第一篇:云计算智能输入法设计研究论文
前言:智能手机、平板电脑等移动终端智能设备开始广泛应用于生产生活的各个领域。随着技术的革新与改进,其功能也相应得到了拓展。在移动终端智能设备当中,智能输入软件有着至关重要的作用。由于传统的嵌入式智能输入软件的内核技术较为落后,输入性能较差,正确率低,在很大的程度上影响了移动终端智能设备的正常使用。智能输入技术的更新变得十分重要,基于云计算的智能输入法设计,将会有效解决这一问题。
一、智能输入法的发展现状
1、键盘输入。键盘输入法是计算机和移动终端智能设备当中应用最多的输入方法。其中T9智能输入法在移动终端智能设备有着十分重要的应用。该输入法支持多国家语言,其中汉字收录达到9000字以上,能够充分满足应用需要,同时能够对简体中文和繁体中文加以区分。在T9智能输入法的基础上,又进一步研发了字能输入法和iTAP输入法。字能输入法丰富了笔画输入,而iTAP输入法优化了T9智能输入法,使输入变得更加便捷、高效[1]。2、手写输入。移动终端设备智能化的发展,在很大程度上促进了输入法的发展。手写输入得到了有效的利用,实现了规模化信息处理的目的。手写识别算法的改进和完善,逐渐满足大众对于手写输入的需求,手写识别率正在不断的提升,能够对多种字体,包括简体和繁体都能准确的予以识别。当前,汉王笔手写输入系统手写识别率接近于100%。3、语音识别。语音识别是一种智能输入法,在当前的智能移动终端当中得到广泛的应用,随着云计算平台的建立,语音识别变得更加实用。语音识别是智能输入法的一次创新。在云计算平台的影响下,语音识别的开发应用,使移动终端设备朝着成“能听会说”的智能设备发展。
二、基于云计算的智能输入法设计
1、键入式设计。九宫格数字键盘和QWERTY全键盘是最常应用的键盘。基于此,进行输入法子系统设计。在该系统框架当中,由嵌入式客户端和云平台服务端组成。云平台服务器端是中间环节,主要作用就是进行数据信息的处理和传输。在客户端的用户界面当中,选择用户程序,将字符序列传输给云服务器集群,并将数据传输给云平台服务器端,通过码表进行字符序列切分,利用个性化词库和动态统计库,由云服务器集群将字符序列进行转为文字,经过过滤选择,得出最优结果。而客户端接收来自于云服务器端的数据结果,在用户程序界面当中显示出来。整个过程高效且迅速,实现了智能化键盘式输入。在数据信息处理的过程中,能有基于云计算平台进行学习,补充个性化词库,为用户下一次使用提供便利[2]。
2、手写输入法设计。提升手写输入法的准确率,对于移动终端的硬件要求非常高,计算量和存储量等性能需要得到提高。建立手写子系统利用云平台,能够打破来自移动终端的性能限制,基于云计算平台下,提升手写识别的而准确率。由候选字视图、手写区和功能键盘构成了手写子系统框架。能够利用云计算平台巨大的计算能力和存储性能,在低硬件配置的条件下能够达到高识别率的要求。手写输入之后,通过无线网络传输到云计算服务端,对手写内容进行识别处理。嵌入式客户端和云平台服务端在智能手写输入当中发挥着重要的作用。根据负载和计算节点性能,合理分配计算资源。按照合适的线程对手写输入文字进行识别处理。每一个线程在完成数据处理和传输之后,将信息反馈给客户端[3]。
3、语音识别。基于云计算平台的语音输入法子系统设计,避免了嵌入式输入输出受到输入软件自身的限制。针对键盘或手写输入不便的情况下,语音输入可以作为很好的补充,为人机交互提供便利。基于云计算平台的语音输入法子系统设计,将语音检测、语音识别和语音合成技术有效的融合进来,具有语音信息传输、在线即时翻译等功能。嵌入式客户端和语音云服务平台构成了智能语音识别系统框架。嵌入式客户端将语音检测、协议解析、音频编解码、无线网络通讯等功能合为一体,形成完整的手写文字识别系统工具。语音云服务平台利用简单易操作的集成开发接口,为客户提供云计算结构负载均衡、计算以及数据存储的服务。
三、结论
通过输入法在移动智能终端设备的应用现状进行分析,针对传统输入法当中存在的不足,基于云计算平台改进与升级,包括对键盘式输入、手写输入和语音输入等输入法的智能化设计,实现了输入软件技术智能化多语言的发展,智能输入法具有良好的发展前景,将会得到更为广泛的应用。
第二篇:云计算论文
浅谈云计算
白娟
(运城学院 信息管理与信息系统 1106)
【摘要】云计算是当前计算机领域的一个热点。它的出现宣告了低成本提供超级计算时代的到来。云计算
将改变人们获取信息、分享内容和互相沟通的方式。此文阐述了云计算的简史、概念、特点、保护和发展前景,并对云计算的发展及前景进行了分析。
【关键词】云计算特点,云计算保护,云计算发展前景
1.云计算相关知识
1.1简史
1983年,太阳电脑(Sun Microsystems)提出“网络是电脑”(“The Network is the Computer”),2006年3月,亚马逊(Amazon)推出弹性计算云(Elastic Compute Cloud;EC2)服务。
2006年8月9日,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会(SES San Jose 2006)首次提出“云计算”(Cloud Computing)的概念。Google“云端计算”源于Google工程师克里斯托弗·比希利亚所做的“Google 101”项目。
2007年10月,Google与IBM开始在美国大学校园,包括卡内基梅隆大学、麻省理工学院、斯坦福大学、加州大学柏克莱分校及马里兰大学等,推广云计算的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(包括数百台个人电脑及BladeCenter与System x服务器,这些计算平台将提供1600个处理器,支持包括Linux、Xen、Hadoop等开放源代码平台)。而学生则可以通过网络开发各项以大规模计算为基础的研究计划。
2008年1月30日,Google宣布在台湾启动“云计算学术计划”,将与台湾台大、交大等学校合作,将这种先进的大规模、快速将云计算技术推广到校园。
2008年2月1日,IBM(NYSE: IBM)宣布将在中国无锡太湖新城科教产业园为中国的软件公司建立全球第一个云计算中心(Cloud Computing Center)。
2008年7月29日,雅虎、惠普和英特尔宣布一项涵盖美国、德国和新加坡的联合研究计划,推出云计算研究测试床,推进云计算。该计划要与合作伙伴创建6个数据中心作为研究试验平台,每个数据中心配置1400个至4000个处理器。这些合作伙伴包括新加坡资讯通信发展管理局、德国卡尔斯鲁厄大学Steinbuch计算中心、美国伊利诺伊大学香宾分校、英特尔研究院、惠普实验室和雅虎。
2008年8月3日,美国专利商标局网站信息显示,戴尔正在申请“云计算”(Cloud Computing)商标,此举旨在加强对这一未来可能重塑技术架构的术语的控制权。
2010年3月5日,Novell与云安全联盟(CSA)共同宣布一项供应商中立计划,名为“可信任云计算计划(Trusted Cloud Initiative)”。
2010年7月,美国国家航空航天局和包括Rackspace、AMD、Intel、戴尔等支持厂商共同宣布“OpenStack”开放源代码计划,微软在2010年10月表示支持OpenStack与Windows Server 2008 R2的集成;而Ubuntu已把OpenStack加至11.04版本中。2011年2月,思科系统正式加入OpenStack,重点研制OpenStack的网络服务。1.2概念
狭义云计算是指计算机基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的资源(硬件、平台、软件)。提供资源的网络被称为“云”。“云”中的资源在使用者看来是可以无限扩展的,并且可以随时获取,按需使用,随时扩展,按使用付费。
广义云计算是指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需的服务。这种服务可以是计算机和软件、互联网相关的,也可以是其他的服务。云计算是并行计算(Parallel Computing)、分布式计算(Distributed Computing)和网格计算(Grid Computing)的发展,或者说是这些计算机科学概念的商业实现。云计算是虚拟化(Virtualization)、效用计算(Utility Computing)、IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等概念混合演进并跃升的结果。1.3云计算特点
被普遍接受的云计算特点如下:(1)超大规模
“云”具有相当的规模,Google云计算已经拥有100多万台服务器,Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2)虚拟化
云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3)高可靠性
“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4)通用性
云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5)高可扩展性
“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。(6)按需服务
“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。(7)极其廉价
由于“云”的特殊容错措施可以采用极其廉价的节点来构成云,“云”的自动化集中式管理使大量企业无需负担日益高昂的数据中心管理成本,“云”的通用性使资源的利用率较之传统系统大幅提升,因此用户可以充分享受“云”的低成本优势,经常只要花费几百美元、几天时间就能完成以前需要数万美元、数月时间才能完成的任务。
云计算可以彻底改变人们未来的生活,但同时也要重视环境问题,这样才能真正为人类进步做贡献,而不是简单的技术提升。
(8)潜在的危险性
云计算服务除了提供计算服务外,还必然提供了存储服务。但是云计算服务当前垄断在私人机构(企业)手中,而他们仅仅能够提供商业信用。对于政府机构、商业机构(特别象银行这样持有敏感数据的商业机构)对于选择云计算服务应保持足够的警惕。一旦商业用户大规模使用私人机构提供的云计算服务,无论其技术优势有多强,都不可避免地让这些私人机构以“数据(信息)”的重要性挟制整个社会。对于信息社会而言,“信息”是至关重要的。另一方面,云计算中的数据对于数据所有者以外的其他用户云计算用户是保密的,但是对于提供云计算的商业机构而言确实毫无秘密可言。所有这些潜在的危险,是商业机构和政府机构选择云计算服务、特别是国外机构提供的云计算服务时,不得不考虑的一个重要的前提。
2.云计算的隐私保护和发展前景
2.1浅谈云计算环境下的隐私权保护
目前,云计算受到产业界的极大推崇并推出了一系列基于云计算平台的服务。但在已经实现的云计算服务中,安全问题一直令人担忧,以至于使得安全和隐私问题成为云计算普及过程中面临的一个巨大挑战。文章主要探讨云计算的隐私问题。在概述网络隐私权特点的基础上,指出了云计算环境下隐私的特殊性,分别从客户端、网络传输、服务器端三个方面阐述了网络隐私权存在的安全隐患。最后,从法律、技术、监管等方面分析了云计算环境下隐私权保护的方案。
互联网以及与之相关的产业发展日新月异,云计算(Cloud Computing)作为一种新的服务模式,受到各方的关注,特别是在产业界受到极大的推崇。目前,几乎所有著名IT公司的战略重点中都涉及了云计算,并推出了一系列基于云计算平台的服务。Amazon的EC2和Google的Google App Engine都是典型的云计算服务,它们使用Internet来连接外部用户,把大量的软件和IT基础设施作为一种服务对外提供。此外,还有微软的Live Meeting、Cisco的WebEx、IBM的“蓝云”等等。
但是,目前的云计算有其“先天性”不足,对于广大网民来说,首当其冲的就是隐私保护问题。正如美国军事安全专家格雷格?康蒂(GregConti)所担心的:云计算在给人们带来巨大便利的同时,该服务中所存在的不足也将危及企业用户和普通网民的隐私安全。据世界隐私论坛近日发布的一份报告声称,如果企业期望通过利用云计算服务来降低IT成本
和复杂性,那么首先应保证这个过程中不会带来任何潜在的隐私问题。IDC对CIO和IT主管的调查也显示,安全仍是云计算主要关注的问题,大约75%的人表示他们担心云计算安全问题(包括隐私安全)。由此可见,隐私安全问题是云计算发展的最主要障碍之一。2.2云计算的发展前景
云计算被视为科技业的下一次革命,它将带来工作方式和商业模式的根本性改变。首先,对中小企业和创业者来说,云计算意味着巨大的商业机遇,他们可以借助云计算在更高的层面上和大企业竞争。自1989年微软推出Office办公软件以来,我们的工作方式已经发生了极大变化,而云计算则带来了云端的办公室——更强的计算能力但无须购买软件,省却本地安装和维护。
其次,从某种意义上说,云计算意味着那些对计算需求量越来越大的中小企业,不再试图去买价格高昂的硬件,而是从云计算供应商那里租用计算能力。在避免了硬件投资的同时,公司的技术部门可以节省大量的技术维护时间。以亚马逊为例,其云计算产品价格便宜,吸引了大批中小企业,甚至《纽约时报》、红帽等大型公司。
[6] 云计算对商业模式的影响体现在对市场空间的创新上。Google Apps是关于创新的理论中的新市场创新。当互联网变得越来越快和可依赖,用户正从桌面电脑上的软件应用转向基于互联网的应用。同时,云计算开发新产品拓展新市场的成本非常低。比如,如果用户对Gmail的需求突然出现猛增,谷歌的云计算系统会自动为Gmail增加容量和处理器的数量,无需人工干预,而且增加和调整都不增加成本。依赖云计算,谷歌能以几乎可以忽略不计的成本增加新的服务。有观点认为,云计算受到热捧的背后,还反应了超级计算机市场的角力。超级计算机应用一度因需要非常昂贵的硬件投入而面临极高的推广门槛,云计算却宣告了低成本提供超级计算服务的可能,一旦云计算得到了广泛的推广,可以乐观地估计,超级计算机市场的春天即将到来。参 考 文 献
[1]武星,王旻超,张武,李青.云计算研究综述[J].科技创新与生产力,2011,06:49-55.[2]刘晓乐.计算机云计算及其实现技术分析[J].电子科技.2009(12)[3]叶晓勇.简述云计算[J].黑龙江科技信息.2009(24)[4] 王丽安.Internet云计算技术[J].科协论坛(下半月).2011(10)[5]狄明远,周铁城.云计算浅析[J].科技风.2009(13)社,2004年9月出版; [6] 张亚东.浅谈云计算发展现状与趋势[J].科技致富向导.2011(12)[7] 唐红,徐光侠.云计算研究与发展综述[J].数字通信.2010(03)
[8] 李晓伟,沈艳秋.云计算及其发展进程[J].科技信息.2011(15)
第三篇:高校云计算研究情况总结
目前,正在积极投身于云计算相关基础理论与技术研究工作的高校和科研院所包括以清华大学、北京大学、武汉大学、中国科学技术大学、华中科技大学、上海交通大学、合肥工业大学、北京航空航天大学、解放军理工大学、中科院、北京邮电大学、北京交通大学、东北大学、山东大学等为代表的诸多科研单位。另外,在工业界从事云计算相关研究的单位包括华为、百度、新浪、腾讯、金蝶软件、中国电信、中国移动等诸多企业。
国内高校与科研院所针对云计算的不同领域开展了深入的研究。例如,清华大学的云存储平台着力于构建存储云,武汉大学侧重于面向云计算的互操作国际标准,中科院计算所利用云计算开展数据挖掘与云安全工作,华中科技大学关注虚拟化技术与云安全,上海交通大学注重于数据的安全和隐私关键性技术研究,合肥工业大学侧重将人工智能和信息管理研究成果迁移到云计算环境中,北京航天航空大学致力于云计算的数据安全控制理论与方法的研究,解放军理工大学侧重于云存储研发与应用,东北大学侧重于利用云计算技术解决大规模图数据处理问题,山东大学侧重于研究SaaS软件交付平台的问题。
清华大学在云存储研究方面,以分布式文件系统为基础的云存储平台,为校园网用户设计开发了用于数据存储与共享的云存储服务,利用底层云存储平台所提供的基础存储服务,提供用户管理与目录管理的功能,增加了文件检索功能,并对数据传输进行了优化,为用户提供简单实用的云存储访问接口。针对于越来越多的移动计算需求,基于云存储平台设计开发了多种手机云存储应用,包括基于云存储服务的电话号码簿应用、可在手机上进行文件存储与共享的文件管理应用、基于云存储服务的视频点播应用以及基于云存储服务的相片管理应用。在海量数据挖掘研究方面,结合云计算架构和海量数据对象,开展基于云计算的海量数据挖掘研究,设计并实现面向海量数据挖掘的分布存储和并行编程模型框架,提出基于群体智能的海量数据挖掘算法,以维基百科为载体,对维基百科及其形成的复杂社会网络进行深入的分析和挖掘,提供基于维基百科的深层次知识服务。
武汉大学在面向云计算的互操作标准方面开展了一定的工作。在云计算环境中,信息资源和服务是通过即用即付的方式提供给用户的,需要对不同的信息资源和服务进行统一的管理。同时,用户需求正逐渐呈现出多样性和个性化的特征,使得满足大众用户需求的服务定制也需要跨领域/组织的资源和服务通过共享、交互、互操作等方式共同完成。随着云计算的发展,许多企业或组织已经构建了云计算平台,并提供了大量的内部数据和服务,但这些云计算平台之间难以进行有效的信息共享和交换,造成了“孤立云”的产生,如何利用开放的互操作性标准实现云-端以及云-云之间的互操作显得十分重要。针对这一现状,国际标准化组织ISO/IEC正在研制“互操作性元模型框架”的国际标准-ISO/IEC 19763: Information
Technology-Metamodel Framework for Interoperability(简称MFI)。其主要目标是为已注册的异构信息资源和服务提供统一的注册和管理机制,促进它们之间的互操作。MFI标准从模型注册、本体注册、模型映射的角度对注册信息资源的基本管理信息提供了参考,促进信息系统之间的互操作。武汉大学代表中国参加了该标准的研制工作,并主持了其中5项标准的研制任务。
中国科学院计算技术研究所在Hadoop基础上开发实现了并行数据挖掘工具平台。该平台已经用于中国移动TB级电信数据的挖掘,其数据处理规模远远超出商用软件,在商用软件能承受的相同数据规模下,采用相同方法和相同参数设置、获得了一致的挖掘结果,实现了高性能、低成本的海量数据挖掘。中国科学院计算技术研究所在基于虚拟机架构的可信计算环境与可信软件设计方面也取得了一些成果,包括:基于虚拟机的可信计算平台研究与设计(TRainbow);面向管理域虚拟机完整性的实时检测技术(VMGuard);可信可控用户虚拟计算环境构建方法研究(TRIOB);面向虚拟存储数据完整性的透明检测技术(Tapwire);虚拟化全局内存优化技术(TMemCanal);分布化IO资源的全局可见与共享技术;Xen虚拟计算环境下的可信接入控制技术。中国科学院软件技术研究所围绕云计算的安全问题也进行了一系列的研究,包括针对云存储中敏感数据的机密性保护问题,在基于属性的加密基础上提出了一种密文访问控制方法HCRE;在基于密文策略的属性加密应用场景下,实现了云存储中高效、精细、灵活的密文访问控制方案等。
华中科技大学也在云计算方面进行了很多实践,包括:设计出了一个面向科学计算与企业信息化的云计算平台GRANE;实现了一个面向云环境的虚拟化桌面CloudDesk,它能动态适应用户的需求变化,为用户提供高效、安全、易用的云资源访问的桌面环境;从任务并行调度,数据组织与压缩,备份服务可信及容错模型三方面着手,研究出了一个云备份系统B-Cloud;基于云模式的大规模主动安全防御系统CloudFence,它是采用安全检测与防御相分离的原则,充分利用云端强大的处理能力和存储能力。
上海交通大学针对云计算中存在的数据安全问题,利用密码理论与技术、网络与信息安全技术、编码理论等方向所取得的成果,解决数据安全存在的一基础问题,提高云计算的安全性,并开展了下一代互联网安全与隐私关键性技术研究。另外,上海交通大学与微软合作,共同搭建国内高校第一个基于最新虚拟化技术和System Center的私有云,为教学与科研项目提供可伸缩的计算资源。
北京航空航天大学利用分布式环境下的访问控制方法和可信计算信任模型方面的研究基础,致力于面向云计算的自含式数据安全控制理论与方法的研究,来提高云安全性。
解放军理工大学在云计算存储应用方面,研发MassCloud云存储平台在节能与集成度上取得了阶段性的突破,并在实际应用中获得巨大成效。目前,360公司在解放军理工大学成立了云计算联合实验室。
东北大学基于BSP处理模型和系统实现了社会网络中的大规模图数据查询与分析,研究了大规模图数据的划分与定位问题、大规模图数据的磁盘存储问题、大规模图的分布并行查询处理和查询优化问题以及云环境下的执行保障问题,设计并实现了BeeGraph系统,支持大规模图数据的处理。
山东大学对面向多租户的SaaS平台开展了研究,包括支持多租户数据隔离的存储与索引机制,基于Chunk Folding的自适应多租户缓存管理机制,支持租户业务流程定制行为建模及验证的框架,以及面向SaaS应用的数据组合隐私保护机制,为面向多租户的SaaS平台提供技术支撑。
中国科学技术大学在云计算环境下远程数据完整性和认证技术方面,结合数论中的同态RSA验证标识,设计了保护用户隐私的数据完整性验证协议,能够支持数据动态更新和公开的多副本验证,而无需第三方审计。针对已有远程身份认证方案存在的缺陷和安全漏洞,提出了新的身份认证方案。认证方案结合使用智能卡、口令和电子票据,既能够为用户和服务器提供双向身份认证,也通过电子票据的发放解决了限制用户访问次数的问题。
第四篇:大数据与云计算论文
大数据与云计算
摘 要:大数据(Big Data)这个概念近年来在越来越多的场合、被越来越多的人提及,并且经常和云计算联系在一起,云计算与大数据之间到底是什么关系成为热点话题。本
专题报告包含以下四个方面内容:1.大数据的价值;2.大数据带来的挑战;3.大数据研究成果;4.云计算是大数据挖掘的主流方式。通过本报告阐述我们对大数据的理解,以及对大数据的价值的认识,探讨大数据处理与挖掘技术,大数据主要着眼于“数据”,提供数据采集、挖掘、分析的技术和方法;云计算技术主要关注“计算”,提供IT 解决方案。大数据、云计算技术可以促进持续审计方式的发展、总体审计模式的应用、审计成果的综合应用、相关关系证据的应用、高效数据审计的发展和大数据审计师的发展。强化大数据、云计算技术审计应用的措施包括制定长远发展战略、加快审计法规建设、建立行业平台、加强研发和提高利用能力。关键词:大数据 云计算 数据挖掘 对审计影响 政策建议 引言
目前,大数据伴随着云计算技术的发展,正在对全球经济社会生活产生巨大的影响。大数据、云计算技术给现代审计提供了新的技术和方法,要求审计组织和审计人员把握大数据、云计算技术的内容与特征,促进现代审计技术和方法的进一步发展。
一、大数据、云计算的涵义与特征
随着云计算技术的出现,大数据吸引了全世界越来越多的关注。哈佛大学社会学教授加里·金(2012)说: “这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”(一)大数据的涵义与特征
“数据”(data)这个词在拉丁文里是“已知”的意思,也可以理解为“事实”。2009 年,“大数据”概念才逐渐开始在社会上传播。而“大数据”概念真正变得火爆,却是因为美国奥巴马政府在2012 年高调宣布了其“大数据研究和开发计划”。这标志着“大数据”时代真正开始进入社会经济生活中来了。“大数据”(big data),或称巨量资料,指的是所涉及的数据量规模大到无法利用现行主流软件工具,在一定的时间内实现收集、分析、处理或转化成为帮助决策者决策的可用信息。互联网数据中心(IDC)认为“大数据”是为了更经济、更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。大数据具有4 个特点: 第一,数据体量巨大(Volume),从TB 级别跃升到PB 级别。第二,处理速度快(Velocity),这与传统的数据挖掘技术有着本质的不同。第三,数据种类多(Variety),有图片、地理位置信息、视频、网络日志等多种形式。第四,价值密度低,商业价值高(Value)。存在单一数据的价值并不大,但将相关数据聚集在一起,就会有很高的商业价值(金良,2012)。大数据时代,不仅改变了传统的数据采集、处理和应用技术与方法,还促使人们思维方式的改变。大数据的精髓在于促使人们在采集、处理和使用数据时思维的转变,这些转变将改变人们理解和研究社会经济现象的技术和方法。
(1)是在大数据时代,不依赖抽样分析,而可以采集和处理事物整体的全部数据。19 世纪以来,当面临大的样本量时,人们都主要依靠抽样来分析总体。但是,抽样技术是在数据缺乏和取得数据受限制的条件下不得不采用的一种方法,这其实是一种人为的限制。过去,因为记录、储存和分析数据的工具不够科学,只能收集少量数据进行分析。如今,科学技术条件已经有了很大的提高,虽然人类可以处理的数据依然是有限的,但是可以处理的数据量已经大量增加,而且未来会越来越多。随着大数据分析取代抽样分析,社会科学不再单纯依赖于抽样调查和分析实证数据,现在可以收集过去无法收集到的数据,更重要的是,现在可以不再依赖抽样分析。
(2)是在大数据时代,不再热衷于追求数据的精确度,而是追求利用数据的效率。当测量事物的能力受限制时,关注的是获取最精确的结果。但是,在大数据时代,追求精确度已经既无必要又不可行,甚至变得不受欢迎。大数据纷繁多样,优劣掺杂,精准度已不再是分析事物总体的主要手段。拥有了大数据,不再需要对一个事物的现象深究,只要掌握事物的大致发展趋势即可,更重要的是追求数据的及时性和使用效率。与依赖于小数据和精确性的时代相比较,大数据更注重数据的完整性和混杂性,帮助人们进一步认识事物的全貌和真相。
(3)是在大数据时代,人们难以寻求事物直接的因果关系,而是深入认识和利用事物的相关关系。长期以来,寻找因果关系是人类发展过程中形成的传统习惯。寻求因果关系即使很困难且用途不大,但人们无法摆脱认识的传统思维。在大数据时代,人们不必将主要精力放在事物之间因果关系的分析上,而是将主要精力放在寻找事物之间的相关关系上。事物之间的相关关系可能不会准确地告知事物发生的内在原因,但是它会提醒人们事情之间的相互联系。人们可以通过找到一个事物的良好相关关系,帮助其捕捉到事物的现在和预测未来。(二)云计算的涵义与特征
“云计算”概念产生于谷歌和IBM 等大型互联网公司处理海量数据的实践。2006 年8 月9 日,Google首席执行官埃里克·施密特(Eric Schmidt)在搜索引擎大会首次提出“云计算”的概念。2007 年10 月,Google 与IBM 开始在美国大学校园推广云计算技术的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(Michael Mille,2009)。目前全世界关于“云计算”的定义有很多。“云计算”是基于互联网的相关服务的增加、使用和交付模式,是通过互联网来提供动态易扩展且经常是虚拟化的资源。美国国家标准技术研究院(NIST)2009年关于云计算的定义是: “云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务等),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。”根据这一定义,云计算的特征主要表现为: 首先,云计算是一种计算模式,具有时间和网络存储的功能。其次,云计算是一条接入路径,通过广泛接入网络以获取计算能力,通过标准机制进行访问。第三,云计算是一个资源池,云计算服务提供商的计算资源,通过多租户模式为不同用户提供服务,并根据用户的需求动态提供不同的物理的或虚拟的资源。第四,云计算是一系列伸缩技术,在信息化和互联网环境下的计算规模可以快速扩大或缩小,计算能力可以快速、弹性获得。第五,云计算是一项可计量的服务,云计算资源的使用情况可以通过云计算系统检测、控制、计量,以自动控制和优化资源使用。(三)大数据与云计算的关系
从整体上看,大数据与云计算是相辅相成的。大数据主要专注实际业务,着眼于“数据”,提供数据采集、挖掘、分析的技术和方法,强调的是数据存储能力。云计算主要关注“计算”,关注IT 架构,提供IT 解决方案,强调的是计算能力,即数据处理能力。如果没有大数据的数据存储,那么云计算的计算能力再强大,也难以找到用武之地;如果没有云计算的数据处理能力,则大数据的数据存储再丰富,也终究难以用于实践中去。
从技术上看,大数据依赖于云计算。海量数据存储技术、海量数据管理技术、MapReduce 编程模型都是云计算的关键技术,也都是大数据的技术基础。而数据之所以会变“大”,最重要的便是云计算提供的技术平台。数据被放到“云”上之后,打破了过去那种各自分割的数据存储,更容易被收集和获得,大数据才能呈现在人们眼前。而巨量的数据也只能依靠云计算强大的数据处理能力,才能够“淘尽黄沙始得金”。
从侧重点看,大数据与云计算的侧重点不同。大数据的侧重点是各种数据,广泛、深入挖掘巨量数据,发现数据中的价值,迫使企业从“业务驱动”转变为“数据驱动”。而云计算主要通过互联网广泛获取、扩展和管理计算及存储资源和能力,其侧重点是IT 资源、处理能力和各种应用,以帮助企业节省IT部署成本。云计算使企业的IT 部门受益,而大数据使企业的业务管理部门受益。
从结果看,大数据与云计算带来不同的变化。大数据对社会经济带来的变化是巨大的,涉及到各个领域。大数据已经与资本、人力一起作为生产的主要因素影响着社会经济的发展。数据创造价值,而挖掘数据价值、利用数据的“推动力”就是云计算。云计算将信息存储、分享和挖掘能力极大提高,更经济、高效地将巨量、高速、多变的终端数据存储下来,并随时进行计算与分析。通过云计算对大数据进行分析、总结与预测,会使得决策更可靠,释放出更多大数据的内在价值。
二、大数据、云计算技术对审计的影响分析
审计技术和方法的发展是随着科学和管理技术的发展而发展的。现代审计技术和方法体系是在原始的查账基础上从低级向高级、从不完备到比较完备发展起来的。在业务和会计处理手工操作阶段,审计实施的是账表导向的审计技术和方法;当内部控制理论和方法全面应用于业务和会计处理时,审计实施的是系统导向的审计技术和方法;当风险管理理论和方法全面应用于业务和财务管理时,审计实施的是风险导向审计技术和方法;与风险导向审计技术和方法并行的是,计算机技术广泛应用于业务和会计处理时,审计实施的是IT 审计技术和方法。目前,面对大数据、云计算技术的产生和发展,审计人员需要应时而变来适应由此而带来的变化,分析大数据、云计算技术对审计方式、审计抽样技术、审计报告模式、审计证据搜集等技术和方法的影响。(一)大数据、云计算技术促进持续审计方式的发展
传统审计中,审计人员只是在被审计单位业务完成后才进行审计,而且审计过程中并不是审计所有的数据和信息,只是抽取其中有的一部分进行审计。这种事后和有限的审计对被审计单位复杂的生产经营和管理系统来说很难及时做出正确的评价,而且对于评价日益频繁和复杂的经营管理活动的真实性和合法性则显得过于迟缓。随着信息技术迅速发展,越来越多的审计组织对被审计单位开始实施持续审计方式,以解决审计结果与经济活动的时差问题。但是,审计人员实施持续审计时,往往受目前业务条件和信息化手段的限制,取得的非结构化数据无法数据化,或者无法取得相关的明细数据,致使对问题的判断也难以进一步具体和深入。而大数据、云计算技术可以促进持续审计方式的发展,使信息技术与大数据、云计算技术较好交叉融合,尤其对业务数据和风险控制“实时性”要求较高的特定行业,如银行、证券、保险等行业,在这些行业中实施持续审计迫在眉睫。如审计组织对商业银行的审计,实行与商业银行建立业务和数据系统的接口,在开发的持续审计系统中固化了非结构化数据结构化和数据分析模块,该模块可以在海量贷款客户中挖掘、分析出行业性和区域性贷款风险趋势,实现在线的风险预警,并将发现的风险数据、超预警值指标及问题登记为疑点,并建立实时审计工作底稿,按照重要程度进行归类、核实或下发给现场审计人员进行现场核实,以较好处理非结构化数据的利用和数据的实时分析利用问题。(二)大数据、云计算技术促进总体审计模式的应用
现时的审计模式是在评价被审计单位风险基础上实施抽样审计。在不可能收集和分析被审计单位全部经济业务数据的情况下,现时的审计模式主要依赖于审计抽样,从局部入手推断整体,即从抽取的样本着手进行审计,再据此推断审计对象的整体情况。这种抽样审计模式,由于抽取样本的有限性,而忽视了大量和具体的业务活动,使审计人员无法完全发现和揭示被审计单位的重大舞弊行为,隐藏着重大的审计风险。而大数据、云计算技术对审计人员而言,不仅仅是一种可供采用的技术手段,这些技术和方法将给审计人员提供实施总体审计模式的可行性。利用大数据、云计算技术,对数据的跨行业、跨企业搜集和分析,可以不用随机抽样方法,而采用搜集和分析被审计单位所有数据的总体审计模式。利用大数据、云计算技术的总体审计模式是要分析与审计对象相关的所有数据,使得审计人员可以建立总体审计的思维模式,可以使现代审计获得革命性的变化。审计人员实施总体审计模式,可以规避审计抽样风险。如果能够收集总体的所有数据,就能看到更细微、深入的信息,对数据进行多角度的深层次分析,从而发现隐藏在细节数据中的对审计问题更具价值的信息。同时,审计人员实施总体审计模式,能发现从审计抽样模式所不能发现的问题。大数据、云计算技术给审计人员提供了一种能够从总体把握审计对象的技术手段,从而帮助审计人员能从总体的视角发现以前难以发现的问题。
(三)大数据、云计算技术促进审计成果的综合应用
目前,审计人员的审计成果主要是提供给被审计单位的审计报告,其格式固定,内容单一,包含的信息量较少。随着大数据、云计算技术在审计中广泛应用,审计人员的审计成果除了审计报告外,还有在审计过程中采集、挖掘、分析和处理的大量的资料和数据,可以提供给被审计单位用于改进经营管理,促进审计成果的综合应用,提高审计成果的综合应用效果。首先,审计人员通过对审计中获取的大量数据和相关情况资料的汇总、归纳,从中找出财务、业务和经营管理等方面的内在规律、共性问题和发展趋势,通过汇总归纳宏观性和综合性较强的审计信息,为被审计单位投资者和其他利益相关者提供数据证明、关联分析和决策建议,从而促进被审计单位管理水平的提高。其次,审计人员通过应用大数据、云计算技术,可以将同一问题归入不同的类别进行分析和处理,从不同的角度、不同的层面整合提炼以满足不同层次的需求。再次,审计人员将审计成果进行智能化留存,通过大数据、云计算技术,将问题规则化并固化到系统中,以便于计算或判断问题发展趋势,向被审计单位进行预警。最后。审计人员将审计成果、被审计单位与审计问题进行关联,并进行信息化处理,在进行下次审计时,减少实地审计的时间和工作量,提高审计工作的效率。(四)大数据、云计算技术促进相关关系证据的应用
审计人员在审计过程中,应根据充分、适当的审计证据发表审计意见,出具审计报告。但是,在大数据、云计算环境下,审计人员既面临巨量数据筛选的考验,又面临搜集适当审计证据的挑战。审计人员在搜集审计证据时,传统的思维路径都是基于因果关系来搜集审计证据,而大数据分析将会更多地运用相关关系分析来搜集和发现审计证据。但从审计证据发现的角度来看,由于大数据技术提供了前所未有的跨领域、可供量化的维度,使得审计问题大量的相关信息能够得以记录和计算分析。大数据、云计算技术没有改变事物间的因果关系,但在大数据、云计算技术中对相关关系的开发和利用,使得数据分析对因果逻辑关系的依赖降低了,甚至更多地倾向于应用基于相关关系的数据分析,以相关关系分析为基础的验证是大数据、云计算技术的一项重要特征。在大数据、云计算技术环境下,审计人员能搜集到的审计证据大多是电子证据(秦荣生,2013)。电子证据本身就非常复杂,云计算技术使获取有因果关系的证据更加困难。审计人员应从长期依赖因果关系来搜集和发现审计证据,转变成为利用相关关系来搜集和发现审计证据。(五)大数据、云计算技术促进高效数据审计的发展
直到今天,审计人员的数字审计技术依然建立在精准的基础上。这种思维方式适用于掌握“小数据量”的情况,因为需要分析的数据很少,所以审计人员必须尽可能精准地量化被审计单位的业务。随着大数据、云计算技术成为日常生活中的一部分,审计人员应开始从一个比以前更大、更全面的角度来理解被审计单位,将“样本= 总体”植入审计人员的思维中。相比依赖于小数据和精确性的时代,大数据更强调数据的完整性和混杂性,帮助审计人员进一步接近事情的真相,“局部”和“精确”将不再是审计人员追求的目标,审计人员追求的是事物的“全貌”和“高效”。围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现。在实施审计时,审计人员应利用大数据、云计算技术,使用分布式拓朴结构、云数据库、联网审计、数据挖掘等新型的技术手段和工具,以提高审计的效率。
(六)大数据、云计算技术促进大数据审计师的发展
大数据、云计算时代,数据的真实、可靠是大数据发挥作用的前提。这客观上要求专业人员来对大数据的真实性、可靠性进行鉴证,审计人员可以扮演这种角色,或者称为数据审计师。能对大数据真实性、可靠性进行鉴证的数据审计师应该是计算机科学、数学、统计学和审计学领域的专家,他们应有大数据分析和预测的评估能力。数据审计师应恪守公正的立场和严守保密的原则,面对海量的数据和纷繁复杂的相关关系,选取分析和预测工具,以及解读数据及数据计算结果是否真实、可靠。一旦出现争议,数据审计师有权审查与分析结果相关的运算法则、统计方法以及数据采集、挖掘和处理过程。数据审计师的出现是为满足以市场为导向来解决数据真实性、可靠性问题的需求,这与20 世纪初期为了处理财务信息虚假而出现的审计人员一样,都是为了满足新需求而出现的。
三、大数据挖掘
数据的价值只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。在业界,全球著名的Google、EMC、惠普、IBM、微软等互联网公司都已经意识到大数据挖掘的重要意义。上述IT 巨头们纷纷通过收购大数据分析公司,进行技术整合,希望从大数据中挖掘更多的商业价值。数据挖掘通常需要遍历训练数据获得相关的统计信息,用于求解或优化模型参数,在大规模数据上进行频繁的数据访问需要耗费大量运算时间。数据挖掘领域长期受益于并行算法和架构的使用,使得性能逐渐提升。过去15 年来,效果尤其显著。试图将这些进步结合起来,并且提炼。GPU平台从并行上得到的性能提升十分显著。这些GPU平台由于采用并行架构,使用并行编程方法,使得计算能力呈几何级数增长。即便是图形处理、游戏编程是公认的复杂,它们也从并行化受益颇多。研究显示数据挖掘、图遍历、有限状态机是并行化未来的热门方向。MapReduce 框架已经被证明是提升GPU 运行数据挖掘算法性能的重要工具。D.Luo 等提出一种非平凡的策略用来并行一系列数据挖掘与数据挖掘问题,包括一类分类SVM 和两类分类SVM,非负最小二乘问题,及L1 正则化回归(lasso)问题。由此得到的乘法算法,可以被直截了当地在如MapReduce 和CUDA 的并行计算环境中实现。K.Shim 在MapReduce 框架下,讨论如何设计高MapReduce 算法,对当前一些基于MapReduce 的数据挖掘和数据挖掘算法进行归纳总结,以便进行大数据的分析。Junbo Zhang 等提出一种新的大数据挖掘技术,即利用MapRedue 实现并行的基于粗糙集的知识获取算法,还提出了下一步的研究方向,即集中于用基于并行技术的粗糙集算法处理非结构化数据。F.Gao 提出了一种新的近似算法使基于核的数据挖掘算法可以有效的处理大规模数据集。当前的基于核的数据挖掘算法由于需要计算核矩阵面临着可伸缩性问题,计算核矩阵需要O(N2)的时间和空间复杂度来计算和存储。该算法计算核矩阵时大幅度降低计算和内存开销,而且并没有明显影响结果的精确度。此外,通过折中结果的一些精度可以控制近似水平。它独立于随后使用的数据挖掘算法并且可以被它们使用。为了阐明近似算法的效果,在其上开发了一个变种的谱聚类算法,此外设计了一个所提出算法的基于MapReduce 的实现。在合成和真实数据集上的实验结果显示,所提出的算法可以获得显著的时间和空间节省。Christian Kaiser 等还利用MapReduce 框架分布式实现了训练一系列核函数学习机,该方法适用于基于核的分类和回归。Christian Kaiser 还介绍了一种扩展版的区域到点建模方法,来适应来自空间区域的大量数据。Yael Ben-Haim 研究了三种MapReduce 实现架构下并行决策树分类算法的设计, 并在Phoenix 共享内存架构上对SPRINT 算法进行了具体的并行实现。F.Yan 考虑了潜在狄利克雷分配(LDA)的两种推理方法——塌缩吉布斯采样(collapsed Gibbssampling,CGS)和塌缩变分贝叶斯推理(collapsedvariational Bayesian,CVB)在GPU 上的并行化问题。为解决GPU 上的有限内存限制问题,F.Yan 提出一种能有效降低内存开销的新颖数据划分方案。这种划分方案也能平衡多重处理器的计算开销,并能容易地避免内存访问冲突。他们使用数据流来处理超大的数据集。大量实验表明F.Yan 的并行推理方法得到的LDA 模型一贯地具有与串行推理方法相同的预测能力;但在一个有30 个多核处理器的GPU 上,CGS 方法得到了26倍的加速,CVB 方法得到了196 倍的加速。他们提出的划分方案和数据流方式使他们的方法在有更多多重处理器时可伸缩,而且可被作为通用技术来并行其它数据挖掘模型。Bao-Liang Lu 提出了一种并行的支持向量机,称为最小最大模块化网络(M3),它是基“分而治之”的思想解决大规模问题的有效的学习算法。针对异构云中进行大数据分析服务的并行化问题G.Jung 提出了最大覆盖装箱算法来决定系统中多少节点、哪些节点应该应用于大数据分析的并行执行。这种方法可以使大数据进行分配使得各个计算节点可以同步的结束计算,并且使数据块的传输可以和上一个块的计算进行重叠来节省时间。实验表明,这种方法比其他的方法可以提高大约60% 的性能。在分布式系统方面,Cheng 等人 提出一个面向大规模可伸缩数据分析的可伸缩的分布式系统——GLADE。GLADE 通过用户自定义聚合(UDA)接口并且在输入数据上有效地运行来进行数据分析。文章从两个方面来论证了系统的有效性。第一,文章展示了如何使用一系列分析功能来完成数据处理。第二,文章将GLADE 与两种不同类型的系统进行比较:一个用UDA 进行改良的关系型数据库(PostgreSQL)和MapReduce(Hadoop)。然后从运行结果、伸缩性以及运行时间上对不同类型的系统进行了比较。
四、总结 大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通
过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。
参考文献
秦荣生.大数据、云计算技术对审计的影响研究 何清.大数据与云计算
张为民.云计算: 深刻改变未来
文峰.云计算与云审计———关于未来审计的概念与框架的一些思考
Big data and cloud computing Big Data(Big Data)in recent years, more and more occasions, the concept is mentioned more and more people, And often, and cloud computing together, what is the relationship between cloud computing and big data become a hot topic.this Special report contains the following four aspects: 1.The value of big data;2.Big data challenge;3.Big data research;4.Cloud computing is the mainstream way of data mining.Through this report on our understanding of big data, as well as the understanding of the value of big data, large data processing and mining technology, large data mainly focus on “data”, provide the technology and methods of data collection, mining and analysis;Cloud computing technology focusing on “computing”, providing IT solutions.Big data and cloud computing technology can promote the development of continuous audit mode, the overall audit mode of application, the audit results of comprehensive application, the application of related evidence, the development of efficient data audit and the development of large data auditor.Strengthen big data and cloud computing technology measures of audit applications include set up long-term development strategy, accelerate the construction of the audit regulations, establish a platform, to strengthen research and development and improve the utilization ability.Keywords: big data cloud computing data mining impact on the audit policy Suggestions
第五篇:云计算总结
云计算总结
(2009-10-22 00:02:46)转载▼
标签: 分类: 教育技术学基础云计算 理论
云计算是在网格计算之后06年开始流行起来的一个名词,以下是我针对云计算的基本内容做一个总结:
一、云计算的概念:
到目前为止,云计算还没有一个统一的定义。IBM,Google,Microsoft,SUN,Amazon等研究组织和相关厂家,依据各自的利益和各自不同个的研究视角都给出了对云计算的定义和理解。
IBM公司于2007年宣布了蓝云计划,在IBM的技术白皮书中“Cloud Computing”中云计算的定义如下:“云计算一词用来同时描述一个系统平台或者一种类型的应用程序。一个云计算的平台按需进行动态的部署(provision)、配置(configuration)、重新配置(reconfigure)以及取消服务(deprovision)等。在云计算平台中的服务器可以是物理的服务器或者虚拟的服务器。高级的计算云通常包含一些其他的计算资源,例如存储区域网络(SANs),网络设备,防火墙以及其他安全设备等。云计算在描述应用方面,它描述了一种可以通过互联网Internet进行访问的高扩展的应用程序。
“云使用”是大规模的数据中心以及功能强劲的服务器来运行网络应用程序与网络服务。任何一个用户可以通过合适的互联网接入设备以及一个标准的浏览器就能够访问一个云计算应用程序。”
上面的定义给出了云计算的两个方面的含义:一方面描述了基础设施,用来构造应用程序,其地位相当于PC机上的操作系统;另一方面描述了建立在这种基础设施之上的云计算应用。
还有以下分别从模型、模式等方面对云计算的定义
云计算是一种新兴的计算模型:用户可以利用该模型在任何地方通过连接的设备访问应用程序,应用程序位于可大规模伸缩的数据中心,计算资源可在其中动态部署并进行共享;或是脱离了本地计算且计算任务分配到远端大型的统一的计算平台上的模型
云是由一系列相互联系并且虚拟化的计算机组成的并行和分布式系统模式。基于这样云的计算称为云计算。简单地说,云计算就是指基于互联网络的超级计算模式。即把存储于个人电脑、服务器和其他设备上的大量存储器容量和处理器资源集中在一起,统一管理并且协同工作。
云计算(Cloud Computing)是分布式处理(Distributed Computing)、并行处理(Parallel Computing)和网格计算(Grid
Computing)的发展,或者说是这些计算机科学概念的商业实现。
根据上面的引用内容,我认为云计算的功能类似于Telenet,只是Telenet中的远程计算机变成了云计算服务器,用户只需通过PC机、笔记本或智能手机联通网络,在云计算平台上实现自己的要求即可。而且用户端口只需要有基本的输入输出界面,网络连接设备即可,不需用安装各种各样的软件;用户的数据存储在云计算数据中心,不用再担心如果硬盘出问题数据丢失的问题。即随时随地只要能上网就能应用各种各样的服务,如同钱庄、银行、发电厂等。用一个图片来解释如下:
二、云计算的特征
要想成为云计算,必须具备以下五个方面的特征:1)水平可扩展性,即将多片云连接并整合为一片云来工作的能力。
2)垂直可扩展性,即通过增强云中单个或多个节点的性能来提升整个云性能的能力。3)以互联网为中心。云平台运营商一互联网为中心,将存储和运算能力分布在网络所连接的各个节点之中,从而弱化终端的计算能力,使互联网的架构由“服务器+客户端”向“云服务平台+客户端”演进。4)虚拟化,将底层的硬件,包括服务器、存储于网络设备全面虚拟化,建立起一个共享的可以按需分配的基础资源池。5)用户透明,包括操作透明和技术透明。操作透明,即对处在云计算环境下的用户来说,在云中进行计算操作或数据存储操作与其在本机上进行相应的操作是没有区别的;技术透明,指用户不用关心云中的节点是如何协同工作的以及怎样扩展的。
三、云计算的应用类型
Saas(软件即服务)——通过浏览器把程序传给成千上万的用户。
Paas(平台即服务)——把开发环境作为一种服务来提供。Iaas(基础设施即服务)
1、SaaS软件即服务
这类云计算是通过WEB浏览器来向成千上万个用户提供某种单一的软件应用。在用户看来,这样他们不需要事先购买服务器设备或是软件授权;而对于厂商来说,与常规的软件
服务模式相比,仅提供一项应用的成本也要低得多。一个典型的针对企业级应用的例子就是Salesforce.com的CRM。另外,SaaS在人力资源软件应用中也比较普遍,甚至它已经开始向ERP领域拓展,如Workday。而且,谁又能料到,GoogleApps和Zoho Office这种同样基于SaaS的“桌面”应用会突然火爆起来呢?
2、公用/效用计算
公用/效用计算虽已不是新颖的概念了,但如今它正被付予新的含义。Amazon的AWS、Sun的存储云、IBM的“蓝云”以及其他厂商所共同倡导的的云计算,正在为整个业界提供所需要的存储资源和虚拟化服务器等应用。早期的企业主要将公用/效用计算作为一种补充手段,不会应用在关键性任务需求上。但是时至今日公用/效用计算逐渐在数据中心开始占据一席之地。一些厂商开始帮助企业用户创建虚拟的数据中心,诸如3Tera的AppLogic,Cohesive Flexible Technologies的Elastic Server on Demand(可按需实现弹性扩展的服务器)。Liquid Computing公司的LiquidQ也有类似的服务,能帮助企业将内存、I/0、存储和计算容量通过网络集成为一个虚拟的资源池来使用。
云计算如今已成为又一风靡的概念。与很多同行一样,Gartner资深分析师Ben Pring认为:“云计算就像法国大餐一
样正被人们津津乐道。”然而,问题在于(类似Web 2.0一样),似乎每个人对云计算的定义都有不同之处。
3、云计算领域的WEB服务
与SaaS有些类似,WEB服务厂商也是通过提供API让开发人员来开发互联网应用,而不是自己来提供功能全面的应用软件。这种云计算的服务范围非常广泛,从分散的商业服务(诸如Strike Iron和Xignite),到GoogleMaps、ADP薪资处理、美国邮政服务、Bloomberg和常规信用卡处理服务等的全套API服务。
4、平台即服务
平台即服务(Platform as a service)是软件即服务(SaaS)的变种,这种形式的云计算将开发环境作为服务来提供给用户。也就是说,用户可以在供应商的基础架构上创建自己的应用软件来运行,然后通过网络直接从供应商的服务器上传递给其他用户(例如Legos)。然而,这类服务会受到厂商的设计规定与容量限制,用户也因此没有足够的自由。这类云计算服务包括Salesforce.com的Force.com、Coghead和全新的GoogleApp Engine。
5、管理服务供应商(MSP)
管理服务(managed service)是云计算最古老的形式之一,它面向的IT管理人员而不是最终用户,例如用于电子邮件的病
毒扫描服务,还有应用软件监控服务等。由SecureWorks、IBM和Verizon公司提供的管理安全服务就可归为此类,还包括目前被Google收购的Postini以云为基础的反垃圾邮件服务。MSP的其他产品还包含桌面管理服务,诸如CenterBeam和Everdream提供的产品。
6、服务商业平台
这种云计算服务融合了SaaS和MSP,它实际上为用户提供了一种交互性服务平台。这在日常的商业贸易领域是非常普遍的,比如,某种消费管理系统可以让用户从一个网络平台上订购旅行或秘书类服务,而且服务的配送实现方式和价格也都是由用户事先设定好的。其非常典型的例子是Rearden Commerce和Ariba。
7、云计算集成
云计算服务的整合还只是刚刚开始。SaaS供应商OpSource最近就推出了OpSource Services Bus,它使用了一家叫Boomi的小公司的云计算集成技术。另一家SaaS 供应商Workday最近也收购了该领域的另一家公司CapeClear。CapeClear提供的是针对B2B集成的ESB(enterprise service bus,企业服务总线)。另外,2005开始兴起的Grand Central,则想成为一种通用的“云计算总线”(bus in the cloud),通过把多家SaaS供应商联合在一起来为客户提供完整的服务。
四、技术挑战
1、高可靠的系统技术——大规模的集成计算机系统;容错技术,即单节点的错误不应影响系统运行,能够检查错点,具有重启技术。
2、可扩展的并行计算技术——云计算的核心技术
3、海量的数据挖掘存储和管理技术——并行计算,加速数据处理,需要新的思路、方法、算法;将集群数据库扩展到成千上万个节点还是被类似于google文件系统的新技术替代?
4、数据安全技术——数据银行;安全性,保密性,访问权限的风险性;隐私和可靠性。
关于云计算还有很多内容,在以后的学习中我将慢慢补充。