第一篇:平行线的性质精选练习题
平行线的性质精选练习题
作者:admin 资源来源:本站原创
选择题:
1.如图所示,如果AD//BC,则:①∠1 =∠2;②∠3 =∠4;③∠1+∠3 =∠2+∠4;上述结论中一定正确的是
()
A.只有①
B.只有②
C.①和②
D.①、②、③
答案:A
说明:因为∠1与∠2是AD、BC被BD所截而成的内错角,所以由AD//BC可知∠1 =∠2成立;而AB与CD不一定平行,所以②、③难以确定是否正确;答案为A.
2.下列命题中,错误的命题的个数是()①互余的两个角都是锐角;
②互补的两个角一定不能都是钝角;
③邻补角的角平分线互相垂直;
④同旁内角的角平分线互相垂直;
⑤同位角的角平分线互相平行;
⑥一个角的邻补角一定只有一个
A.0个B.2个C.3个D.以上答案都不对
答案:C
说明:由互余的概念可得①正确;而若两角都为钝角,则和一定大于180º,所以互补的两角一定不能都是钝角,②也正确;不难说明,邻补角的角平分线互相垂直这个命题正确;而只有在两直线平行时,同旁内角的角平分线才互相垂
直、同位角的平分线才互相平行,所以④、⑤都是错误的命题;当两条直线相交时,其中任一角的邻补角有两个,⑥也是错误的命题,答案为C.
3.如图,已知∠1 = 90º+nº,∠2 = 90º−nº,∠3 = mº,则∠4等于
()
A.mº
B.90º−nº
C.180º−nº
D.90º+nº
答案:A
说明:如图,因为∠1 = 90º+nº,∠2 = 90º−nº,所以∠1+∠2 = 180º;而∠1与∠5为对顶角,所以有∠5+∠2 = 180º,因此,得到a//b,所以∠3 =∠4,即∠4 = mº,答案为A.
4.如图,AB//CD则∠α等于()A.50ºB.80ºC.85ºD.95º 答案:C
说明:如图,过点E作EF//AB,因为
AB//CD,所以EF//CD;因此,有∠ABE+∠BEF = 180º,∠FEC
=∠ECD,则∠BEF = 60º,∠FEC = 25º,所以∠α=∠BEF+∠FEC = 85º,答案为C.
5.如图,已知AB//CD,∠1 =∠2,∠E = nº,则∠F =()
A.nº
B.2nº
C.90º−nº
D.40º
答案:A
说明:因为AB//CD,知∠ABC =∠DCB,再由∠1 =∠2,得∠EBC =∠FCB,由此得到EB//FC,所以∠F =∠E = nº,答案为A.
判断题:
判断下列语句是否为命题,是的打√,不是的打×:①∠A = 50º;
√;是命题,它判断了∠A的度数是50º.
②作直线a⊥b;
×;不是命题,它是祈使句,没有判断.
③延长AB到C使BC = 2AB;
×;不是命题,它是祈使句,没有判断.
④对顶角相等吗?
×;不是命题,它是疑问句没有判断.
⑤同位角相等;
√;是命题,它对成同位角的角的大小进行了判断.⑥当|a| = −a时,a≤0
√;是命题,它可改写为:如果|a| = −a,那么a≤0,是一个判断句.
解答题:
1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.
求证:∠1+∠2=90°.
证明:因为AB∥CD,所以∠BAC+∠ACD=180°,又因为AE平分∠BAC,CE平分∠ACD,所以∠1 =∠BAC,∠2 =∠ACD,故∠1+∠=(∠BAC+∠
ACD)=×180º = 90º.即∠1+∠2=90°.
2.已知如图,AB//CD,∠ABE = 3∠DCE,∠DCE = 28º,求∠E的度数.
解析:如图所示,∵∠1 = 3∠2,∠2 = 28º,∴∠1 = 3×28º = 84º
∵AB//CD(已知),∴∠3 =∠1 = 84º(两直线平行,同位角相等)
又∵∠BFC =∠3(对顶角相等)
∴∠BFC = 84º(等量代换)
过F作FP//CE交BC于P
∴∠4 =∠2 = 28º(两直线平行,内错角相等)∴∠5 =∠BFC−∠4 = 84º−28º = 56º
∵FP//CE(辅助线作法)
∴∠E =∠5 = 56º(两直线平行,同位角相等)
第二篇:平行线的性质精选练习题
平行线的性质精选练习题
选择题:
1.如图所示,如果AD//BC,则:①∠1 =∠2;②∠3 =∠4;③∠1+∠3 =∠2+∠4;上述结论中一定正确的是()A.只有① B.只有②
C.①和②
D.①、②、③
2.下列命题中,错误的命题的个数是()①互余的两个角都是锐角;②互补的两个角一定不能都是钝角; ③邻补角的角平分线互相垂直;④同旁内角的角平分线互相垂直;
⑤同位角的角平分线互相平行;⑥一个角的邻补角一定只有一个
A.0个 B.2个 C.3个 D.以上答案都不对 3.如图,已知∠1 = 90º+nº,∠2 = 90º−nº,∠3 = mº,则∠4等于()A.mº
B.90º−nº
C.180º−nº
D.90º+nº
4.如图,AB//CD则∠α等于()
A.50º B.80º C.85º D.95º
5.如图,已知AB//CD,∠1 =∠2,∠E = nº,则∠F =()
A.nº B.2nº
C.90º−nº
D.40º
下列说法中正确的是()
A.有且只有一条直线垂直于已知直线。
B.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。C.互相垂直的两条直线一定相交。
D.直线c外一点A与直线c上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线c的距离是3cm。判断题:
判断下列语句是否为命题,是的打√,不是的打×:
①∠A = 50º;()
②作直线a⊥b;()
③延长AB到C使BC = 2AB;()④对顶角相等吗?()⑤同位角相等;()
⑥当|a| = −a时,a≤0
()
解答题:
1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.
求证:∠1+∠2=90°.
证明:因为 AB∥CD,()
所以 ∠BAC+∠ACD=180°()又因为 AE平分∠BAC,CE平分∠ACD()
所以∠1 =∠BAC,∠2 =∠ACD,()
故∠1+∠2 =(∠BAC+∠ACD)=×180º = 90º.
即 ∠1+∠2=90°.
2.已知如图,AB//CD,∠ABE = 3∠DCE,∠DCE = 28º,求∠E的度数.
解:如图所示,∵∠1 = 3∠2,∠2 = 28º()
∴∠1 = 3×28º = 84º
∵AB//CD(),∴∠3 =∠1 = 84º()
又∵∠BFC =∠3()
∴∠BFC = 84º()
过F作FP//CE交BC于P
∴∠4 =∠2 = 28º()
∴∠5 =∠BFC−∠4 = 84º−28º = 56º
∵FP//CE(辅助线作法)
∴∠E =∠5 = 56º()
第三篇:平行线的性质练习题
平行线的性质练习题
一、选择题:
1.如图1,AB∥CD,则与∠1相等的角(∠1除外)共有()A.5个B.4个C.3个D.2个 2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于()A.78°B.90°C.88°D.92°
3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④
A
AC
B
C
D
D
D
EDFB
F
AFB
D
E
A
G
(1)(2)(3)(4)(5)4.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°
6.如图4所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
二、填空题:
1.如图5所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据是______,如果∠CED=∠FDE,那么________∥_________.根据是________.2.如图6所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条路平行,若第一次拐角是150°,则第二次拐角为
________.B
A
AC
E
B
A
E
BD
A
D
(6)(7)(8)(9)(10)3.如图7所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠ACD=•_______.4.如图8,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则∠2=_______.5.如图9,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE=________.三、训练平台:
1、如图10所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.2、如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.BA
D
D
C
E
C3、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.b
四、提高训练:
1、如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度数.A
GM
E
D
B
CN
平行线的判定练习题
一、填空
1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.c d A aE a 52 2 3 b B b C A B
图4 图3 图2 图1
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:. 4.在四边形ABCD中,∠A +∠B = 180°,则∥(). 5.如图3,若∠1 +∠2 = 180°,则∥。6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有. 7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()A D Dl1 14 5 3C
l
2B
C
图5
图6
图7
8.如图6,尽可能多地写出直线l1∥l2的条件:. 9.如图7,尽可能地写出能判定AB∥CD的条件来:.
二、解答下列各题
10.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
D
F
B图8
11.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
B D C
图9
12.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.
E
B
P
D
Q F
图10
第四篇:《平行线的性质》同步练习题
七年级数学《平行线的性质》同步练习题
(二)一、基础过关:
1.下列语句中不是命题的有()
(1)两点之间,直线最短;(2)不许大声讲话;
(3)连接A、B两点;(4)花儿在春天开放.
A.1个B.2个C.3个D.4个
2.下列命题中,正确的是()
A.在同一平面内,垂直于同一条直线的两条直线平行;
B.相等的角是对顶角;
C.两条直线被第三条直线所截,同位角相等;
D.和为180°的两个角叫做邻补角。
3.如图1,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()
A.31°B.35°C.41°D.76°
(1)(2)
4.如图2,AB∥CD,AD∥BC,则下列各式中正确的是()
A.∠1+∠2>∠3B.∠1+∠2=∠
3C.∠1+∠2<∠3D.∠1+∠2与∠3无关
5.请将下列命题改写成“如果„„那么„„”的形式:
(1)等角的余角相等;(2)垂直于同一条直线的两直线平行;
(3)平行线的同旁内角的平分线互相垂直.
6.下列命题的题设是什么?结论是什么?
(1)对顶角相等;(2)两条直线相交,只有一个交点;(3)如果a2=b2,那么a=b.
二、综合创新: 7.(综合题)如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD相交于E、C、B、F,如果∠1=∠2,∠B=∠C.求证:∠A=∠D.
8.(应用题)如图,欲将一块四方形的耕地中间的一条折路MPN改直,•但不能影响道路两边的耕地面积,应如何画线?
9.(创新题)如图,若直线AB∥ED,你能推得∠B、∠C、∠D•之间的数量关系吗?请说明理由.
10.(1)(2005年,淮安)如图,已知AB∥CD,CE、AE分别平分∠ACD、∠CAB,则∠1+∠2______90°.(填“>”、“<”或“=”)
(3)(4)(2)(2005年,连云港)如图4,直线L1∥L2,L3⊥L4,有三个命题:
①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是()
A.只有①正确B.只有②正确;C.①和③正确D.①②③都正确
三、名校培优: 11.(探究题)如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC•之间的关系,并说明理由.
12.(开放题)如果一个角的两边分别平行于另一个角的两边,那么这两个角之间有怎样的数量关系?请说明你的理由.
抽屉原理
5个苹果放到4个抽屉里,必有一个抽屉里至少有两个苹果.
一般地,n+1个苹果放到n(n≥1)个抽屉里,必有一个抽屉里至少有两个苹果,•这称为抽屉原理.
抽屉原理的应用很多.例如:在13•个同学中,•必有两个同学在同一个月过生日;10个客人住9个房间,必有两个客人住在同一个房间里.
想一想:在同一个圆内至少画几条半径,就必有两条半径的夹角小于60°?
答案:
1.B点拨:(2)、(3)不是命题. 2.A3.C
4.B点拨:∵AD∥BC,∴∠1=∠ACB.
∵AB∥CD,∴∠3=∠ACB+∠2=∠1+∠2.故选B. 5.解:(1)如果两个角相等,那么它们的余角相等.
(2)如果两条直线垂直于同一条直线,那么它们互相平行.
(3)如果两条射线分别是平行线的同旁内角的平分线,那么这两条射线互相垂直. 6.解:(1)题设:两个角是对顶角,结论:这两个角相等.
(2)题设:两条直线相交,结论:这两条直线只有一个交点.(3)题设:a2=b2,结论:a=b.
7.证明:∵∠1=∠2,∠2=∠BGA(对顶角相等),∴∠1=∠BGA.∴CE∥BF.
∴∠B+∠BEC=180°.
又∵∠B=∠C,∴∠C+∠BEC=180°.
∴AB∥CD(同旁内角互补,两直线平行)∴∠A=∠D(两直线平行,内错角相等).
8.连接MN.过P作EF∥MN交AD于E,BC于F.连接MF或NE,则MF或NE为新修的路. 9.解:∠C+∠D-∠B=180°.
理由:如答图,过点C作CF∥AB,则∠B=∠2.∵AB∥ED,CF∥AB,∴ED∥CF(平行于同一条直线的两直线平行).∴∠1+∠D=180°(两直线平行,同旁内角互补).而∠1=∠BCD-∠2=∠BCD-∠B,∴∠BCD-∠B+∠D=180°,即∠BCD+∠D-∠B=180°.
点拨:平行线CF是联系AB、DE的桥梁.想一想,本题还有其他做法吗?
10.(1)=;(2)A。11.解:∠BEF=∠EFC.
理由:如答图,分别延长BE、DC相交于点G.∵AB∥CD,∴∠1=∠G(两直线平行,内错角相等).∵∠1=∠2,∴∠2=∠G,∴BE∥FC.
∴∠BEF=∠EFC(两直线平行,内错角相等).
第五篇:平行线及其判定与性质练习题
平行线及其判定
1、基础知识
(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。
(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.
(5)两条直线平行的条件(除平行线定义和平行公理推论外):
①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.
②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:
2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)
3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)
4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.
5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)
6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.
(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:
证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)
7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()
8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.
(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:
证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°
∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)
9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4
10、下列说法中,正确的是().(A)不相交的两条直线是平行线.
(B)过一点有且只有一条直线与已知直线平行.
(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.
(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.
11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.
图6
12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。
13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直
(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离
(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离
14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c
平行线的性质 1.基础知识
(1)平行线具有如下性质
①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.
(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.
证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。
11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.
14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.
(15题)(16题)
16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.
17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.
18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.
19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-
20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.
21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个
22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个
(C)4个(D)3个
23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().
(1)∠C′EF=32°(2)∠AEC=148°
(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个
24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.
25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)
(25题)
(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.
图1 图2(1)判断∠M,∠A,∠B的关系;
(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.
28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:
26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.
27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.
28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.
29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.
30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.
31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.