第一篇:初一数学初二数学学习规划
初一数学:夯实基础巩固提高
告别了六年级最后一个六一儿童节,各位同学走进了初中的校园,成为一名初中生。课程任务的突然加重让许多孩子变得茫然,不知道自己的重点该放在哪里!不知道初中的数学课程怎么才能学好„„
初一数学看似简单,但却是非常基础,试想如果一座大楼地基不稳,如何才能经历风雨的洗礼呢?而且初一数学课程知识点非常多,学生可能无法完全顾及,无法完全消化吸收,这样会使得成绩总是徘徊在70,80分左右,为初二初三成绩退步埋下了隐患。
所以针对初一数学的学习,我们要三步走:
一、课前预习,了解课程内容,并了解重点、难点,课上认真听讲,记下老师的知识笔记,经典例题,积极练习随堂作业,当堂知识当堂吸收。
二、放学回家做一套课外练习,如“五年中考三年模拟”、“启东作业本”,并让家长帮忙对改,纠正提高!如果有不会的题目,第二天问老师问同学寻求解决。错误的题目,建立错题本,抄错题,隔三天后主动订错。
三、跟随新东方名师,周末同步提高。新东方秋季初一数学同步提高课程,主要针对学生在校学习情况,解决重点难点把握不准,掌握不牢,作业问题不断的情况,与学生在校课程同步,强化重点难点,夯实基础,解决作业中的易错点,并在此基础上加大练习力度,拓展提高,展望中考!
初二数学:难度提升重点明确
学生进入初二,随着物理的加入课程任务进一步加重,加之逆反,厌学,沉迷网络等心理状态的出现,使得初二成为学生成绩的分水岭。很多成绩不错的孩子,因为种种原因成绩下降,家长的督促适得其反,一时间不知如何是好„„
解决初二的问题其实不难只要我们做到:
一、把握重点,有的放矢
勾股定理,四边形,还有一次函数是初二数学上册的三大重点章节,对于重点章节重点知识一定要花大力气,在学到这部分内容时,至少要做两份相应的练习,多见题,多思考,这样才能心中有数。
二、亲近老师,亲近同学
知识难度的加大,让很多同学对数学产生了畏惧心理,可是也有这样一些同学,他们迎难而上,积极思考,问老师,问同学,事半功倍。老师经验丰富,往往一语道破,让你收获良多,同学思路开阔,经常会让你收获意想不到的解题方法。这样学习路上有良师益友陪伴,怎还会孤单寂寞。
三、家长关心,信心更足
学习本是学生的事情,可是如果每天在学生为学习愁眉不展时,能得到来自家长的关怀,那是多么幸福事情啊!所以,家长在初二时势必要给孩子更多的关怀与支持,不仅仅衣食住行,更多的是孩子的心理变化,要能够看出孩子的难言之隐!要能在孩子学习时,自己也能拿本自己喜欢的书阅读,给孩子一个良好的学习环境,而不是每天守在电视机前。
四、来新东方,学精知识
新东方初二数学同步提高班,旨在为孩子在周末时能够在名师的带领下,复习一周所学,做题强化提高。利用新东方优秀的教学资源,保障孩子能够学以致用,能真正的将学习内容转化成考试分数,让每一个周末都能够学的开心,过的愉快!
第二篇:初一数学学习
学习方法技巧:如何做数学课堂笔记
听课时,我们应该如何做笔记?值得我们思考。
学习数学做好课堂笔记至关重要,那么如何做数学课堂笔记呢?
一、记提纲老师讲课大多有提纲,并且讲课时老师会将备课提纲书写在黑板上,这些提纲反映了授课内容的重点、难点,并且有条理性,因而比较重要,故应记在笔记本上。
二、记问题将课堂上未听懂的问题及时记下来,便于课后请教同学或老师,把问题弄懂弄通。
三、记疑点对老师在课堂上讲的内容有疑问应及时记下,这类疑点,有可能是自己理解错误造成的,也有可能是老师讲课疏忽造成的,记下来后,便于课后与老师商榷。
四、记方法勤记老师讲的解题技巧、思路及方法,这对于启迪思维,开阔视野,开发智力,培养能力,并对提高解题水平大有益处。
五、记总结注意记住老师的课后总结,这对于浓缩一堂课的内容,找出重点及各部分之间的关系
数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
第三篇:初一,初二数学常用定理及公式
初
一、初二数学常用定理及公式过两点有且只有一条直线两点之间线段最短同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行如果两条直线都和第三条直线平行,这两条直线也互相平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行
12两直线平行,同位角相等两直线平行,内错角相等两直线平行,同旁内角互补定理 三角形两边的和大于第三边推论 三角形两边的差小于第三边三角形内角和定理 三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角全等三角形的对应边、对应角相等
22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
推论1 三个角都相等的三角形是等边三角形
推论 2 有一个角等于60°的等腰三角形是等边三角形
在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
直角三角形斜边上的中线等于斜边上的一半
定理 线段垂直平分线上的点和这条线段两个端点的距离相等
逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形
定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1平行四边形的对角相等
53平行四边形性质定理2平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
一)运用公式法:
我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。
(二)平方差公式
1.平方差公式
(1)式子: a2-b2=(a+b)(a-b)
(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。
(三)因式分解
1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2
a2-2ab+b2 =(a-b)
2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点
①项数:三项
②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法
我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m +n)
做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
原式=(am +an)+(bm+ bn)
=a(m+ n)+b(m+ n)
=(m +n)•(a +b).
这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.
(六)提公因式法
1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.
2.运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:
1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.
2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:
① 列出常数项分解成两个因数的积各种可能情况;
②尝试其中的哪两个因数的和恰好等于一次项系数.
3.将原多项式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
1.把一个分式的分子与分母的公因式约去,叫做分式的约分.
2.分式进行约分的目的是要把这个分式化为最简分式.
3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积
形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.
4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.
6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.
(八)分数的加减法
1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.
3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.
4.通分的依据:分式的基本性质.
5.通分的关键:确定几个分式的公分母.
通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.
6.类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。
8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号.
10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分.
11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化.
12.作为最后结果,如果是分式则应该是最简分式.
(九)含有字母系数的一元一次方程
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但
必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n为奇数)
全等三角形
边边边 边角边角边角 角角边斜边直角边 全等三角形对应边相等,对应角
相等
第四篇:初二数学学习计划
初二数学学习计划表
第一课时:分式
1、理解分式的概念,懂得如何判断哪些是分式?哪些是整式?
2、掌握分式应满足什么条件?
3、掌握分式的基本性质及简单的约分、通分
第二课时:分式的运算
1、掌握分式的乘除法运算法则
2、会进行简单的乘除法分式运算
3、掌握分式的加减法运算法则
4、会根据分式相关法则进行运算
第三课时:整式指数幂
1、掌握基本的整式指数幂的性质
2、会根据性质进行运算
3、会利用性质解决实际应用
第四课时:分式方程
1、理解分式方程的概念
2、掌握化为一元一次方程的分式方程的解法。
3、学会如何检验方程及分式方程的运用
第五课时:复习第十六章所学内容,通过题目掌握分式的基本性质及其相关的运算.第六课时:反比例函数
1、理解反比例函数的意义
2、学习反比例函数的概念
3、掌握反比例函数图象的画法及其性质
第七课时:实际问题与反比例函数
1、会运用反比例函数解决实际问题
第八课时:复习第十七章所学内容,掌握反比例函数图像、性质;
第九课时:勾股定理
1、探索直角三角形的三边关系
2、学习勾股定理
3、会利用勾股定理进行简单的运算
1、学会利用三边关系判断一个三角形是否为直角三角形
2、会利用勾股定理进行简单的应用
第十一课时:复习第十八章所学内容,掌握勾股定理及其逆定理
第十二课时:平行四边形
1、掌握平行四边形的定义和性质
2、会对平行四边形进行判定
第十三课时:特殊的平行四边形
1、掌握特殊平行四边形的性质
2、会对特殊平行四边形进行判定
第十四课时:平行四边形的应用
1、掌握简单平行四边形的应用
2、掌握简单的特殊平行四边形的应用
第十五课时:梯形
1、掌握梯形的判定和性质
2、掌握等腰梯形的判定、性质和简单应用
第十六课时:复习第十九章所学内容,掌握平行四边形、特殊四边形及梯形、等腰梯形性质与判定
第十七课时:数据描述
1、理解平均数、中位数和众数所表达的含义
2、会求平均数、中位数与方差
3、区别算术平均数与加权平均数之间的联系和区别
第十八课时:全面进行总复习,通过题目的练习和讲解,掌握初二下册基本内容。
第五篇:初二数学学习计划
初二数学学习计划表
第一课时:分式
1、理解分式的概念,懂得如何判断哪些是分式?哪些是整式?
2、掌握分式应满足什么条件?
3、掌握分式的基本性质及简单的约分、通分
第二课时:分式的运算
1、掌握分式的乘除法运算法则
2、会进行简单的乘除法分式运算
3、掌握分式的加减法运算法则
4、会根据分式相关法则进行运算
第三课时:整式指数幂
1、掌握基本的整式指数幂的性质
2、会根据性质进行运算
3、会利用性质解决实际应用
第四课时:分式方程
1、理解分式方程的概念
2、掌握化为一元一次方程的分式方程的解法。
3、学会如何检验方程及分式方程的运用
第五课时:复习第十六章所学内容,通过题目掌握分式的基本性质及其相关的运算.第六课时:反比例函数
1、理解反比例函数的意义
2、学习反比例函数的概念
3、掌握反比例函数图象的画法及其性质
第七课时:实际问题与反比例函数
1、会运用反比例函数解决实际问题
第八课时:复习第十七章所学内容,掌握反比例函数图像、性质;
第九课时:勾股定理
1、探索直角三角形的三边关系
2、学习勾股定理
3、会利用勾股定理进行简单的运算
第十课时:勾股定理的逆定理
1、学会利用三边关系判断一个三角形是否为直角三角形
2、会利用勾股定理进行简单的应用
第十一课时:复习第十八章所学内容,掌握勾股定理及其逆定理
第十二课时:平行四边形
1、掌握平行四边形的定义和性质
2、会对平行四边形进行判定
第十三课时:特殊的平行四边形
1、掌握特殊平行四边形的性质
2、会对特殊平行四边形进行判定
第十四课时:平行四边形的应用
1、掌握简单平行四边形的应用
2、掌握简单的特殊平行四边形的应用
第十五课时:梯形
1、掌握梯形的判定和性质
2、掌握等腰梯形的判定、性质和简单应用
第十六课时:复习第十九章所学内容,掌握平行四边形、特殊四边形及梯形、等腰梯形性质与判定
第十七课时:数据描述
1、理解平均数、中位数和众数所表达的含义
2、会求平均数、中位数与方差
3、区别算术平均数与加权平均数之间的联系和区别
第十八课时:全面进行总复习,通过题目的练习和讲解,掌握初二下册基本内容。