第一篇:《云计算远程数据持有性检查方案的设计和研究》论文评语
《云计算远程数据持有性检查方案的设计和研究》论文,其选题来自云计算环境中数据传输交互中存在的安全隐患实际问题。该选题很有实际意义,并有较好的应用前景。
该论文主要是对:云计算中的几种数据持有性证明的模型和数字签名等技术进行了细致的分析,并对隐私保留公开审计的方法中的同态验证环签名方案中的安全性和改进方法这一关键技术进行了研究。对同态验证环签名的原理思想、存在漏洞、攻击方法和改进方案思路进行了较详细的描述,提出了能进一步提高数据安全性的同态验证环签名的改进方法的安全模型方案,并对新方案的正确性、不可伪造性和安全匿名性进行了证明,体现了改进的合理性。
这些反映了该论文的作者具有一定的理论基础和专业知识,能够较好地利用所学知识解决一些实际问题,有一定的动手能力。
论文内容详实,层次清楚,故建议该生参加专业学位硕士毕业论文答辩。
第二篇:大数据与云计算论文
大数据与云计算
摘 要:大数据(Big Data)这个概念近年来在越来越多的场合、被越来越多的人提及,并且经常和云计算联系在一起,云计算与大数据之间到底是什么关系成为热点话题。本
专题报告包含以下四个方面内容:1.大数据的价值;2.大数据带来的挑战;3.大数据研究成果;4.云计算是大数据挖掘的主流方式。通过本报告阐述我们对大数据的理解,以及对大数据的价值的认识,探讨大数据处理与挖掘技术,大数据主要着眼于“数据”,提供数据采集、挖掘、分析的技术和方法;云计算技术主要关注“计算”,提供IT 解决方案。大数据、云计算技术可以促进持续审计方式的发展、总体审计模式的应用、审计成果的综合应用、相关关系证据的应用、高效数据审计的发展和大数据审计师的发展。强化大数据、云计算技术审计应用的措施包括制定长远发展战略、加快审计法规建设、建立行业平台、加强研发和提高利用能力。关键词:大数据 云计算 数据挖掘 对审计影响 政策建议 引言
目前,大数据伴随着云计算技术的发展,正在对全球经济社会生活产生巨大的影响。大数据、云计算技术给现代审计提供了新的技术和方法,要求审计组织和审计人员把握大数据、云计算技术的内容与特征,促进现代审计技术和方法的进一步发展。
一、大数据、云计算的涵义与特征
随着云计算技术的出现,大数据吸引了全世界越来越多的关注。哈佛大学社会学教授加里·金(2012)说: “这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”(一)大数据的涵义与特征
“数据”(data)这个词在拉丁文里是“已知”的意思,也可以理解为“事实”。2009 年,“大数据”概念才逐渐开始在社会上传播。而“大数据”概念真正变得火爆,却是因为美国奥巴马政府在2012 年高调宣布了其“大数据研究和开发计划”。这标志着“大数据”时代真正开始进入社会经济生活中来了。“大数据”(big data),或称巨量资料,指的是所涉及的数据量规模大到无法利用现行主流软件工具,在一定的时间内实现收集、分析、处理或转化成为帮助决策者决策的可用信息。互联网数据中心(IDC)认为“大数据”是为了更经济、更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。大数据具有4 个特点: 第一,数据体量巨大(Volume),从TB 级别跃升到PB 级别。第二,处理速度快(Velocity),这与传统的数据挖掘技术有着本质的不同。第三,数据种类多(Variety),有图片、地理位置信息、视频、网络日志等多种形式。第四,价值密度低,商业价值高(Value)。存在单一数据的价值并不大,但将相关数据聚集在一起,就会有很高的商业价值(金良,2012)。大数据时代,不仅改变了传统的数据采集、处理和应用技术与方法,还促使人们思维方式的改变。大数据的精髓在于促使人们在采集、处理和使用数据时思维的转变,这些转变将改变人们理解和研究社会经济现象的技术和方法。
(1)是在大数据时代,不依赖抽样分析,而可以采集和处理事物整体的全部数据。19 世纪以来,当面临大的样本量时,人们都主要依靠抽样来分析总体。但是,抽样技术是在数据缺乏和取得数据受限制的条件下不得不采用的一种方法,这其实是一种人为的限制。过去,因为记录、储存和分析数据的工具不够科学,只能收集少量数据进行分析。如今,科学技术条件已经有了很大的提高,虽然人类可以处理的数据依然是有限的,但是可以处理的数据量已经大量增加,而且未来会越来越多。随着大数据分析取代抽样分析,社会科学不再单纯依赖于抽样调查和分析实证数据,现在可以收集过去无法收集到的数据,更重要的是,现在可以不再依赖抽样分析。
(2)是在大数据时代,不再热衷于追求数据的精确度,而是追求利用数据的效率。当测量事物的能力受限制时,关注的是获取最精确的结果。但是,在大数据时代,追求精确度已经既无必要又不可行,甚至变得不受欢迎。大数据纷繁多样,优劣掺杂,精准度已不再是分析事物总体的主要手段。拥有了大数据,不再需要对一个事物的现象深究,只要掌握事物的大致发展趋势即可,更重要的是追求数据的及时性和使用效率。与依赖于小数据和精确性的时代相比较,大数据更注重数据的完整性和混杂性,帮助人们进一步认识事物的全貌和真相。
(3)是在大数据时代,人们难以寻求事物直接的因果关系,而是深入认识和利用事物的相关关系。长期以来,寻找因果关系是人类发展过程中形成的传统习惯。寻求因果关系即使很困难且用途不大,但人们无法摆脱认识的传统思维。在大数据时代,人们不必将主要精力放在事物之间因果关系的分析上,而是将主要精力放在寻找事物之间的相关关系上。事物之间的相关关系可能不会准确地告知事物发生的内在原因,但是它会提醒人们事情之间的相互联系。人们可以通过找到一个事物的良好相关关系,帮助其捕捉到事物的现在和预测未来。(二)云计算的涵义与特征
“云计算”概念产生于谷歌和IBM 等大型互联网公司处理海量数据的实践。2006 年8 月9 日,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会首次提出“云计算”的概念。2007 年10 月,Google 与IBM 开始在美国大学校园推广云计算技术的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(Michael Mille,2009)。目前全世界关于“云计算”的定义有很多。“云计算”是基于互联网的相关服务的增加、使用和交付模式,是通过互联网来提供动态易扩展且经常是虚拟化的资源。美国国家标准技术研究院(NIST)2009年关于云计算的定义是: “云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务等),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。”根据这一定义,云计算的特征主要表现为: 首先,云计算是一种计算模式,具有时间和网络存储的功能。其次,云计算是一条接入路径,通过广泛接入网络以获取计算能力,通过标准机制进行访问。第三,云计算是一个资源池,云计算服务提供商的计算资源,通过多租户模式为不同用户提供服务,并根据用户的需求动态提供不同的物理的或虚拟的资源。第四,云计算是一系列伸缩技术,在信息化和互联网环境下的计算规模可以快速扩大或缩小,计算能力可以快速、弹性获得。第五,云计算是一项可计量的服务,云计算资源的使用情况可以通过云计算系统检测、控制、计量,以自动控制和优化资源使用。(三)大数据与云计算的关系
从整体上看,大数据与云计算是相辅相成的。大数据主要专注实际业务,着眼于“数据”,提供数据采集、挖掘、分析的技术和方法,强调的是数据存储能力。云计算主要关注“计算”,关注IT 架构,提供IT 解决方案,强调的是计算能力,即数据处理能力。如果没有大数据的数据存储,那么云计算的计算能力再强大,也难以找到用武之地;如果没有云计算的数据处理能力,则大数据的数据存储再丰富,也终究难以用于实践中去。
从技术上看,大数据依赖于云计算。海量数据存储技术、海量数据管理技术、MapReduce 编程模型都是云计算的关键技术,也都是大数据的技术基础。而数据之所以会变“大”,最重要的便是云计算提供的技术平台。数据被放到“云”上之后,打破了过去那种各自分割的数据存储,更容易被收集和获得,大数据才能呈现在人们眼前。而巨量的数据也只能依靠云计算强大的数据处理能力,才能够“淘尽黄沙始得金”。
从侧重点看,大数据与云计算的侧重点不同。大数据的侧重点是各种数据,广泛、深入挖掘巨量数据,发现数据中的价值,迫使企业从“业务驱动”转变为“数据驱动”。而云计算主要通过互联网广泛获取、扩展和管理计算及存储资源和能力,其侧重点是IT 资源、处理能力和各种应用,以帮助企业节省IT部署成本。云计算使企业的IT 部门受益,而大数据使企业的业务管理部门受益。
从结果看,大数据与云计算带来不同的变化。大数据对社会经济带来的变化是巨大的,涉及到各个领域。大数据已经与资本、人力一起作为生产的主要因素影响着社会经济的发展。数据创造价值,而挖掘数据价值、利用数据的“推动力”就是云计算。云计算将信息存储、分享和挖掘能力极大提高,更经济、高效地将巨量、高速、多变的终端数据存储下来,并随时进行计算与分析。通过云计算对大数据进行分析、总结与预测,会使得决策更可靠,释放出更多大数据的内在价值。
二、大数据、云计算技术对审计的影响分析
审计技术和方法的发展是随着科学和管理技术的发展而发展的。现代审计技术和方法体系是在原始的查账基础上从低级向高级、从不完备到比较完备发展起来的。在业务和会计处理手工操作阶段,审计实施的是账表导向的审计技术和方法;当内部控制理论和方法全面应用于业务和会计处理时,审计实施的是系统导向的审计技术和方法;当风险管理理论和方法全面应用于业务和财务管理时,审计实施的是风险导向审计技术和方法;与风险导向审计技术和方法并行的是,计算机技术广泛应用于业务和会计处理时,审计实施的是IT 审计技术和方法。目前,面对大数据、云计算技术的产生和发展,审计人员需要应时而变来适应由此而带来的变化,分析大数据、云计算技术对审计方式、审计抽样技术、审计报告模式、审计证据搜集等技术和方法的影响。(一)大数据、云计算技术促进持续审计方式的发展
传统审计中,审计人员只是在被审计单位业务完成后才进行审计,而且审计过程中并不是审计所有的数据和信息,只是抽取其中有的一部分进行审计。这种事后和有限的审计对被审计单位复杂的生产经营和管理系统来说很难及时做出正确的评价,而且对于评价日益频繁和复杂的经营管理活动的真实性和合法性则显得过于迟缓。随着信息技术迅速发展,越来越多的审计组织对被审计单位开始实施持续审计方式,以解决审计结果与经济活动的时差问题。但是,审计人员实施持续审计时,往往受目前业务条件和信息化手段的限制,取得的非结构化数据无法数据化,或者无法取得相关的明细数据,致使对问题的判断也难以进一步具体和深入。而大数据、云计算技术可以促进持续审计方式的发展,使信息技术与大数据、云计算技术较好交叉融合,尤其对业务数据和风险控制“实时性”要求较高的特定行业,如银行、证券、保险等行业,在这些行业中实施持续审计迫在眉睫。如审计组织对商业银行的审计,实行与商业银行建立业务和数据系统的接口,在开发的持续审计系统中固化了非结构化数据结构化和数据分析模块,该模块可以在海量贷款客户中挖掘、分析出行业性和区域性贷款风险趋势,实现在线的风险预警,并将发现的风险数据、超预警值指标及问题登记为疑点,并建立实时审计工作底稿,按照重要程度进行归类、核实或下发给现场审计人员进行现场核实,以较好处理非结构化数据的利用和数据的实时分析利用问题。(二)大数据、云计算技术促进总体审计模式的应用
现时的审计模式是在评价被审计单位风险基础上实施抽样审计。在不可能收集和分析被审计单位全部经济业务数据的情况下,现时的审计模式主要依赖于审计抽样,从局部入手推断整体,即从抽取的样本着手进行审计,再据此推断审计对象的整体情况。这种抽样审计模式,由于抽取样本的有限性,而忽视了大量和具体的业务活动,使审计人员无法完全发现和揭示被审计单位的重大舞弊行为,隐藏着重大的审计风险。而大数据、云计算技术对审计人员而言,不仅仅是一种可供采用的技术手段,这些技术和方法将给审计人员提供实施总体审计模式的可行性。利用大数据、云计算技术,对数据的跨行业、跨企业搜集和分析,可以不用随机抽样方法,而采用搜集和分析被审计单位所有数据的总体审计模式。利用大数据、云计算技术的总体审计模式是要分析与审计对象相关的所有数据,使得审计人员可以建立总体审计的思维模式,可以使现代审计获得革命性的变化。审计人员实施总体审计模式,可以规避审计抽样风险。如果能够收集总体的所有数据,就能看到更细微、深入的信息,对数据进行多角度的深层次分析,从而发现隐藏在细节数据中的对审计问题更具价值的信息。同时,审计人员实施总体审计模式,能发现从审计抽样模式所不能发现的问题。大数据、云计算技术给审计人员提供了一种能够从总体把握审计对象的技术手段,从而帮助审计人员能从总体的视角发现以前难以发现的问题。
(三)大数据、云计算技术促进审计成果的综合应用
目前,审计人员的审计成果主要是提供给被审计单位的审计报告,其格式固定,内容单一,包含的信息量较少。随着大数据、云计算技术在审计中广泛应用,审计人员的审计成果除了审计报告外,还有在审计过程中采集、挖掘、分析和处理的大量的资料和数据,可以提供给被审计单位用于改进经营管理,促进审计成果的综合应用,提高审计成果的综合应用效果。首先,审计人员通过对审计中获取的大量数据和相关情况资料的汇总、归纳,从中找出财务、业务和经营管理等方面的内在规律、共性问题和发展趋势,通过汇总归纳宏观性和综合性较强的审计信息,为被审计单位投资者和其他利益相关者提供数据证明、关联分析和决策建议,从而促进被审计单位管理水平的提高。其次,审计人员通过应用大数据、云计算技术,可以将同一问题归入不同的类别进行分析和处理,从不同的角度、不同的层面整合提炼以满足不同层次的需求。再次,审计人员将审计成果进行智能化留存,通过大数据、云计算技术,将问题规则化并固化到系统中,以便于计算或判断问题发展趋势,向被审计单位进行预警。最后。审计人员将审计成果、被审计单位与审计问题进行关联,并进行信息化处理,在进行下次审计时,减少实地审计的时间和工作量,提高审计工作的效率。(四)大数据、云计算技术促进相关关系证据的应用
审计人员在审计过程中,应根据充分、适当的审计证据发表审计意见,出具审计报告。但是,在大数据、云计算环境下,审计人员既面临巨量数据筛选的考验,又面临搜集适当审计证据的挑战。审计人员在搜集审计证据时,传统的思维路径都是基于因果关系来搜集审计证据,而大数据分析将会更多地运用相关关系分析来搜集和发现审计证据。但从审计证据发现的角度来看,由于大数据技术提供了前所未有的跨领域、可供量化的维度,使得审计问题大量的相关信息能够得以记录和计算分析。大数据、云计算技术没有改变事物间的因果关系,但在大数据、云计算技术中对相关关系的开发和利用,使得数据分析对因果逻辑关系的依赖降低了,甚至更多地倾向于应用基于相关关系的数据分析,以相关关系分析为基础的验证是大数据、云计算技术的一项重要特征。在大数据、云计算技术环境下,审计人员能搜集到的审计证据大多是电子证据(秦荣生,2013)。电子证据本身就非常复杂,云计算技术使获取有因果关系的证据更加困难。审计人员应从长期依赖因果关系来搜集和发现审计证据,转变成为利用相关关系来搜集和发现审计证据。(五)大数据、云计算技术促进高效数据审计的发展
直到今天,审计人员的数字审计技术依然建立在精准的基础上。这种思维方式适用于掌握“小数据量”的情况,因为需要分析的数据很少,所以审计人员必须尽可能精准地量化被审计单位的业务。随着大数据、云计算技术成为日常生活中的一部分,审计人员应开始从一个比以前更大、更全面的角度来理解被审计单位,将“样本= 总体”植入审计人员的思维中。相比依赖于小数据和精确性的时代,大数据更强调数据的完整性和混杂性,帮助审计人员进一步接近事情的真相,“局部”和“精确”将不再是审计人员追求的目标,审计人员追求的是事物的“全貌”和“高效”。围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现。在实施审计时,审计人员应利用大数据、云计算技术,使用分布式拓朴结构、云数据库、联网审计、数据挖掘等新型的技术手段和工具,以提高审计的效率。
(六)大数据、云计算技术促进大数据审计师的发展
大数据、云计算时代,数据的真实、可靠是大数据发挥作用的前提。这客观上要求专业人员来对大数据的真实性、可靠性进行鉴证,审计人员可以扮演这种角色,或者称为数据审计师。能对大数据真实性、可靠性进行鉴证的数据审计师应该是计算机科学、数学、统计学和审计学领域的专家,他们应有大数据分析和预测的评估能力。数据审计师应恪守公正的立场和严守保密的原则,面对海量的数据和纷繁复杂的相关关系,选取分析和预测工具,以及解读数据及数据计算结果是否真实、可靠。一旦出现争议,数据审计师有权审查与分析结果相关的运算法则、统计方法以及数据采集、挖掘和处理过程。数据审计师的出现是为满足以市场为导向来解决数据真实性、可靠性问题的需求,这与20 世纪初期为了处理财务信息虚假而出现的审计人员一样,都是为了满足新需求而出现的。
三、大数据挖掘
数据的价值只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。在业界,全球著名的Google、EMC、惠普、IBM、微软等互联网公司都已经意识到大数据挖掘的重要意义。上述IT 巨头们纷纷通过收购大数据分析公司,进行技术整合,希望从大数据中挖掘更多的商业价值。数据挖掘通常需要遍历训练数据获得相关的统计信息,用于求解或优化模型参数,在大规模数据上进行频繁的数据访问需要耗费大量运算时间。数据挖掘领域长期受益于并行算法和架构的使用,使得性能逐渐提升。过去15 年来,效果尤其显著。试图将这些进步结合起来,并且提炼。GPU平台从并行上得到的性能提升十分显著。这些GPU平台由于采用并行架构,使用并行编程方法,使得计算能力呈几何级数增长。即便是图形处理、游戏编程是公认的复杂,它们也从并行化受益颇多。研究显示数据挖掘、图遍历、有限状态机是并行化未来的热门方向。MapReduce 框架已经被证明是提升GPU 运行数据挖掘算法性能的重要工具。D.Luo 等提出一种非平凡的策略用来并行一系列数据挖掘与数据挖掘问题,包括一类分类SVM 和两类分类SVM,非负最小二乘问题,及L1 正则化回归(lasso)问题。由此得到的乘法算法,可以被直截了当地在如MapReduce 和CUDA 的并行计算环境中实现。K.Shim 在MapReduce 框架下,讨论如何设计高MapReduce 算法,对当前一些基于MapReduce 的数据挖掘和数据挖掘算法进行归纳总结,以便进行大数据的分析。Junbo Zhang 等提出一种新的大数据挖掘技术,即利用MapRedue 实现并行的基于粗糙集的知识获取算法,还提出了下一步的研究方向,即集中于用基于并行技术的粗糙集算法处理非结构化数据。F.Gao 提出了一种新的近似算法使基于核的数据挖掘算法可以有效的处理大规模数据集。当前的基于核的数据挖掘算法由于需要计算核矩阵面临着可伸缩性问题,计算核矩阵需要O(N2)的时间和空间复杂度来计算和存储。该算法计算核矩阵时大幅度降低计算和内存开销,而且并没有明显影响结果的精确度。此外,通过折中结果的一些精度可以控制近似水平。它独立于随后使用的数据挖掘算法并且可以被它们使用。为了阐明近似算法的效果,在其上开发了一个变种的谱聚类算法,此外设计了一个所提出算法的基于MapReduce 的实现。在合成和真实数据集上的实验结果显示,所提出的算法可以获得显著的时间和空间节省。Christian Kaiser 等还利用MapReduce 框架分布式实现了训练一系列核函数学习机,该方法适用于基于核的分类和回归。Christian Kaiser 还介绍了一种扩展版的区域到点建模方法,来适应来自空间区域的大量数据。Yael Ben-Haim 研究了三种MapReduce 实现架构下并行决策树分类算法的设计, 并在Phoenix 共享内存架构上对SPRINT 算法进行了具体的并行实现。F.Yan 考虑了潜在狄利克雷分配(LDA)的两种推理方法——塌缩吉布斯采样(collapsed Gibbssampling,CGS)和塌缩变分贝叶斯推理(collapsedvariational Bayesian,CVB)在GPU 上的并行化问题。为解决GPU 上的有限内存限制问题,F.Yan 提出一种能有效降低内存开销的新颖数据划分方案。这种划分方案也能平衡多重处理器的计算开销,并能容易地避免内存访问冲突。他们使用数据流来处理超大的数据集。大量实验表明F.Yan 的并行推理方法得到的LDA 模型一贯地具有与串行推理方法相同的预测能力;但在一个有30 个多核处理器的GPU 上,CGS 方法得到了26倍的加速,CVB 方法得到了196 倍的加速。他们提出的划分方案和数据流方式使他们的方法在有更多多重处理器时可伸缩,而且可被作为通用技术来并行其它数据挖掘模型。Bao-Liang Lu 提出了一种并行的支持向量机,称为最小最大模块化网络(M3),它是基“分而治之”的思想解决大规模问题的有效的学习算法。针对异构云中进行大数据分析服务的并行化问题G.Jung 提出了最大覆盖装箱算法来决定系统中多少节点、哪些节点应该应用于大数据分析的并行执行。这种方法可以使大数据进行分配使得各个计算节点可以同步的结束计算,并且使数据块的传输可以和上一个块的计算进行重叠来节省时间。实验表明,这种方法比其他的方法可以提高大约60% 的性能。在分布式系统方面,Cheng 等人 提出一个面向大规模可伸缩数据分析的可伸缩的分布式系统——GLADE。GLADE 通过用户自定义聚合(UDA)接口并且在输入数据上有效地运行来进行数据分析。文章从两个方面来论证了系统的有效性。第一,文章展示了如何使用一系列分析功能来完成数据处理。第二,文章将GLADE 与两种不同类型的系统进行比较:一个用UDA 进行改良的关系型数据库(PostgreSQL)和MapReduce(Hadoop)。然后从运行结果、伸缩性以及运行时间上对不同类型的系统进行了比较。
四、总结 大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通
过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。
参考文献
秦荣生.大数据、云计算技术对审计的影响研究 何清.大数据与云计算
张为民.云计算: 深刻改变未来
文峰.云计算与云审计———关于未来审计的概念与框架的一些思考
Big data and cloud computing Big Data(Big Data)in recent years, more and more occasions, the concept is mentioned more and more people, And often, and cloud computing together, what is the relationship between cloud computing and big data become a hot topic.this Special report contains the following four aspects: 1.The value of big data;2.Big data challenge;3.Big data research;4.Cloud computing is the mainstream way of data mining.Through this report on our understanding of big data, as well as the understanding of the value of big data, large data processing and mining technology, large data mainly focus on “data”, provide the technology and methods of data collection, mining and analysis;Cloud computing technology focusing on “computing”, providing IT solutions.Big data and cloud computing technology can promote the development of continuous audit mode, the overall audit mode of application, the audit results of comprehensive application, the application of related evidence, the development of efficient data audit and the development of large data auditor.Strengthen big data and cloud computing technology measures of audit applications include set up long-term development strategy, accelerate the construction of the audit regulations, establish a platform, to strengthen research and development and improve the utilization ability.Keywords: big data cloud computing data mining impact on the audit policy Suggestions
第三篇:云计算环境数据安全研究论文
云计算是网格计算、分布式计算、效用计算等技术发展融合的产物,如今普及速度非常快。亚马逊、谷歌、微软等企业向用户提供了在云环境中开发应用和远程访问应用的功能。由于云环境的数据托管给服务商存储在远程服务器中,且应用数据通过互联网传输,数据存储和传输安全是一个重要的问题。在实现云计算之前,首先应该解决由此带来的安全问题。论文描述了云计算中数据安全相关的挑战,研究了对于数据安全不同层面的解决方案。引言
云计算是基于下一代互联网的计算系统,提供了方便和可定制的服务供用户访问或者与其他云应用协同工作。云计算通过互联网将云应用连接在一起,向用户提供了在任意地点通过网络访问和存储数据的服务。
通过选择云服务,用户能够将本地数据副本存储在远端云环境中。在云环境中存储的数据能通过云服务提供商提供的服务进行存取。在云计算带来方便的同时,必须考虑数据存储的安全性。如今云计算安全是一个值得注意的问题。如果对数据的传输和存储不采取合适的手段,那么数据处于高风险的环境中,关键数据泄露可能造成非常大的损失。由于云服务向公共用户群提供了访问数据的功能,数据存储可能存在高风险问题。在后续章节中,本文首先介绍了云计算模型,然后针对云计算本身的属性带来的信息安全问题,研究了已有数据安全解决方案的应用范围。云计算应用模式
云计算的应用模式主要有软件即服务(SaaS)、平台即服务(PaaS)、基础设施即服务(IaaS)等。在SaaS中,厂商提供服务供客户使用,客户使用服务在云基础架构中运行应用。SaaS相对比较简单,不需要购买任何硬件,使用容易。但是数据全部保存在云端,且存放方式不受用户控制,存在安全隐患。PaaS则通过使用云计算服务商提供的中间件平台开发和测试应用,例如谷歌的App Engine。由于不同的中间件平台提供的API不一样,同一个应用不能再不同的平台通用,存在一定的兼容性问题。在IaaS模型中,用户可以控制存储设备、网络设备等基础计算架构,或者直接使用服务商提供的虚拟机去满足特定的软件需求,灵活性高但是使用难度也比较大。
随着云计算的蓬勃发展,云计算安全作为不能忽视的层面,应该引起足够的重视。如果对数据的传输和存储不采取合适的手段,那么数据将处于高风险的环境中。由于云计算向用户群提供了访问数据的功能,不论采用三种主要应用模式的任意一种,数据都存储在公共平台中,由此带来了数据存储和传输的安全问题。数据安全挑战
3.1 数据保障
当多个用户共享同一个资源的时候存在资源误用的风险。为了避免这个风险,有必要对数据存储、数据传输、数据处理等过程实施安全方面的措施。数据的保护是在云计算中最重要的挑战。为了加强云计算的安全,有必要提供认证授权和访问控制的手段确保数据存储的安全。数据安全的主要几个方面:健壮性——使用测试工具检查数据的安全脆弱性,查看云计算应用是否有常见的漏洞,比如跨站脚本、SQL注入漏洞等;保密性——为了保护客户端数据的安全,应当使用资源消耗少的瘦客户端,尽量将客户端的功能精简,将数据的运算放置在云服务端完成;可用性——数据安全中最重要的部分,具体实施情况由厂商和客户直接协商决定。以上措施决定了数据的可用性、可靠性和安全性。
3.2 数据正确性
在保证数据安全的同时也要保证数据的正确性。每个在云计算中的事务必须遵守ACID准则保持数据的正确性。否则会造成数据的“脏读”,“幻读”等现象,造成数据的不准确,事后排查花费的代价高。大多数Web服务使用HTTP协议都面临着事物管理的问题。HTTP协议本身并不提供事务的功能,事务的功能可以使用程序内部的机制解决。
3.3 数据访问
数据访问主要是指数据安全访问管理机制。在一个公司中,应根据公司的安全条例,给予不同岗位职工特定数据的访问权限,保证该数据不能被公司的其他员工访问。可以使用加密技术保证数据传输安全,采取令牌管理手段提升用户密码的猜解复杂程度。
3.4 保密性
由于在云环境中,用户将文本、视频等数据存储在云端,数据保密性成为了一个重要的需求。用户应该了解保密数据的存放情况和数据的访问控制实施情况。
3.5 数据隔离
云计算的重要特征之一是多用户租用公共服务或设备。由于公用云向所有用户提供服务的特点,存在数据入侵的可能。通过注入代码等手段,可能造成云端存储的数据被非授权获取。所以有必要将用户数据和程序数据分开存储,增加数据被非授权获取的难度。通常可以通过SQL注入、数据验证等方式验证潜在的漏洞是否存在。
3.6 数据备份
云端数据备份主要目的是在数据意外丢失的情况下找。数据丢失是一个很普遍的问题,一份2009年的调查表明,66%的被访者声称个人电脑的文件存在丢失情况。云端数据备份还可以方便将数据恢复到某个时期的版本。云计算作为公用服务,已有大量用户使用网盘将数据副本存储在云端,但是还有很多应用的业务数据未在用户本地设备中存储。无论云端存储数据的性质,云端都应定时将存储的数据备份,保障云服务的正常运行。
3.7 法律法规风险
在云计算中,数据有可能分布存储在不同的国家和地区中。当数据被转移到其他的国家和地区中后,必须遵守当地的法律法规。所以在云计算中,存在数据放置地理位置的问题,客户应当知晓数据存储的地理位置防范风险。数据安全解决方案
对于数据安全问题,需要方案解决云环境中数据潜在的风险。其中由于云环境的公用特性,数据保密应当作为主要解决目标。针对上节的数据保障、正确性、访问等问题,多位云计算安全专家在不同层面已先后提出了几套完整的解决方案,其目标主要是保证云环境中数据共享的安全性。在不可信的公共云环境中,数据共享的同时保证数据对第三方的保密性。
4.1 基本方案
数据加密是一个比较好的保证数据安全的方案。在云端存储数据之前最好能先加密数据。数据的拥有者能将数据的访问权给予特定的用户群体。应当设计一个包括认证、数据加密、数据正确性、数据恢复等功能的模型去保证数据在云端的安全。
为了保证数据不能被非授权访问,将数据加密使其完全对于其他用户无法解析是一个比较好的方法。在上传数据到云端之前,建议用户验证数据是否在本地有完整的备份,可以通过计算文件的哈希值来验证数据是否一致。数据传输应当采用加密方式,防止敏感信息被中间人监听。SaaS要求必须在物理层面和应用层面将不同用户的数据隔离。可以使用采用基于角色的访问控制或者是自主访问控制,以及分布式的访问控制架构控制云计算中的数据访问。一个设计良好的访问控制机制可以极大地保护数据的安全,还可以采用入侵防御系统实时监测网络入侵。入侵防御系统主要功能为识别可疑行为,记录行为的详细信息并试图阻止。
上述基本方案可以解决数据保障、数据正确性、数据访问及保密性等问题。但是,在实际应用中没有考虑效率,仅仅作为基本手段不能满足用户云环境数据共享的特定需求。
4.2 属性基加密
属性基加密(Attribute-based Encryption)相对于传统的公用密钥加密具有很大的优势。传统的公用密钥加密采用公私钥对,公钥加密的信息只能用私钥解密,保证了仅有接收人能得到明文;私钥加密的信息只能用公钥解密,保证了信息的来源。公钥基础设施体系和对称加密方式相比,解决了信息的保密性、完整性、不可否认性问题。属性基加密则在公用密钥加密的基础上,更多考虑了数据共享和访问控制的问题。在属性基加密系统中,密钥由属性集合标识。仅当公私钥对指定的属性相同或者具有规定的包含关系时,才能完成解密密文。例如,用户如果为了数据安全将文档加密,但是需要同公司的人能解密该密文,那么可以设置密钥的属性位“组织”,只有属性位“组织”为该用户公司的密钥才能将该密文解密,不满足条件的密钥则不能解密,如图1所示。
属性基加密分为密钥策略(KP-ABE)和密文策略(CP-ABE)。KP-ABE模式中,密文具有属性集合,解密密钥则和访问控制策略关联。加密方定义了能成功解密密文的密钥需要满足的属性集合。KP-ABE模式适用于用户查询类应用,例如搜索、视频点播等。CP-ABE模式中,加密方定义了访问控制策略,访问控制策略被包含在密文内,而密钥仅仅是属性的集合。CP-ABE模式主要适用于访问控制类应用,例如社交网站、电子医疗等。
属性基加密方式,不仅可以应用在云存储共享中,在审计日志共享方面也有很广泛的应用。审计日志共享大都存在时间段的限制,属性基加密方式可以在密文中添加时间属性位和用户属性,提供对不同用户共享不同时间段日志的功能。属性基加密紧密结合了访问控制的特性,在传统公用密钥的基础上,提高了数据共享的方便程度。
属性基加密虽然提高了数据共享的方便程度,但是没有从根本上解决云环境数据加解密过程中,解密为明文导致的敏感数据泄露问题。
4.3 代理重加密
由于云环境是公用的,用户无法确定服务提供商是否严格的将用户资料保存,不泄露给第三方。所以,当用户之间有在云环境中共享资料的需求时,必须考虑资料的保密性问题。
用户A希望和用户B共享自己的数据,但是不希望直接将自己的私钥Pa给B,否则B能直接用Pa解密自己采用私钥加密的其他数据。对于这种情况,有一些解决方案。
(1)用户A将加密数据从云端取回,解密后通过安全方式(例如采用用户B的公钥加密)发送给用户B。这种方式要求用户A必须一直在线,存在一定的局限性,并且数据量比较大时,本地耗费的计算量可能非常大。
(2)用户A可以将自己的私钥给云服务提供商,要求提供数据共享的服务。在这种情况中,用户A必须相信云端不会将私钥泄露。
(3)用户A可以采用一对一加密机制。A将解密密钥分发给每个想共享数据的用户,A必须针对每个用户生成并存储不同的加密密钥和密文。当新用户数量很多时,这个方案造成了磁盘空间的大量占用,存储数据冗余度高。
代理重加密(Proxy Re-Encryption)手段可以很好的解决云环境数据共享的问题。代理重加密手段设立了一个解密代理。首选A由私钥Pa和B的公钥Pb计算出转换密钥Rk。转换密钥可以直接将由私钥Pa加密的密文转加密为由公钥Pb加密的密文。在转换过程中,A的原始密文不会解密为明文,而转加密后的密文也只能由用户B解密。当用户B想访问A共享的资料时,只需要解密代理使用Rk将A的密文转换为只有B能解密的密文即可。这种机制保证了包括云在内的所有第三方都不能获取A共享给B的明文,如图2所示。
代理重加密解决了云环境中数据共享而不泄露明文的基本问题,侧重于数据的保密。该技术手段关注数据的保密性,未考虑实际应用中数据共享方便程度等其他问题。
4.4 基于代理重加密的属性基加密方法
代理重加密技术可以和在云存储中使用的属性基加密机制结合,属性基加密侧重于加密方面的访问控制,而代理重加密从加密手段上保证了数据的隐秘性。通过将这两种机制结合,用户可以更加高效的分享数据。数据拥有者可以根据新的访问控制规则生成转换密钥,然后将转换密钥上传至云服务器,服务器将原有的密文转加密为新的密文。新的密文在不影响原有用户解密的情况下,可以使新用户成功解密。而在转换原有密文的整个过程中,服务器无法将密文解密为明文。
该类加密方法既保证了转换效率,又保证了数据的保密性。此类方法中,不考虑抗选择密文攻击的算法计算转换密钥的资源消耗相对较小,考虑了抗选择密文攻击的算法资源消耗量和密钥属性基的大小正相关。结束语
虽然云计算是一个带来了很多益处给用户的新兴技术,但它也同时面临着很多安全方面的挑战。本文说明了云计算方面的安全挑战和对应的解决方案,从而降低云计算可能带来的安全风险。为了保证云存储的安全访问,在技术层面,可以采用健壮的数据加密机制;在管理层面,采用合适的令牌管理机制,分发令牌给用户从而保证数据只能被授权的访问。随着云计算的普及,相信云服务提供商和用户对于云环境数据安全方面会越来越重视。在相关安全策略实施后,云计算能在提供良好服务的同时,让用户使用更加放心。
第四篇:云计算和大数据下在线教育研究
云计算和大数据环境下的在线教育研究
1.引言
当前云计算和大数据技术的出现,面对在线教育交互中产生的大量复杂数据,可以实现识别、分析、挖掘并组织隐含在学习者交互过程中的结构化、非结构化数据信息,开发交互过程数据的价值,发现其隐性诉求并预测学习支持服务趋势,并以其为导向改进和拓宽在线教育服务,达到在线教育服务与学习者需求的双向平衡。本文就是立足于对在线教育的交互瓶颈和需求分析,构建基于大数据和云计算支持的在线教育交互平台模型。重点研究交互平台功能实现,使在线的学习者和教师可以实现完美的在线交互活动,并且对交互的数据进行深入挖掘分析,解决目前在线教育所面临的弊端。
2.在线教育交互平台现状分析
在线教育交互分为个别化交互和社会性交互,前者是学习者和学习资料之问的交互,后者是学习者和教师或者学习者之问的交互,社会性交互是提高在线教育交互水平的关键因素。随着在线教育的交互信息资源增加,在线学习者和在线教师的需求不断发展和提高,在线教育出现了许多问题。
针对服务应用。目前在线教育的交互平台缺乏统一身份认证体系,需要进行身份重复验证,给用户造成不便同时给系统增加安全隐患;缺乏统一的应用展现,用户信息分散在各个应用中,且服务功能重复,堆砌浪费;使用方法、界面和质量不统一,给平台使用和维护管理造成不便。在线学习时间的碎片化趋势对学习者的终端设备要求很高,造成学习质量下降;缺乏跨终端的资源共享系统,影响学习效率和满意度,改变终端学习,增加数据丢失、病毒入侵等安全问题。
针对信息资源的存储和分析挖掘。随着在线学习者和在线教师的服务需求日益个性化和专业化,对于服务质量也越来越看重,在线教育交互平台必须根据在线学习者和在线教师的需求作出相应的策略改变,以适应服务需求的不断改变和提高。由于在线教育是基于互联网的学习方式,学生和学习资源、教师与学生、学生与学生之间的交流是通过网络全方位进行,所以需要通过对学习交流的分析挖掘出在线学习者和教师的需求。在线教育的信息资源总量日益增大,主要的数据资源包括结构化和非结构化信息,以及在线教育平台内部以异构化数据为主的相关信息,且每天以大量的非结构化数据和异构性数据资源为主。但是目前对于这些异构性数据和非结构化数据的记录、存储和统计技术,完全不能满足在线教育交互平台的数据需求。因此对平台产生的结构化、非结构化、异构性大量数据进行分析和深度挖掘潜在价值成为必然,为在线学习者和教师反馈快速、及时、高效、安全的信息分析结果。3.在线教育交互平台应用云计算和大数据
3.1 云计算和大数据与在线教育交互平台
云计算是通过互联网络庞大的计算处理能力,将待处理程序自动分拆成无数个较小的子程序,再交由多部服务器所组成的庞大系统经搜寻、计算和分析,最后将处理结果回传给用户。大数据技术是数据分析的前沿技术,需要从各种各样类型的数据中,快速获得有价值信息的能力,是需要新处理模式才能实现更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。云计算强调的是动态计算能力,大数据注重的是静态的计算对象。云计算弥补了目前大数据的存储和运行的最大问题,就是提供了运算平台,而大数据则运用分布式处理手段应用于这个平台之上,两者是相辅相成的关系。
云计算与大数据结合应用,前者强调计算能力,后者看重存储能力。大数据需要处理大量复杂数据的能力,包括数据获取、整理、转换、统计,即强大的计算能力,而云计算需要大量数据作为运算的基础,所以两者的结合是必然趋势。实际应用中,云计算的出现和兴起促进了大数据的广泛应用,而大数据和云计算的结合应用更是出现在许多领域,现已扩展到公共问题领域。但是目前还没有进入在线教育行业。
借助云计算的优势,在线教育交互平台上的用户无需考虑在线学习时终端设备的运算、存储和负载能力的问题,可以更好的实现教育资源共享和教育网络协同工作,大幅度提高教育资源的利用率和运行效率。云存储屏蔽了数据丢失、病毒入侵等问题,保障了数据安全和用户信息私密,是在线教育交互平台最安全可靠的数据存储中心。用户使用终端设备访问教育资源进行在线学习和交流,都会产生并积累大量结构化和非结构化数据,不仅体量大而且增长速度很快。其中非结构化数据已占数据总量的八成以上,但目前的数据分析处理算法和软件不能达到对非结构化数据的处理要求。大数据技术的应用却可以高速实时处理在线教育平台产生的复杂海量数据,为在线教育平台实时洞察学习者的变化、把握学习者的需求、提高教育质量提供支持。对在线教育平台上大量的不相关信息,进行深度复杂分析,为未来教育需求趋势提供预测分析,这是应用大数据的在线教育与传统在线教育本质的不同。
3.2 基于云计算和大数据的在线教育交互平台应用模型分析
根据上述分析,随着在线教育日益同质化,在线教育机构需要在保障教育资源丰富和高质量的同时,更好的分析在线学习者和教师的偏好,为平台的每个用户提供有针对性的个性化服务。下面将利用云计算和大数据的优势构建符合学习者和教师需求的高质量在线教育交互平台模型,如图1所示。
应用云计算和大数据技术的在线教育交互平台主要分为用户应用服务层、数据资源处理层、基础设施硬件层三部分,依次分析三部分功能实现。
3.2.1用户服务应用层
在线教育交互平台的用户主要为两类,即在线教师和在线学习者。针对不同的用户,访问的授权和界面不同,尽可能为用户提供个性化的精准服务,主要表现为属于用户自己的展现网页。服务应用内容主要分为四类,包括在线教学内容、教学管理、交流互动和学习管理,如图2所示。
服务应用层是资源对外交互的窗口,是用户使用资源的桥梁,与用户体验的便捷性有很大关系。因此应用服务层是根据用户需求,对信息资源请求重构和提供,实现信息资源的服务分类,用户享受个性化的服务资源。
平台对每个用户展现的内容是不相同的。针对教师,平台实时反馈在线学习者的情况和分析结果,尤其是对学习者的学习风格和偏好的分析,实时跟踪学生在课前、课中和课后的情况,完成课程反馈,对学生在平台上的行为、学习记录智能跟踪记录分析。针对学习者,构成学习、答疑、测评、互动四位一体的学习模式,运用丰富的学习资源,根据后台的数据挖掘。提供学习进度安排和个性化的学习方案。实现以学生为中心的在线教育方式。实现自主个性化学习、个性化即时笔记、针对性课程复习和测评,多方式在线交互的方式。
在线教育交互平台的用户看到的是良好的服务交互界面,无需知道后台数据资源整合过程,完全由平台的数据资源处理层完成,所以拥有更好的用户体验。平台是所有教学资源的集散地,整合资源方便统一管理和使用,同一份资源,只需保存一份,通过资源关联,可以在任意系统中快速调用。同时避免数据库急剧增长,极大地减轻网络负荷,减少用户和平台的工作时间,维持资源唯一性,资源发生更改时所有使用该资源的应用均自动更新。
3.2.2数据资源处理层
中问层是数据资源处理层,主要为三部分。第一部分是对数据进行标准化处理,第二部分是进行数据挖掘分析整合。第三部分是数据库。中问层的核心是第二部分,也是在线教育交互平台的核心。如图3所示。
面对迅速增加的复杂数据,在线教育交互平台利用云计算和大数据进行现代数据管理,支持所有数据类型,如文件、图片、视频、博客、点击流和地理空问数据等,并以“云存储”持久存储于数据中心,保持数据实时更新,实现数据共享、分析、发现、整合和优化数据,提升数据价值。
利用负载平衡优势,有效透明地扩展网络设备和服务器的带宽、增加在线教育交互平台的吞叶量、加强平台网络数据处理能力、提高服务的灵活性和可用性。面对用户大量的并发访问或数据流量,可以分担到多台设备上处理,减少教师和学习者的等待响应的时间;同时做并行处理,处理结果汇总返回到在线交互平台,平台系统处理能力得到大幅度提高。
离线数据是用户访问的各种数据库中的信息资源,是从服务器端、客户端、代理服务器端中采集的用户访问信息和行为信息。利用大数据技术进行数据处理,清除不需要的数据,用聚类、分类等算法对处理之后的数据进行模式分析,成立样本数据资源为数据流挖掘分析作准备。在线数据是由于数据流的动态性和流量大的特点,在实现数据流挖掘时,对流入的数据流,利用云计算做到占用内存少,处理速度快,实现关联规则、分类和聚类的挖掘。
整合数据是将离线数据作为样本库的参考,对在线数据进行分析,及时有效的反馈结果,并且随着时间的推移和用户对信息资源的需求改变,及时更新资源分析结果。通过数据挖掘过程,对数据过滤、分析和整合,建立多资源分类结果,按照用户的不同需求进行决策,形成索引为用户访问和使用服务提供便利。整合数据主要是为整合用户做准备,将用户的信息资源进行相似度分析,对于类似的用户归类,进行同类信息资源的分配。根据在线学习者的基本信息、学习风格、学习满意度和学习感知四维度的服务需求,可实现用户的定制服务、个性化服务、精准服务,便于用户方便提取自己需要的资源。最后将用户需要的资源根据授权不同。做统一标准化处理。上传至服务应用层,展现于用户的界面。
4.基于云计算和大数据的在线教育交互平台应用优势
云计算和大数据结合对在线教育的发展具有巨大的促进作用,不仅是针对提供的服务,更是对教育发展的促进,增强在线教育的核心竞争力,保持在线教育的健康发展。4.1实现针对不同用户的个性化精准服务
在从以资源为核心的在线教育平台建设到以用户为核心的个性化在线教育平台建设过程中,最主要的变化的就是针对不同用户提供不同的个性化服务。而云计算和大数据的应用就在于加强对在线教育的平台用户研究与交互数据的分析利用。并基于分析结果。改善服务内容,提升个性化服务的质量,完成平台对用户的跟踪服务、精准服务、知识关联服务和宣传推广服务。面对平台快速增长的数据,从中提取有价值的信息,实时分析反馈,建立不同类别的用户模型,达到针对不同用户提供针对性服务、增强用户体验、提高服务质量的目标。即使分析的数据源相同,但是由于提供对象不同,分析结果会不同,提供的服务也不同,做到精准服务。即使是同类用户,针对不同的个体,分析数据源不同,结果不同,提供的服务也不尽相同,做到个性化服务。
4.2提供教育发展动向以及热点的变化
通过大数据和云计算技术,改变了被动更新教学资源的情况,变成根据在线学习者的需求主动更新资源,提升了在线教育平台的作用。不仅为在线学习者提供了需要的学习资源,也为在线教师提供更有质量的教学资源和研究依据。在线教育交互平台通过对用户数据的收集、整理、分析、深度挖掘和汇总,在宏观上分析相关教育领域的发展动向和热点变化,更快地洞察最新的学习者兴趣走向,以及相关领域的内容进展,更新在线平台的学习资源,并且保证学习内容的实时性和前沿性。同时通过汇总结果有效评估在线学习者对各种教学资源的使用情况,并且根据热点分析和目前已有教学资源交叉对比,可以有效评估教学资源的质量,利于在线教育交互平台持久发展。4.3提供无限量的数据存储能力和更可靠的数据安全性
随着在线教育交互的发展,信息数据量迅猛增长,产生出大量的半结构化、非结构化信息数据,对存储的要求愈加严格。云计算的出现使得海量数据的存储与运算得到了解决,分布式存储的方式可以持续收集大量数据,不会造成存储空问的不足。在线教育交互平台应用“云存储”方式,保证存储数据的可靠性,并能够实时更新,有效解决海量数据资源的查询、管理等问题。云计算使用数据多副本容错、设备同构可互换等手段来保障平台的数据存储安全。数据存储到“云”中,不会受到计算机病毒或硬盘损坏造成的数据丢失。同时解放了用户对终端设备能力的要求。4.4提高在线教育交互平台管理能力
应用云计算和大数据的在线教育交互平台,能够面向具体应用的数据需求,做到快速、及时和有效地响应。根据需求的变化和增长,平台具有很好的性能扩展空问和扩容时稳定和可靠的支持,高效处理多种类型数据。在线教育机构以此平台为基础利用云计算技术和大数据的优势,充分挖掘自身数据价值,实现数据资产从成本中心到利润中心的转变。通过整合数据资产,对数据资产进行标准化,形成灵活可扩展、易于更新、可管控的、可隔离、绿色环保的高效分析型数据管理交互平台,实现支持标准开发、用户自服务、多元化开发多种应用支持模式,形成松祸合、可异构的基础数据和应用数据两级数据管理层次。同时,在线教育机构可以驾驭自身数据资产,全面提升平台的数据信息管理能力,尽力获取对在线学习者和在线教师的洞察,以数据驱动在线教育的发展。
5.结论
对于在线教育交互这个重要研究领域而言,云计算和大数据技术的出现不仅影响着在线教育交互的形态,也为交互信息分析提供了新的思路和手段。一方面,新的技术使交互行为不断向着实时化和碎片化的方向发展,使交互过程日益复杂;另一方面,新的技术又使获得大量交互数据、特别是行为数据成为了可能,从而有更多了解在线学习过程和进行教学决策的依据。在线教育交互作为信息服务,尽管在线教育交互平台有资源的优势,但在技术等方面的劣势也限制了其本身的发展。本文构建基于大数据和云计算支持的在线教育交互平台模型,分析平台的功能实现,使在线的学习者和教师可以实现完美的在线交互活动,总结出利用云计算和大数据的在线教育交互平台的特点优势。因此,在线教育交互平台的快速发展需要利用云计算和大数据创新提升在线教育交互的核心竞争力。
第五篇:大数据时代基于云计算的数据监护研究论文
在大数据时代,为了更好地管理和利用科学数据,计算机图灵奖获得者Jim Gray于2002年提出了数据监护(Data Curation)的概念。十余年来,数据监护一直是国内外信息资源管理领域的热点议题,研究主题集中在数据监护的内容、发展策略、合作模式、职业教育、成功实践等领域。111鉴于云计算能够为数据监护提供强有力的技术支撑,如云计算快速提供资源的能力有助于辅助完成资源密集型数据监护任务,网络化云服务有利于实现数据监护的协同工作,基于云计算开展数据监护引起了国外信息资源管理学界和业界的广泛关注。本文对基于云计算的数据监护问题进行探讨,希望对我国的数据监护工作有所借鉴。
一、数据监护工作流程
数据监护是为了确保数据当前的使用目的,并能用于未来再发现及再利用,从数据产生伊始即对其进行管理和完善的活动。121为了有效指导数据监护实践,提高数据监护效率,一些数据监护机构和研究者对数据监护过程进行了概念化,提出了相应的数据监护生命周期模型。本文基于英国数据监护中心的DCC数据监护生命周期模型13与王芳和慎金花提出的细化的数据监护生命周期模型,梳理出了数据监护工作流程,见图1。数据监护工作流程由4个阶段、11个业务环节组成,涵盖了数据监护的所有必要阶段和核心工作。
数据收集阶段:数据采集。数据采集是数据监护活动的起点,指根据采集政策,从数据创建者、档案馆、知识库或数据中心等接收数据。元数据创建。为采集到的数据创建管理、描述、结构和技术元数据,以便进行数据管理和数据维护,以及实现数据共享。
数据处理阶段:数据评价和选择。评估数据并为长期监护和保存选择数据。数据评价和选择直接关系到科学数据库的质量,并且带有一定的主观性。数据剔除。根据成文的政策、指引或法律要求,处理未成为长期监护和保存对象的数据,将这些数据转移到其他档案馆、知识库、数据中心或其他保管机构。根据法律要求,有些数据会被安全销毁。数据导入。将经过选择的数据传送至档案馆、知识库、数据中心或其他数据监护机构。为保证数据的可用性,在导入数据之前,应进行去重、交叉注释、格式认证等。数据迁移。根据存储环境的需求,或者为了确保数据对硬件和软件退化的抗扰性,改换数据的格式、存储系统、存储类型。
数据保存阶段:数据长期保存。长期保存须确保数据的可信性、可靠性、可用性和完整性。长期保存包括数据清洗、数据验证、分配保存元数据、分配表征信息,保证数据具备可接受的数据结构和文件格式。数据存储。遵守相关标准,选择科学的组织方式和安全的存储介质组织并存储数据。数据存储既可以保证数据的安全性,又便于数据被随时使用和加工处理。
数据利用阶段:数据获取。采用适当的标准发布数据,并执行严格的访问控制和验证程序,保证用户安全、准确的访问和获取数据。数据复用。制订数据复用规则,在不违反知识产权的前提下,提供数据复制、链接、引用等服务。数据转换。根据原始数据创建新数据。例如,通过转换格式、建立子集等途径,创建新数据。
二、云计算为数据监护提供支撑
云计算作为分布式计算、网络存储、负载均衡、热备份冗余等计算机和网络技术融合的产物,具有超大规模、虚拟化、通用性、高可扩展性等诸多特点。云计算的特点与数据监护的需求非常契合,可以为数据监护提供强有力的技术支撑。
弹性服务:云计算服务的规模可快速伸缩,以自动适应业务负载的动态变化。用户使用的云计算资源与业务的实际需求相一致,避免了因为资源供需不匹配而导致的服务质量下降或资源浪费。161数据监护的数据剔除和数据迁移等任务不需要持续不断的执行,属偶发性活动。云计算的弹性服务能够很好地满足偶发性数据监护活动的资源调用需求。
按需服务:云计算以服务的形式为用户提供基础设施、存储空间、应用程序等,并能够根据用户的需求,自动分配各种资源。17用户也可以根据需要在云中部署所需的应用程序。云计算的按需服务为数据监护中需要依赖主观意识完成的任务,如元数据创建、数据评价和选择提供了极大的便利。
泛在接入:用户通过互联网可以随时随地利用云计算服务。数据用户越来越多的使用笔记本电脑、智能手机、平板电脑,将数据监护业务流程转移至云,能够极大地方便用户上传、访问和下载数据。数据监护的数据采集、数据获取和数据复用等业务环节,可以从云计算的这一特点中受益。
服务外包:用户进行数据处理所需的计算资源价格昂贵,将提供计算资源的业务委托给云服务商,既能够节省开支,又能够使用户专注于自己的核心工作。云服务商为了利益最大化,保持最优竞争力,都会迅速应对技术变革,以更低的价格提供更快的处理器和更大的存储空间。云计算服务外包的特点使数据监护机构将部分信息技术支持业务委托给云服务商,以获得更低廉的价格和更优质的服务成为可能。
三、基于云计算的数据监护模型
云计算提供从硬件设施到应用软件的多层次服务。根据服务的对象和功能差异可以将云计算划分为三种服务模式:基础设施即服务(IaaS)、平台即服务(PaaS)、软件即服务(SaaS);根据租用云计算的用户对数据和环境的控制权,可以将云计算划分为公有云、私有云和混合云等部署模型。本文根据数据监护不同业务阶段的工作内容和技术需求,并结合云计算的服务模式和部署模型,构建了基于云计算的数据监护模型,见图2。下面分别从数据监护的云计算服务模式和部署模型两个方面分析基于云计算的数据监护模型。
(一)数据监护的云计算服务模式
IaaS层。IaaS提供基础设施部署服务。IaaS通过虚拟化技术整合服务器、存储设备、网络资源、高性能计算集群等物理资源,构建全局统一的动态虚拟化资源池。基于云计算的数据监护模型的IaaS层为上层云计算服务提供海量硬件资源,实现硬件资源的按需酉己置。
PaaS层。PaaS是云计算应用程序运行环境,提供应用程序部署与管理服务。PaaS不仅能够实现海量数据的存储,而且能够提供面向海量数据的分析处理功能。在基于云计算的数据监护模型的PaaS层,数据监护机构使用云供应商的软件工具和开发语言,开发数据收集和数据处理所需的各种应用程序,实现应用程序的多元化和定制化服务,并将科学数据保存于海量数据存储系统。
SaaS层。SaaS提供以服务为形式的应用程序。SaaS允许用户使用部署于供应商云基础设施上的应用程序,用户也可以根据需求向供应商定制应用程序。在基于云计算的数据监护模型的SaaS层,数据监护机构通过应用程序向用户提供数据利用服务,实现数据共享和科研协作。
(二)数据监护的云计算部署模型
数据监护的各个阶段分别面向数据监护方和数据使用方,对应不同的数据存取、处理等操作权限,因此需要采用相适应的云计算部署模型。数据监护过程中的数据利用阶段位于SaaS层,为用户提供方便高效的数据获取等服务,而公有云面向一般公众提供敏捷弹性服务的特点与数据利用阶段的功能需求相契合。用户能够通过网络浏览器像使用个人电脑中的软件那样使用公有云的应用程序,实现应用程序的泛在访问。因此,基于云计算的数据监护模型的SaaS层应采用公有云部署模型。数据收集和数据处理工作要求云计算提供量身定制的服务功能和非常稳定的服务质量,而数据保存工作要求云计算能够切实保障数据安全。私有云部署在用户数据中心的防火墙内,能够提供对数据、安全性和服务质量的最有效控制,而且不会冲击用户已有的业务流程。因此,基于云计算的数据监护模型的PaaS层适宜采用私有云部署模型。上述公有云和私有云的基础设施共同构成了基于云计算的数据监护模型的IaaS层,并且公有云和私有云具有统一的接口标准,保证服务的无缝迁移,即IaaS层采用混合云部署模型。
四、基于云计算的数据监护案例
SRF项目:英国南安普顿大学的SRF项目,针对科学研究工作集成了许多已有的协作型数据管理工具,并将这些工具部署到一个共享的虚拟云平台上,以SaaS的方式提供服务。SRF工具最大的特点是能够在网络日志中自动或者手工创建和共享实验数据。例如,SRF的一款代理软件能够植入实验仪器和计算机,自动抽取仪器在实验过程中记录的数据,并转换为XML格式,然后以博客的形式发布以实现协作复用。通过博客发布平台实现实验过程、实验数据、实验分析的互联,组织实验数据记录,构建实验、实验数据、实验设备之间的关联关系。在数据监护生命周期中,SRF工具主要用于接收和抽取数据,以保证实验数据在上传至云的过程中会被格式化成标准格式。
Data Flow项目:牛津大学的Data Flow项目,旨在创建免费的云托管Data Stage和Data Bank,以便于管理、保存、发布研究数据。其中,Data Stage以在用户电脑上运行映射驱动器的方式,提供研究组水平的、安全的“本地”文件管理环境。另外,Data Stage还提供数据的网络获取和在线存储服务,用户通过访问控制程序的认证之后,即可以访问私人、共享、协作、公众和公共数据目录。Data Bank是一种虚拟化的、基于云部署的机构研究数据仓储。机构可以选择将Data Bank部署在Eduserv教育云或者机构自己的基础设施中。Data Bank还具备包括数据抽取、储存、长期保存、访问在内的一系列数据监护功能。
Kindura项目:伦敦国王学院的Kindura项目,是一个基于混合云部署模型的科学数据管理试点项目,提供基于存储的数据管理服务和基于计算的数据处理服务。Kindura项目通过DuraSpace推出的托管云服务一DuraCloud,将本地服务与各种云服务相衔接。用户利用DuraCloud提供的统一界面,即可享受一站式数据存取服务。Kindura项目通过部署于服务器上的规则引擎,以及面向规则的集成数据管理系统(iRODS)的规则库,决定具体数据存储在本地还是存储于云端:二进制对象存储在云端,元数据和Fedora对象存储在本地。l9Kindura项目证明,混合云能够有效节省数据监护成本,并且能够更加高效地利用本地存储库,提升数据处理能力。
东南大学AMS-02项目:东南大学为大型国际合作项目AMS-02的数据监护工作构建的云计算平台,提供IaaS、PaaS、SaaS服务。该云计算平台架构如图3所示。在IaaS层,云计算基础设施由3500颗CPU内核和500TB高速存储设备构成,提供虚拟机和物理机的按需分配,并且自动配置操作系统、科学计算函数库等运行环境。在PaaS层,数据分析处理平台提供大规模计算能力和海量数据存储能力;应用开发环境为AMS-02数据分析处理应用提供编程接口。在SaaS层,以服务的形式部署云计算应用程序,用户通过访问AMS-02应用,可以获取原始科学数据以及数据处理分析结果。云计算通过超级计算模式,整合大量的存储、计算、带宽等资源,为数据监护提供了经济高效的解决方案。国内的数据监护尚处于起步阶段,对基于云计算的数据监护进行深入的理论探讨和实践探索,有助于推动我国的数据监护实现跨越式发展。