随着压铸机、压铸工艺、压铸型及润滑剂的发展,压铸合金也从铅合金发展到锌、铝、镁和铜合金,最后发展到铁合金,随着压铸合金熔点的不断增高而使压铸件应用范围也不断扩大[4]。
1.2.2我国压铸产业的发展
我国压铸工业在近半个世纪的发展中有了长足的进步。作为一个新兴产业,其每年都以8%~12%的良好势头快速发展。目前,我国拥有压铸厂点及相关企业2600余家,压铸机近万台,年产压铸件50余万吨。其中铝压铸件占67.0%、锌压铸件31.2%、铜压铸件1.0%、镁压铸件0.8%。我国的压铸厂点及相关企业中,压铸厂点2000余家,占企业总数的80%以上,压铸机及辅助设备企业、模具企业、原辅材料企业近398家,占13.7%,科研、大专院校、学会等其他单位合计112个,占总数的3.8%[5]。压铸机生产方面,我国约有压铸机生产企业20多个,年生产能力超过1000台,压铸机的供应能力很强。其中的中小型压铸机的质量较好,大型压铸机、实时控制的高性能的压铸机仍需进口,2000吨以上的压铸机正在研制中[5]。种种情况表明,中国的压铸产业已经相当庞大。
但是,与压铸强国相比,中国的压铸业还有着较大的差距。中国压铸企业的规模较小,企业素质不高,技术水平落后,生产效率较低。虽然与美国、日本等压铸先进国家相比,我国压铸件的生产占有一定的数量优势,但我国压铸企业以小型工厂为主,因此在管理水平和工作效率上,较之有很大的差距。另外,虽然我国生产的中小型压铸机质量较好,但大型压铸机、实时控制的高性能的压铸机仍需进口,每年进口压铸机100台以上[6]。由此可见,我国不能算作压铸强国,只能是压铸大国。
沈阳工业大学本科生毕业设计
近年来,由于中国工业的迅速发展,压铸产业已经逐渐向很多市场迈进。以中国的轿车工业压铸市场为支柱,中国的压铸业已经向摩托车行业、农用车行业、基础设施建设市场、玩具市场、家电产业等多个方向快速拓展,其势头方兴未艾[7]。
1.2.3压铸产业的发展趋势
由于整个压铸过程都是在压铸机上完成,因此,随着对压铸件的质量、产量和扩大应用的需求,开始对压铸设备提出新的更高的要求,传统压铸机已经不能满足这些要求,因此,新型压铸机以及新工艺、新技术应运而生。例如,为了消除压铸件内部的气孔、缩孔、缩松,改善铸件的质量,出现了双冲头(或称精、速、密)压铸;为了压铸带有镶嵌件的铸件及实现真空压铸,出现了水平分型的全立式压铸机;为了提高压射速度和实现瞬时增加压射力以便对熔融合金进行有效地增压,以提高铸件的致密度,而发展了三级压射系统的压铸机。又如,在压铸生产过程中,除装备自动浇注、自动取件及自动润滑机构外,还安装成套测试仪器,对压铸过程中各工艺参数进行检测和控制。它们是压射力、压射速度的显示监控装置和合型力自动控制装置以及电子计算机的应用等[8]。以下介绍的便是压铸行业中出现的新工艺技术。
(1)真空压铸
真空压铸是利用辅助设备将压铸型腔内的空气抽除且形成真空状态,并在真空状态下将金属液压铸成形的方法。其真空度通常在380~600毫米汞柱的范围内,可以通过机械泵获得。而对于薄壁与复杂的铸件,真空度应该更高。由于型腔抽气技术的圆满解决,真空压铸在20世纪50年代曾盛行一时,但后来应用不多。目前,真空压铸只用于生产要求耐压、机械强度高或要求热处理的高质量零件,其今后的发展趋向是解决厚壁铸件和消除热节部位的缩孔,从而更有效地应用于可热处理和可焊接的零件。
真空压铸的特点是:显著减少了铸件中的气孔,增大了铸件的致密度,提高了铸件的力学性能,并使其可以进行热处理。消除了气孔造成的表面缺陷,改善了铸件的表面质量。可减小浇注系统和排气系统尺寸。由于现代压铸机可以在几分之一秒内抽成需要的真空度,并且随着铸型中反压力的减小,增大了铸件的结晶速度,缩短了铸件在铸型中的停留时间。因此,采用真空压铸法可 4
沈阳工业大学本科生毕业设计
提高生产率10%~20%.采用真空压铸时,镁合金减少了形成裂纹的可能性(裂纹时镁合金压铸时很难克服的缺陷之一,经常发生在型腔通气困难的部位),提高了它的力学性能,特别是可塑性。
(2)充氧压铸
国外在分析铝合金压铸件的气泡时发现,其中气体体积分数的90%为氮气,而空气中的氮气体积分数应为80%,氧气的体积分数为20%。这说明气泡中部分氧气与铝液发生了氧化反应。因此出现了充氧压铸的新工艺[9]。
充氧压铸是消除铝合金压铸件气孔,提高铸件质量的一个有效途径。所谓充氧压铸是在铝液充填型腔,用氧气充填压室和型腔,以置换其中的空气和其他气体,当铝金属液充填时,一方面通过排气槽排出氧气,另一方面喷散的铝液与没有排除的氧气发生化学反应而产生三氧化二铝质点,分散在压铸件内部,从而消除不加氧时铸件内部形成的气孔。这种三氧化二铝质点颗粒细小,约在1μm以下,其重量占铸件总重量的0.1%~0.2%,不影响力学性能,并可使铸件进行热处理[10]。
(3)精速密压铸
精速密压铸是一种精确地、快速的和密实的压铸方法,又称套筒双冲头压铸法。国外在20世纪60年代中期开始在压铸生产中应用这一方法。精密速压铸法在很大程度上消除了气孔和缩松这两种压铸件的基本缺陷,从而提高了压铸件的使用性能,扩大了压铸件的应用范围。
(4)半固态压铸
半固态压铸是当金属液在凝固时,进行强烈的搅拌,并在一定的冷却速率下获得50%左右甚至更高的固体组分浆料,并将这种浆料进行压铸的方法。
半固态压铸的出现,为解决钢铁材料压铸模寿命低的问题提供了一个方法,而且对提高铸件质量、改善压铸机鸭舌系统的工作条件,都有一定的作用,所以是用途的一种新工艺[11]。
1.3毕业设计内容
本课题设计内容是锌合金底盘座铸件压铸模具设计,主要包括浇注系统和排溢系统,成形零件,抽芯机构,推出机构以及模体结构等,其设计步骤如下:
(1)设计压铸模具总体结构;
沈阳工业大学本科生毕业设计
(2)设计浇注系统;(3)设计成型零件系统;(4)设计抽芯系统机构;
(5)设计模体、顶出及复位机构。
主要设计方法为:运用UG绘制整个模具的装配图、立体图和具体的零件图、立体图。然后对整个模具的工作过程进行模拟以保证其动作过程灵活。
沈阳工业大学本科生毕业设计
第2章 压铸模具的整体设计
2.1 铸件工艺性分析
2.1.1 铸件立体图及工程图
所用零件为锌合金底盘座,材料YX041,铸造精度CT5,铸件中心是一个较深的型腔,侧壁有凸台,凸台上有直径为80mm的通孔。壳体的底端有4个直径为30mm的小孔,铸件平均壁厚3.8mm,其立体图如图2-1,工程图如图2-2。
图2-1 铸件立体图
图2-2 铸件工程图
沈阳工业大学本科生毕业设计
2.1.2 铸件分型面确定
压铸模的定模与动模表面通常称为分型面,分型面是由压铸件的分型线决定的。而模具上垂直于锁模力方向上的接合面,即为基本分型面。此壳体铸件的分型面选择现有三种方案如图2-3所示。
选择I面,使铸件整体放在定模中,保证了铸件的同轴度,有利于气体的排出,同时I-I面也是铸件的最大投影面。
选择Ⅱ面,铸件的同轴度不易保证。
选择Ⅲ面,由于合模不严会使分型面处产生飞边,不易清除痕迹,也不利于浇注系统的放置。
综上分析决定选取I-I面为该铸件的分型面。
图2-3 铸件分型面选择
2.1.3 浇注位置的确定
铸件中心有型芯,所以不宜采用中心浇注,因此采用底端浇注,浇注位置选在平台的端面。
沈阳工业大学本科生毕业设计
2.2 压铸成型过程及压铸机选用
2.2.1 卧式冷室压铸机结构
卧式冷室压铸机基本组成如图2-4所示。
图2-4 卧式冷室压铸机
1—增压器;2—蓄能器;3—压射缸;4—压射冲头;5—压室;6—定座板;7—拉杆;8—动座板;9—顶出缸;10—曲肘机构;11—支承座板;12—模具高度;13—合模缸;14—机体;15—控制柜;16—电机及泵
此类压铸机的基本结构分为5部分:
(1)压射机构
主要作用是在高压力下将熔融的金属液压入型腔的压射机构。压射压力、压射速度等主要工艺参数都是通过它来控制的,其中包括压室、压射冲头、压射缸、增压器和蓄能器。
(2)合模机构
其作用是实现压铸模的开启和闭合动作,并在压射成型过程中具有足够而可靠的锁模力,以防止在高压压射时,模具被推开或发生偏移。
(3)顶出机构
在压铸件冷却固化成型并开启模具后,顶出缸驱动压铸模的推出机构,将成型压铸件及浇注余料从模具中顶出,并脱出模体,其中包括顶出缸和顶杆。
(4)传动系统
通过液压传动或机械传动完成压铸过程中所需要的各种动作。包括电机、各种液压泵及机械传动装置。
(5)控制系统
控制系统控制柜指令液压系统和机械系统的传动元件,按压铸机压射过程预定的工艺路线和运行程序动作,将液压动作和机械动作有机的 9
沈阳工业大学本科生毕业设计
结合起来,完成准确可靠、协调安全的运行规则[12]。2.2.2 压铸成型过程
卧式冷室压铸机的压住成型过程主要分为4个步骤,如图2-4所示。
(a)合模过程
(b)压射过程
(c)开模过程
(d)铸件推出过程
图2-5 压铸成型过程
(a)合模过程
压铸模闭合后,压射冲头1复位至压室2的端口处,将足量的液态金属3注入压室2内。
(b)压射过程
压射冲头1在压射缸中压射活塞高压作用下,推动液态金属3通过压铸模4的横浇道
6、内浇口5进入压铸模的型腔。金属液充满型腔后,压射冲头1仍然作用在浇注系统,使液态金属在高压状态下冷却、结晶、固化成型。
(c)开模过程
压铸成型后,开启模具,使压铸件脱离型腔,同时压射冲头1将浇注余料顶出压室。
(d)推出铸件过程
在压铸机顶出机构作用下,将压铸件及其浇注余料顶出,10
沈阳工业大学本科生毕业设计
并脱离模体,压射冲头同时复位[13]。2.2.3压铸机型号的选用及其主要参数
本课题设计的压铸件在分型面的投影面积为729cm2,压铸件的重量为5.20kg,锌合金一般件的推荐压射比压为13~20MPa,动模板最小行程为108mm,采用常用的卧式冷室压铸机,其型号为J1163E。
压铸机主要参数如下:压射力为368~600kN;压室直径为70~100mm;最大浇注量(铝)为9kg;浇注投影面积为403~1649;动模板行程为600mm;拉缸内空间水平垂直为750mm750mm。
2.3 浇注系统设计
压铸模浇注系统是将压铸机压室内熔融的金属液在高温高压高速状态下填充入压铸模型腔的通道。它包括直浇道、横浇道、内浇口、以及溢流排气系统等。它能调节充填速度、充填时间、型腔温度,因此它决定着压铸件表面质量以及内部显微组织状态,同时也影响压铸生产的效率和模具的寿命[14]。2.3.1 带浇注系统铸件立体图
铸件立体图如图2-6所示,溢流槽设于分型面四个对角处,用于有序的排除型腔中的气体和排除并容纳冷污的金属液以及其他氧化物。
图2-6 带浇注系统铸件
沈阳工业大学本科生毕业设计
2.3.2 内浇口设计
(1)内浇口速度
由参考文献[15]查得,锌合金铸件内浇口充填速度50m/s,选取为40m/s。
(2)充填时间
经计算,压铸件的平均壁厚约为3.8mm,利用参考文献[16]中的经验公式。
t=35(b-1)
(2-1)
式中t-充填时间,ms;b-压铸件平均壁厚,mm 可求出t=35(3.8-1)=98ms≈0.1s。(3)内浇口截面积的确定
内浇口截面积的确定可由公式(2-2)得出:
(2-2)式中:—内浇口横截面积,cm2;G—通过内浇口金属液的总质量,g;
—内浇口流速,cm;
/s的推荐值为30~—液态金属的密度,g/cm3; ; —型腔的填充时
/s间,s;V—通过内浇口金属液的体积,计算得出数值如下:
—型腔的充填速度,cm。
(4)内浇口厚度、长度、宽度的确定
由内浇口厚度、宽度和长度的经验数值表,适当选取此锌合金铸件内浇口厚度为2.5mm,长度为22.5mm,宽度为100mm。2.3.3 横浇道设计
(1)横浇道的形式及尺寸
沈阳工业大学本科生毕业设计
根据铸件及内浇口特点,选用T形浇道,截面为矩形,浇道形状及尺寸如图2-7。
(2)横浇道与内浇口的连接方式
图2-7 横浇道立体图及具体尺寸
为了防止金属液对型芯的正面冲击,横浇道与内浇口采用了端面联接的方式,见图2-8。
图2-8 端面联接方式
沈阳工业大学本科生毕业设计
图2-8中具体尺寸为:2.3.4 直浇道设计
;;。
直浇道尺寸由浇口套尺寸决定。浇口套内径与压室内径相同,由于压铸机选择型号为J1163E,其压室直径为70,80,100。选取100为浇口套内径,其他尺寸根据情况自行设计,具体尺寸见附录。2.3.5 排溢系统设计
排溢系统由排气道、溢流槽、溢流口组成。如图2-9所示,选用半圆形结构的排溢系统。
图2-9 排溢系统结构
(1)溢流槽尺寸设计
溢流槽尺寸选取:溢流口厚度h=0.5mm;溢流口长度l=4mm;溢流口宽度s=72mm;溢流槽半径r=15mm。
(2)排气道设计
排气道相关尺寸选取为:排气槽深度为0.12mm;宽度为15mm。
2.4 压铸模具的总体结构设计
压铸模由定模和动模两个主要部分组成。定模固定在压铸机压室一方的定 14
沈阳工业大学本科生毕业设计
模座板上,是金属液开始进入压铸模型腔的部分,也是压铸模型腔的所在部分之一。定模上有直浇道直接与压铸机的喷嘴或压室连接。动模固定在压铸机的动模座板上,随动模座板向左、向右移动与定模分开和合拢,一般抽芯和铸件顶出机构设于其内。
压铸模具的基本结构及零件明细表如图2-10所示,它通常包括以下六个部分。
(1)成型零件部分。在合模后,由动模镶块和型腔镶块形成一个构成压铸件形状的空腔,通常称为成型镶块。构成成型部分的零件即为成型零件。成型零件包括固定的和活动的镶块与型芯,如图中的镶块、主型芯、小型芯以及侧型芯等。有时成型零件还构成浇注系统的一部分,如内浇口、横浇道、溢流口和排气道等。
(2)浇注系统。浇注系统是熔融金属由压铸机压室进入压铸模成型空腔的通道,如图中浇口套、浇道镶块以及横浇道、内浇口、排溢系统等。
由于成型零件和浇注系统的零件均与高温的金属液直接接触,所以它们应选用经过热处理的耐热钢制造。
(3)模体结构。各种模板、座架等构架零件按一定程序和位置加以组合和固定,将模具的各个结构件组成一个模具整体,并能够安装到压铸机上,如图中的垫块、支撑板、动模压板、定模套板、定模座板和动模座板等。
导柱和导套是导向零件,又被称为导准零件。它们的作用是引导动模板与定模板在开模和合模时能沿导滑方向移动,并准确定位。
(4)顶出和复位机构。将压铸件或浇注余料从模具上脱出的机构,包括推出零件和复位零件,如图中的推杆、推杆固定板和推板。同时,为使顶出机构在移动时平稳可靠,往往还设置自身的导向零件推板导柱和推板导套。为便于清理杂物或防止杂物影响推板的正确复位,还在推板底部设置限位钉。
(5)侧抽芯机构。当压铸件侧面有侧凹或侧凸结构时,则需要设置侧抽芯机构,如图中斜滑块、侧型芯、斜滑块限位钉、弹顶销、弹簧等。
(6)其它。除以上各结构单元外,模具内还有其它用于固定各相关零件的内六角螺栓以及销钉等[17]。
沈阳工业大学本科生毕业设计
图2-10 模具总装图
沈阳工业大学本科生毕业设计
第3章 成型零件及斜滑块结构设计
3.1 成型零件设计概述
成型零件是与高温金属液接触的零件,用于形成浇注系统和铸件。成型零件由浇注系统成型零件和铸件成型零件两部分组成。
(1)浇注系统成型零件:浇道镶块、浇口套,用于形成浇注系统。(2)铸件成型零件:型芯、镶块、斜滑块块,用于形成铸件。成型零件的结构形式主要可以分为整体式和组合式两类。
1)整体式结构 型腔和型芯都由整块材料加工而成,即型腔或型芯直接在模板上加工成型。
2)整体组合式结构 型腔和型芯由整块材料制成,装入模板的模套内,再用台肩或螺栓固定。
3)局部组合式结构 型腔和型芯由整块材料制成,局部镶有成型镶块的组合形式。
4)完全组合式结构 由多个镶拼件组合而成的成型空腔。
成型零件直接接触高温、高压、高速的液态金属,受机械冲击、磨损、热疲劳和化学侵蚀的反复作用,热应力和热疲劳导致的热裂纹则是破坏失效的主要原因,所以对成形零件的尺寸精度的要求尺寸精度高3-4级,对粗糙度的要求比铸件粗糙度高2级。
由于本文中采用斜滑块抽芯系统,其也与液态金属直接接触,故放入本章介绍[18]。
3.2浇注系统成型零件设计
(1)浇口套的结构
在浇口套中形成直浇道,常用浇口套的结构形式如图3-1所示。图(a)由于制造和装卸比较方便,在中小型模具中应用比较广泛。图(b)是利用台肩将浇口套固定在两模板之间,装配牢固,但拆装均不方便。
沈阳工业大学本科生毕业设计
图(c)是将压铸模的安装定位孔直接设置在浇口套上。
图(d)、(e)型式用于中心进料图(f)是导入式直浇道的结构型式。本课题选用图(a)的形式。
图3-1 浇口套结构形式
(2)浇口套与压室的连接方式 连接方式如图3-2所示。
图3-2(a)为平面对接:为了保证同轴度应提高加工精度和装配精度。图3-2(b)保证了它们的同轴度要求。
图3-2 浇口套与压室连方式接
沈阳工业大学本科生毕业设计
本课题采用(a)类连接,即平面对接的方式,此类连接便于装卸。(3)浇口套的尺寸与配合精度
浇口套尺寸根据具体情况设计,具体尺寸参见附录。
配合精度:D1取H7h6、D2取e8、D取F8、D0取H7、d取e8。(4)浇注系统成型零件的材料和硬度的要求
压铸模具的浇注系统成型零件直接与高温、高压、高速填充的液态金属液接触,在短时间内温度变化很大,压铸模的工作环境十分恶劣,因此对浇注系统成型零件材料的选择应慎重。底座铸件模具设计按国家标准选取的材料为4Cr5MoSiV1,热处理要求为44~48HRC。
3.3 铸件成型零件设计
3.3.1 成型收缩率
成型收缩率是指铸件收缩量与成型状态铸件尺寸之比,收缩分三种情况(见图3-3):
(1)自由收缩 在型腔内的压铸件没有成型零件的阻碍作用,图中L1。(2)阻碍收缩 如图中L2,有固定型芯的阻碍作用。(3)混合收缩 如图中L3,这种情况较多。
图3-3 压铸件收缩率的分类
由参考文献[16]中查得锌合金的自由收缩率为0.6%~0.8%,阻碍收缩率为0.3%~0.4%,混合收缩率为0.4%~0.6%。取YX041锌合金的自由收缩1=0.7%,阻碍收缩为20.4%,混合收缩为=0.5%。
沈阳工业大学本科生毕业设计
3.3.2 脱模斜度
(1)脱模斜度的选取标准
1)不留加工余量的压铸件。为了保证铸件组装时不受阻碍,型腔尺寸以大端为基准,另一端按脱模斜度相应减少;型芯尺寸以小端为基准,另一端按脱模斜度相应增大。
2)两面均留有加工余量的铸件。为保证有足够的加工余量,型腔尺寸以小端为基准,加上加工余量,另一端按脱模斜度相应增大;型芯尺寸以大端 为基准,减去加工余量,另一端按脱模斜度相应减少。
3)单面留有加工余量的铸件。型腔尺寸以非加工面的大端为基准,加上斜度尺寸差及加工余量,另一端按脱模斜度相应减少。型芯尺寸以非加工面的小端为基准,减去斜度尺寸差及加工余量,另一端按脱模斜度相应放大。
(2)脱模斜度的尺寸
配合面外表面最小脱模斜度α取015,内表面最小脱模斜度β取030。非配合面外表面最小脱模斜度α取030,内表面最小脱模斜度β取1°。由于底座内腔深度>50mm,则脱模斜度可取小[19]。3.3.3 压铸件的加工余量
由于铸件具有较为精确的尺寸和良好的铸造表面,所以一般情况下,可以不进行机械加工。同时,由于压铸件内部可能有气孔,所以应尽量避免再进行机械加工。但是,某些部位还是应该进机械加工。如装配表面、装配孔、成型困难没有铸出的一些形状,去除内浇口、溢流口后的多余部分等。
底座铸件的加工余量选取根据参考文献[15]中推荐的加工余量选择,平面按最大边长确定,孔按直径确定。3.3.4铸件成型尺寸的计算
成型零件表面受高温、高压、高速金属液的摩擦和腐蚀而产生损耗,因修型引起尺寸变化。把尺寸变大的尺寸称为趋于增大尺寸,变小的尺寸称为趋于变小尺寸。在确定成型零件尺寸时,趋于增大的尺寸应向偏小的方向取值;趋于变小的尺寸应向偏大的方向取值;稳定尺寸取平均值。
根据参考文献[16],成型零件尺寸的计算公式如下:
沈阳工业大学本科生毕业设计
’‘A(AAn)’
式中:A'—成型件尺寸;—成型零件制造偏差;A—压铸件尺寸(含脱模斜度、加工余量);—收缩率;n—补偿系数;—压铸件尺寸偏差。
n为损耗补偿系数,由两部分构成,其一是压铸件尺寸偏差的1磨损值,一般为压铸件尺寸偏差的1‘差=(15~14)。
2,其二是
4,因此n0.7。成型零件尺寸制造偏已知铸件尺寸公差等级为CT5,根据参考文献查表可得铸件基本尺寸的相应尺寸公差。由铸件图可知型腔尺寸有:Φ100,h270,4R25,Φ190,h224,h6。型芯尺寸有:Φ182.5,Φ80,4Φ30.2,h210,4R50,h2。中心尺寸有:L121,L220。
(1)型腔尺寸计算
型腔的尺寸是趋于增大尺寸,应选取趋于偏小的极限尺寸。计算公式为:
沈阳工业大学本科生毕业设计
(2)型芯尺寸计算
型芯的尺寸是趋于减小的尺寸,应选取趋于偏大的极限尺寸。计算公式为:
(3)中心距位置尺寸计算
中心距离尺寸是趋于稳定的尺寸,其偏差规定为双向等值。公式为:
沈阳工业大学本科生毕业设计
3.4 成型零件装配图
定模与动模合拢后形成的空腔通常称为型腔,而构成型腔的零件即为成型零件。成型零件包括固定和活动的镶块与型芯。模具成型零件立体图如图3-4所示,装配图如图3-5所示。
图3-4 铸件成型零件立体图
图3-5 铸件成型零件装配图
1—浇口套;2—定模镶块;3—动模斜滑块:4—镶块:5—弹簧顶销
6—小型芯;7—主型芯
沈阳工业大学本科生毕业设计
3.5 斜滑块机构设计
3.5.1 侧抽芯系统概述
当铸件上具有与推出方向不一致的侧孔、侧凹或侧凸形状时,在压铸成型后,此处的成型零件会阻碍压铸件的推出,必须设置可以移动的侧型芯。在铸件推出前,先将型芯抽出,消除障碍后,再将压铸件推出,合模时,再将型芯回复到原来的成型位置。完成侧抽芯的抽出和复位动作的机构称为侧抽芯机构。
侧抽芯机构有多种形式,但应用较多的是斜销机构和斜滑块机构。斜销机构较复杂,但用途较广;斜滑块机构简单,仅用于侧凹较浅的情况[20]。
(1)斜销侧抽芯结构。图3-6是斜销侧抽芯的工作过程。斜销侧抽芯机构主要用于侧孔抽芯,分型面为垂直分型面。
(2)斜滑块侧抽芯机构。如图3-7所示,(a)为合模状态,(b)开模,(c)抽出型芯。在定模板的推动下,斜滑块复位。
本课题根据零件的结构特点选择了斜滑块侧抽芯机构。
图3-6 斜销侧抽芯结构工作过程
(a)合模状态
(b)开模状态
沈阳工业大学本科生毕业设计
(c)抽芯状态
图3-7 斜滑块机构工作过程
3.5.2 斜滑块机构基本结构
斜滑块抽芯机构,主要由定位销和斜滑块组成。特点是:结构紧凑,动作可靠,常用于侧成型面积较大,侧孔、侧凹较浅,所需抽芯力不大的情况。斜滑块抽芯基本结构如图3-8所示。
图3-8 斜滑块抽芯基本结构
1-定模板;2-限位销;3-斜滑块;4-动模套板;
5-型芯;6-推杆;7-动模固定板
沈阳工业大学本科生毕业设计
3.5.3 斜滑块的拼合形式
斜滑块拼合形式如图3-9所示。
在图3-9中,(a)、(b)、(c)是两瓣式的拼合形式。(a)是常用形式,(b)可能产生溢料现象,(c)能解决溢料问题。(d)、(e)、(f)为三瓣式或多瓣式的拼合形式[21]。
由于本课题设计的底盘座铸件比较简单,因此选用图3-9中(a)两瓣式的拼合形式,不但满足要求而且设计比较简单。
图3-9 斜滑块拼合形式
3.5.4 斜滑块的导滑形式
斜滑块导滑形式如图3-10所示。T形槽形式加工比较简单,因此本课题选用T形槽形式。3.5.5 斜滑块尺寸设计
(1)抽芯距离计算
沈阳工业大学本科生毕业设计
根据参考文献[16]的公式:
其中—外形内凹成形深度(mm);
=24,K取5mm,因此,=29mm。
K—安全值,斜滑块机构一般取3~5mm。本课题铸件的
图3-10 斜滑块导滑形式(a)T形槽;(b)燕尾槽
(2)推出高度l确定
推出高度是斜滑块在推出是轴向运动的全程,即抽芯行程后推出行程,根据参考文献[16]可知,斜滑块的可推出高度不可大于斜滑块厚度L的55%,留在套版内的长度需大于30mm。因此,选取推出高度l=108mm。
(3)倒向斜角的确定 导向角计算公式为:
沈阳工业大学本科生毕业设计
由参考文献[15]可知倒向斜角一般在据前面所得计算结果,可以计算出=
~。
间选取,一般不超过,根3.5.6 斜滑块抽芯机构表面粗糙度和材料选择
(1)零件表面粗糙度
侧抽芯机构零件爱你表面粗糙度选取:斜滑块的外表面Ra0.8μm,型腔表面Ra0.4μm,其他非配合面Ra3.2μm。
(2)材料选择
斜滑块的材料选用4Cr5MoSiV1,热处理要求44~48HRC,斜滑块限位钉的材料选用45钢,热处理要求25~32HRC。3.5.7 弹簧限位销设计
由于定模型芯的包紧力较大,开模时,斜滑块和逐渐可能被留在定模型芯上,或斜滑块受到定模型芯的包紧力而产生位移,使铸件变形。此时应设置强制装置,确保开模后斜滑块稳定地留在动模套板内。本课题即考虑到定模型芯的包紧力作用,安装了4个弹簧限位销,以避免斜滑块径向移动,从而强制斜滑块留在动模套板内。
根据参考文献[24]。采用的弹簧限位销的弹簧中径D=40mm,弹簧丝直径d=8mm,有效圈数n=7,采用材料为硅锰弹簧钢60Si2MnA,具体尺寸见附录。3.5.8 斜滑块抽芯机构立体图和装配图
斜滑块侧抽芯机构由斜滑块、动模套板以及推杆等零件组成。由瓣合组成的斜滑块镶嵌在动模套板的导滑槽内。合模时,定模套板的分型面与斜滑块的上端面接触,使瓣合斜滑块分别推入动模套板的斜面内定位。斜滑块各侧向的密封面,在压铸机锁模力的作用下锁紧。开模后,压铸机的顶出装置推动模具的推出机构,驱动推杆并推动斜滑块向脱模方向移动。在这个过程中,由于动模套板内斜导滑槽的导向作用,使斜滑块在推动压铸件向前运动时,分别向上下侧分型,即在推出压铸件的同时,抽出压铸件侧面的凹凸部分,完成侧抽芯动作[21]。图3-11为斜滑块机构立体图,图3-12为斜滑块机构装配图。
沈阳工业大学本科生毕业设计
图3-11 斜滑块抽芯机构立体图
图3-12 斜滑块机构装配图
1-小型芯;2-定模镶块;3-定模套板;4-斜滑块;5-限位钉;6-动模套板;
7-推杆;8-压板;9-支撑板;10-镶块;11-主型芯;12-弹簧限位销
沈阳工业大学本科生毕业设计
第四篇:浅谈国内外工程造价管理的发展历程和研究现状
浅谈国内外工程造价管理的发展历程和研究现状
前言
工程造价是指工程的建造价格。在不同的经济体制下,工程造价有不同的含义,工程造价管理也就有不同的目标。在传统的计划经济体制下,国家是惟一的投资主体,施工企业是国营单位,工程造价管理是对国家投资的管理,其目标是降低工程造价;在市场经济条件下,由于投资方和承包方是不同的利益主体,工程造价管理的目标转变为合理确定和有效控制工程造价,以保证不同投资主体的利益,实现建筑业健康、稳定的发展。自从 20 世纪 80 年代改革开放以来,我国在建筑工程领域进行了多次改革,这些改革从投资渠道的多源化、投资主体的多元化、投资方式的多样化、投资决策的分权化到实行项目招投标制、项目法人责任制、建设监理制、工程合同管理制等,这些制度虽然从不同的角度起到了构筑有形建筑市场硬件的作用,促进了建筑市场的健康发展。但对建筑市场的灵魂—建筑工程造价管理涉及不
[1]深,还没有从根本上来研究在社会主义市场经济条件下的建筑工程造价管理问题。
工程造价管理有两种管理,一是建设工程投资费用管理,二是工程价格管理。建设工程投资费用管理属于投资管理范畴,建设工程投资费用管理的含义是,为了实现投资的预期目标,在拟定的规划、设计方案的条件下,预测、计算、确定和监控工程造价及其变动的系统活动。这一含义既涵盖了微观的项目投资费用的管理,也涵盖了宏观层次的投资费用的管理。
[2]工程价格管理属于价格管理范畴。在社会主义市场经济条件下价格管理分两个层次:一是在微观层次上生产企业在掌握市场价格信息的基础上,为实现管理目标而进行的成本控制、计价、订价和竞价的系统活动。它反映了微观主体按支配价格运动的经济规律,对商品价格进行能动的计划、预测、监控和调整,并接受价格对生产的调节。二是在宏观层次上政府根据社会经济发展的要求,利用法律手段、经济手段和行政手段对价格进行管理和调控,以及通过市场管理规范市场主体价格行为的系统活动。国内外工程造价管理模式
1.1 国外工程造价管理模式
从目前的资料分析,工程造价管理模式并非统一,在不同的区域有不同的方式和管理形式,所以 WTO并不能让每个成员接受其中的任何一种形式。随着国际建筑业的发展,发达国家的建筑工程造价管理已在科学化、规范化、程序化的轨道上运行,已形成了许多好的国际惯例。美、英、日本和德国等国家在工程造价管理上结合本国的实际情况,建立了比较科学、严谨、完善的管理制度,通过制定切实可行的办法,使工程造价从投标报价到中标后的[3]实施,得到全过程的控制与管理。这些成功的经验在我国建筑工程造价管理的改革中均可[4]借鉴。
(1)美国工程造价的管理。现行的工程造价由两部分构成。一是业主经营所需费用,称之为软费用,主要包括基础上所需资金的筹措,设备购置及储备资金、土地征购及动迁补偿、财务费用、税金及其它各种前期费用。二是由业主委托设计咨询公司或者总承包公司编制的建安工程基础上建设实际发生所需费用,一般称之为硬费用,主要包括施工所需的工、料、机消耗使用费、现场业主代表及施工管理人员工资、办公和其它杂项费用,承包商现场的生活及生产设施费用,各种保险、税金、不可预见费等。此外承包商的利润一般占建安工程造价的 5%~15%,业主通过委托咨询公司实现对工程施工阶段造价的全过程管理。美国有统一的计价依据和标准,是典型的市场化价格。工程估算、概算、人工、材料和机械消耗定额,不是由政府部门组织制订的,而是由几个大区的行会(协会)组织,按照各施工企业工程积累的资料和本地区实际情况,根据工程结构、材料种类、装饰方式等,制订出平方英尺建筑 面积的消耗量和基价,并以此作为依据,将数据输人电脑,推向市场。这些数据资料虽不是政府部门的强制性法规,但因其建立在科学性、准确性、公正性及实际工程资料的基础上,能反映实际情况,得到社会的普遍公认,并能顺利加以实施。因此,工程造价计价主要由各咨询机构制定单位建筑面积消耗量,基价和费用估算格式,由承发包双方通过一定的市场交易行为确定工程造价。
(2)英国工程造价管理。工程造价管理有着悠久的历史,经过几百年的实践形成了全英统一的工程量标准计量规则(SMM)和工程造价管理体系,使工程造价管理工作形成了一个科学化、规范化的颇有影响的独立专业。政府投资的工程项目由财政部门依据不同类别工程的建设标准和造价标准,并考虑通货膨胀对造价的影响等确定投资额,各部门在核定的建设规模和投资额范围内组织实施,不得突破。对于私人投资的项目政府不进行干预,投资者一般是委托中介组织进行投资估算。英国无统一定额,工程量计算规则就成为参与工程建设的各方共同遵守的计量、计价的基本规则,投标报价原则上是工程量、单价合同(即 BQ 方式)。在英国工程造价的控制贯穿于立项、设计、招标、签约和施工结算等全过程,在既定的投资范围内随阶段性工作的不断深化使工期、质量、造价的预期目标得以实现。
(3)日本工程造价管理。工程造价实行的是全过程管理,从调查阶段、计划阶段、设计阶段、施工阶段、监理检查阶段、竣工阶段直至保修阶段均严格管理。日本建筑学会成本计划分会制定出日本建筑工程分部分项定额,编制了工程费用估算手册,并根据市场价格波动变化进行定期修改,实行动态管理。投资控制大体可分为 3 个阶段:一是可行性研究阶段。根据实施项目计划和建设标准,制定开发规模和投资计划,并根据可类比的工程造价及现行市场价格进行调整和控制。二是设计阶段。按可行性研究阶段提出的方案进行设计,编制工程概算,将投资控制在计划之内。施工图完成后,编制工程预算,并与概算进行比较。若高于概算,则进行修改设计,降低标准,使投资控制在原计划之内。三是施工中严格按图施工,核算工程量,制订材料供应计划,加强成本控制和施工管理,保证竣工决算控制在工程预算 额度内。日本政府有关部门对所投资的公共建筑、政府办公楼、体育设施、学校、医院、公寓等项目,除负责统一组织编制并发布计价依据以确定工程造价外,还对上述公建项目的工程造价实行实施全过程的直接管理。
(4)德国工程造价管理。任何建设工程不论是政府项目,还是私人投资项目对工程项目的管理,贯穿于全过程的质量、进度和成本控制。以科学合理地确定工程造价为基础,实施动态管理与控制,只要工程项目投资额确定后(政府工程经政府审批,私人工程经业主批准),在实施过程中,必须严格地按照投资估算执行,不能随意修改和突破。从上述几个经济发达国家的管理方式看,工程造价管理均处于有序的市场运行环境,实行了系统化、规范化、标准化的管理,而在价格的确定和管理上以市场和社会认同为取向,在行业的管理归属上民间 行业协会组织发挥着巨大作用。同时,政府的宏观调控,先进的计价依据、计价方法、发达的咨询业、多渠道的信息发布等做法,基本上代表了现行工程造价管理的国际惯例,完全适合 WTO 的基本原则。
综上所述,可以简要概括得到国外有关工程造价管理体制的特点如下:一是行之有效的政府间接调控。二是有章可循的计价依据。三是多渠道的信息发布体系。四是量价分离的计算方法。五是发达的工程造价咨询业。1.2 国内工程造价管理模式
改革开放以来,我国的工程建设标准定额和工程造价管理工作以逐步适应社会主义市场经济为目标,按照调放结合(配套改革(小步快走(逐步到位的指导思想,进行了一系列的改革,并取得了较好的成果!1985年成立了中国工程建设概预算定额委员会,1990年在此基础上成立了中国建设工程造价管理协会,1996年国家人事部和建设部已确定并行文建立注册造价工程师制度,对学科的建设与发展起了重要作用,标志着该学科已发展成为一个独立的 完整的学科体系!经过10多年的发展,应该说我国的工程造价管理工作取得了可喜的成绩,对我国的社会主义现代化建设做出了重大贡献!但是我国的工程造价管理与西方发达国家相比还有很大差距,工程造价管理工作还有许多问题有待解决!我国的工程造价管理体制一直 沿用前苏联模式,是适应计划经济模式下的管理体制,目前已经不适应市场经济的发展!工程造价管理改革的目的,是为了建立适应我国社会主义市场经济体制所需的,具有中国特色
[5]的新的工程造价管理体制,目前还有许多问题有待解决!我国工程造价管理体制建立于建国初期,随着经济体制改革的深入和对外开放政策的实
[6]施,我国基本建设概预算定额管理的模式已逐步转变为工程造价管理模式。主要表现在:(1)重视和加强项目决策阶段的投资估算工作,努力提高可行性研究报告投资估算的准确度,切实发挥其控制项目总造价的作用。
(2)明确概预算工作不仅要反映设计、计算工程造价,更要能动地影响设计、优化设计,并发挥控制工程造价、促进合理使用建设资金的作用。
(3)从建筑产品也是商品的认识出发,以价值为基础,确定建设工程造价和建筑安装工程造价,使工程造价的构成合理化,逐步与国际惯例接轨。
(4)把竞争机制引入工程造价管理体制,打破以行政手段分配建设任务和施工单位依附于主管部门的体制,在相对平等的条件下进行招标承包,择优选择工程承包公司和设备材料供应单位,以促进这些单位改善经营,提高应变能力和竞争能力,降低工程造价。
(5)以动态的方法研究和管理工程造价。研究如何体现项目投资额的时间价值,要求各地区、各部门工程造价管理机构要定期公布各种设备、材料、工资、机械台班的价格指数以及各类工程造价指数,建立地区、部门以及全国的工程造价管理信息系统。
(6)对工程造价的估算、概算、预算、承包合同价、结算价、竣工决算实行一体化管理,逐步建立一体化管理制度,改变过去分段管理的状况。
(7)工程造价咨询产生并逐渐发展。作为受委托方,为建设项目的工程造价的合理确定和有效控制提供咨询服务的工程造价咨询单位在全国全面、迅速发展。
(8)为了适应我国建筑市场的发展和国际市场竞争的需求,推行工程量清单计价模式,建筑工程承发包主要通过招投标方式来实现。我国的工程造价管理正在逐步建立市场形成价格的机制,实现工程造价管理市场化,形成社会化的工程造价咨询服务业,与国际惯例接轨。目前我国工程造价的现状
2.1 诚信机制不健全
作为我国经济建设的重要部分,建筑行业对我国经济有着重要的影响,但在市场发展中,建筑市场存在弄虚作假的现象、信用缺失的现象,对企业经营带来很大的风险,影响建筑行
[7]业的发展结构,使得资源利用率降低,造成国民经济的整体损失。2.2 产业结构单一造成造价体系僵化、成本过高
在我国经济结构中。大中型国有企业多数比例,国有企业控股单一,对外不能利用社会资金和资源,对内很难建立完善的管理制度。企业体制改革缓慢,使得企业竞争降低:民营企业和外资企业虽然得到了快速的发展,但是由于起步较晚,资金技术力量薄弱,不能成为行业的领导者,加之我国建筑行业受到国家政策的干预,缺少灵活用工机制,难以控制成本,“三超”现象普遍存在。
[8]2.3 相关法律制度不健全
建筑工程合同管理中存在很多问题,关于造价成本的赔偿制度不完善,已设立的法律法规中存在很多欠缺约束力,一些条款存在歧视性,自由裁量权过大,容易投机取巧,虚假的造价应有的惩罚。
[9]2.4 工程造价管理部门改革力度不够 作为管理部分,未能顺应时代的发展趋势进行改革等工作,工作的重点依然是在定额管理,协调甲乙双方针对定额理解的偏差而出现的纠纷,发布建筑材料、信息价格等方面,不能将工程造价的职责承担起来。
2.5 我国造价咨询市场起步晚、无序,没有形成良性的循环
而且造价限于在预算与结算的编制工作中,造价人员的素质较低,体现在一些专业人员非法挂证。而且有些造价师为了眼前利益,按照业主的要求弄虚作假,这些因素都制约着工程造价的整体发展。2.6 信息化管理落后
企业创新和改革意识薄弱。在信息化社会。很多企业对于全球化经济发展模式没有明确的发展规划,加上企业人才匮乏,信息化的脚步发展缓慢,不仅成本增加,取得的经济效益也不高。
3新时期完善建筑工程造价的对策建议
一般来说,建筑工程造价与建筑工程的经济效益是密切相关的,新时期我国建筑工程造价存在的问题对我国建筑工程项目的发展产生了一定的阻碍效应,可见新时期完善建筑工程造价对于促进工程项目的发展是非常重要的,那么新时期如何完善建筑工程造价呢?主要可以从以下几个方面完善新时期建筑工程造价。
(1)健全我国建筑工程价方面的法律法规,可以使我国建筑工程造价在实际应用中有法可依。建全建筑工程的法律法规,有利于促进建筑工程的顺利发展和规范建筑工程、保证建筑工程做到有法必依。在市场经济条件下,政府应该严格按照法律法规对建筑工程造价进行
[10]监管,促进我国建筑工程造价的发展。(2)重视建筑工程造价管理的前期工作。新时期建筑工程造价管理应该更加重视工程造价管理的前期工作,经过一些调查研究表明,建筑工程的前期工作是建筑工程造价管理的核心,做好建筑工程的前期工作对于促进建筑工程顺利进行,减少不必要的损失具有促进作用。
[11]此外,在建筑工程造价管理的施工阶段要加强施工组织设计工作,完善工程造价管理系统。(3)按照程序办事,避免建筑工程造价竞争中的不公平性。由于在市场经济条件下,建筑市场的竞争日益激烈,各建筑单位为了自身的生存发展,以较低的价格将建筑工程项目承包承包方,此外一些政府没有按照程序进行,对建筑工程造价暗箱操作,这些都使建筑工程造价[12]竞争不公平。
(4)加强对建筑工程造价管理人员的培养和专业培训,提升建筑工程造价管理人员的综合素质。针对新时期我国建筑工程项目对高技术专业人才的需要,所以建筑企业加强对建筑工程造价管理人员的培养是十分必要的。由于新时期我国建筑工程所特有的特点,以及建筑工程造价管理人员无法满足现实的需要,需要对建筑工程造价管理人员进行专业培训,提升
[13]建筑工程造价管理人员的综合素质。这对于完善我国建筑工程造价具有促进作用。(梁秀英)结语
随着社会经济的发展,做好工程造价对于建筑单位发展有着重要意义。则工程造价的管
[14]理与控制这个从投资决策到竣工决算的全过程管理更显重要。为了实现预期投资目标,充分发挥投资效益,只有对建筑工程进行全过程造价控制才能达到目的。控制工程造价不仅可以防止投资突破限额,还可以促使建设、施工、设计单位加强管理,使人力、物力、财力等有限的资源得到充分的利用,取得最佳的经济效益和和会效益。
参考文献:
[1]尹贻林.建设工程项目价值管理[M].天津:天津人民出版社,2006.[2]钱伟,王丽娟.国内外建筑工程造价管理分析[A].建筑管理现代化.2005.83(4):50-53.[3]朱卫华, 夏绍模.中美工程造价管理模式的对比研究[J].浙江建筑,2004(12):51-57.[4]Pual S.Royer.Risk.Management: the Undiscovered Dimension of Project Management,Project Management Institute, 2000, Vol.31.[5]梁华.浅析国内外工程造价管理[A].水电与新能源.2013.107(2):48-50.[6]项纯.国内外工程造价管理情况分析与借鉴[A].铁道工程学报.2009.126(3):106-109.[7]樊智敏.建筑工程造价管理现状及对策[J].现代经济信息,2013(11)[8]曲璇.浅谈我国建设工程造价管理存在的主要问题及对策[J].中国科技博览,2011(17)[9]倪伟.土建造价的现状与趋势分析[J〕.门窗2013一11(10):16-18.[10]刘羽莲,中小造价咨企业的生存现状及发展出路(-),沿海企业与科技.2008(3)[11]曲璇.浅谈我国建设工程造价管理存在的主要问题及对策[J].中国科技博览,2011(17)[12]刘丽聪.建筑工程造价管理现状与应对策略[J].中国高新技术企业,2012(15)[13]樊智敏.建筑工程造价管理现状及对策[J].现代经济信息,2013(11)[14]沈勇.浅谈我国工程造价的发展方向[J].科技资讯,2006,(15):61-62
第五篇:压铸模具常见问题及预防措施
压铸模具常见问题及预防措施
一、铝压铸件表面缺陷分析:
1、拉模
特征及检验方法:沿开模方向铸件表面呈现条状的拉伤痕迹,有一定深度,严重时为面状伤痕。另一种是金属液与模具产生粘合,粘附而拉伤,以致铸件表面多料或缺料。
产生原因:型腔表面有损伤(压塌或敲伤)。
2、脱模方向斜度太小或倒斜。
3、顶出时不平衡,顶偏斜。
4、浇注温度过高,模温过高导致合金液产生粘附。
5、脱模剂效果不好。
6、铝合金成分含铁量低于0.6%。
7、型腔粗糙不光滑,模具硬度偏低。
预防措施:
1、修复模具表面损伤部位,修正脱模斜度,提高模具硬度(HRC46~50度),提高模具光洁度。
2、调整顶杆,使顶出平衡。
3、更换脱模效果好的脱模剂。
4、调整合金含铁量。
5、降低浇注温度,控制模具温度平稳平衡。
6、调整内浇口方向,避免金属液直冲型芯、型壁。
2、气泡
特征及检验方法:铸件表面有大小不等的隆起,或有皮下形成空洞。
产生原因:金属液在压射室充满度过低(控制在45%~70%)易产生卷气,初压射速度过高。
2、模具浇注系统不合理,排气不良。
3、熔炼温度过高含气量高,溶液未除气。
4、模具温度过高,留模时间不够,金属凝固时间不足,强度不够过早开模,受压气体膨胀起来。
5、脱模剂,注射头油用量过多。
6、喷涂后吹气时间过短,模具表面水未吹干。
预防措施:
1、调整压铸工艺参数、压射速度和高压射速度的切换点。
2、修改模具浇道,增设溢流槽、排气槽。
3、降低缺陷区域模温,从而降低气体的压力作用。
4、调整熔炼工艺。
5、延长留模时间,调整喷涂后吹气时间。
6、调整脱模剂、压射油用量。
3、裂痕
特征及检验方法:铸件表面有成直线状或不规则形狭小不一的纹路,在外力的作用下有发展趋势。冷裂---开裂处金属没被氧化。热裂—开裂处金属被氧化。
产生原因:
1、合金中含铁量过高或硅的含量过低。
2、合金中有害杂质的含量过高,降低了合金的可塑性。
3、铝硅合金:铝硅铜合金含锌或含铜量过高,铝镁合金中含镁量过多。
4、模具温度过低。
5、铸件壁厚有剧烈变化之处,收缩受阻。
6、留模时间过长,应力大。
7、顶出时受力不够。
预防措施:
1、正确控制合金成分,在某些情况下可在合金中加纯铝锭以减低合金中含镁量,或在合金中加铝硅中间合金以提高硅的含量。
2、改变铸件结构,加大圆角,加大脱模斜度,减少壁厚差。
3、变更或增加顶出位置,使顶出受力均匀。
4、缩短开模或抽芯时间。
5、提高模具温度(模具工作温度180~280度)
4、变形
特征及检验方法:压铸件几何形状与图纸不符。整体变形或局部变形。
产生原因:
1、铸件结构设计不良,引起收缩不均匀。
2、开模过早,铸件刚性不够。
3、拉模变形。
4、顶杆设置部合理,顶出时受力不均匀。
5、去除浇口方法不当。
预防措施:
1、改善铸件结构。
2、调整开模时间。
3、合理设置顶杆位置和数量。
4、选择合理的去除浇口方法。
5、消除拉模因素。
5、留痕及花纹
特征及检验方法:外观检查,铸件表面上有与金属液流动一致的条纹,有明显可见的与金属颜色不一样无方向性的纹路,无发展趋势。
产生原因:首先进入型腔的金属液形成一个极薄的而又不完全的金属层后,被后来的金属液所弥补而留下的痕迹。
2、模具温度过低。
3、内浇口截面积过小及位置不当产生喷溅。
4、作用于金属液上的压力不足。
5、花纹涂料和注射油用量过多。
预防措施:
1、提高模具温度。
2、调整内浇口截面积或位置。
3、调整内浇道金属液速度及压力。
4、选用合适的涂料、注射油及调整涂料注射油的用量。
6、冷隔
特征及检验方法:外观检查,压铸件表面有明显的、不规则的下陷线性纹路(有穿透与不穿透两种)形状细小而狭长,有时交接边缘光滑,在外力作用下有发展可能。
产生原因:
1、两股金属液流相互对接,但未完全融合而又无夹杂存在其间,两股金属结合力很薄弱。
2、浇注温度和模具温度偏低。
3、选择合金不当,流动性差。
4、浇道位置不对或流动线路过长。
5、填充速度低。
6、压射比压低。
7、金属液在型腔内流动不顺畅。预防措施:
1、适当提高浇注温度,(控制在630~730度,可根据铝材及产品调整)和模具温度。
2、提高压射比压,缩短填充时间。
3、提高压射速度,同时加大内浇口截面积。
4、改善排气填充条件。
5、选用合适的合金,提高金属液的流动性。
7、完善金属液在型腔内流动顺畅。
7、网状毛翅
特征及检验方法:外观检查,压铸件表面有网状发丝一样凸起或凹陷的痕迹,随压铸次数增加而不得扩大和延伸。
产生原因:
1、压铸模具型腔表面龟裂。
2、所用压铸模具材质不当或热处理工艺不正确。
3、极短时间内模具冷热温差变化太大。
4、浇注温度过高。
5、模具生产前预热不均和不足。
6、模具型腔表面粗糙。
预防措施:
1、正确选用模具材料及热处理工艺。
2、浇注温度不宜过高,尤其是高熔点的合金。在能满足生产需求条件下,尽可能选用较低的浇注温度。
3、模具预热要充分和均匀。
4、模具生产到一定模次后进行退火,消除内应力。
5、浇道和型腔表面不定期抛光处理,确保表面光洁度。
6、合理选择模具冷却方法,确保模具热平衡。
8、凹陷
特征及检验方法:铸件平滑表面出现凹陷部位。
产生原因:
1、铸件壁厚不均,相差太大,凹陷多产生在壁厚部位。
2、模具局部过热,过热部位凝固慢。
3、压射比压低。
4、由憋气引起型腔气体排不出,被压缩在型腔表面与金属液界面之间。
5、未开增压,补缩不足。
预防措施:
1、铸件壁厚设计尽量均匀。
2、模具过热部位冷却调整。
3、提高压射比压。
4、改善型腔排气条件。
5、提高增压比压。
9、欠铸
特征及检验方法:铸件表面有填充不足部位或轮廓不清。
产生原因:
1、流动性差原因:
1、金属液吸气、氧化夹杂物,含铁量高,使其质量差而降低流动性。
2、浇注温度低或模具温度低。
2、填充条件差:
1、压射比压低。
2、卷入气体过多,型腔背压变高,充性受阻。
3、操作不良,喷涂料、压射油过多,涂料、压射油堆积,气体挥发不出去。
预防措施:
1、提高金属液质量。
2、提高浇注温度或模具温度。
3、提高压铸射比压和充填速度。
4、改善浇注系统金属液的导流方式,在欠铸部位增开溢流槽、排气槽。
5、正确的压铸操作。
10、毛刺、飞边
特征及检验方法:压铸件在分型面边缘上出现金属薄片。
产生原因:
1、锁模力不够。
2、压射速度过高,形成压力冲击锋过高。
3、分型面上杂物未清理干净。
4、模具强度不够造成变形。
5、镶件、滑块磨损与分型面不平齐。
6、压铸机机铰磨损变形。
7、浇注温度过高。
预防措施:
1、检验锁模力和增压情况,调整压铸工艺参数。
2、清洁型腔及分型面。
3、修整模具、修整压铸机。
4、采用闭合压射结束时间控制系统,实现无飞边压铸。
11、变色、斑点
特征及检验方法:铸件表面出现不同于基本金属颜色的斑点。
产生原因:
1、脱模剂选用不合适。
2、脱模剂用量过多。
3、含有石墨的润滑剂中的石墨落入铸件表层。
预防措施:
1、更换优质脱模剂。
2、严格喷涂量及喷涂操作。
二、压铸模常见故障原因及排除方法
压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。
压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原 因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。材料自身存在的缺陷
众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在 650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉应力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。
制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。
(1)宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。(2)金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。(3)超声波检查。主要检查材料内部的缺陷和大小。2 压铸模的加工、使用、维修和保养
模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。
在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。
电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。
模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。
焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。所用焊条应同模具钢成分一致,也必须是干净和经烘干的。模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。在焊接过程中,当温度低于260℃时,要重新加热。焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。最后于静止的空气中完全冷却,再进行型腔的修整和精加工。模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。
模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。在清除沉积物时,不能用喷灯加热清除,这可能导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。
经常保养可以使模具保持良好的使用状态。新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450—480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。以后每12000~15000模次进行同样保养。当模具使用50000模次后,可每25000~30000模次进行一次保养。采用上述方法,可明显减缓由于热应力导致龟裂的产生速度和时间。在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。渗氮时,渗氮层厚度不应超过0.15mm,过厚会于分型面和尖锐边角处发生脱落。3 热处理
热处理的正确与否直接关系到模具使用寿命。由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。
压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失世大。因此,在热处理时应注意以下几点:(1)锻件在未冷至室温时,进行球化退火。
(2)粗加工后、精加工前,增设调质处理。为防止硬度过高,造成加工困难,硬度限制在25-32HRC,并于精加工前,安排去应力回火。(3)淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。
(4)热处理时应注意型腔表面的脱碳与增碳。脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。(5)氮化时,应注意氮化表面不应有油污。经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。
(6)两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。