第一篇:《多边形的内角和》教学反思
《多边形的内角和》教学反思
《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成,《多边形的内角和》教学反思。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。
首先,在这节课的设计中,我大胆的尝试并使用网络教学。在我最初的设计过程中,按照常规的方法引导学生先用分割的方法得到四边形内角和,再探究多边形的内角和。但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好。后来改为不做任何方法的指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究,教学反思《《多边形的内角和》教学反思》。总之我对探究课有了更深刻的理解。
这节课的第一个环节:引入,我认为比较精彩。利用诸葛八卦村作为情景引入,通过介绍他的三奇,一下子吸引学生的注意力。这样这节课的开头就像一块无形的“磁铁”,虽然只有短短的一两分钟,却有效的调动了学生的情绪,打动学生的心灵,形成良好的课堂气氛切人口。第三个环节:分层练习。充分发挥了网络课的优势,真正做到了分层。
其次,在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。
总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。
第二篇:《多边形内角和》教学反思
《7.3.2多边形内角和》教学反思
钦州市浦北外国语学校
本节课,我先从问题“把一个四边形纸片剪去一个角后会得到一个什么图形呢?”入手,让学生思考,通过验证得到“五边形、四边形、三角形”这三个答案,由此让学生知道一些数学问题可以有多种答案,从而激发学生学习新知识的欲望。然后让学生回顾三角形内角和等于180°,为后面“转化”作铺垫。接着让学生经历三个探究活动得出多边形内角和公式。
探究一:任意一个四边形的内角和是多少?学生以小组为单位,通过自己亲手操作、找结论,通过讨论、交流得到拼图法、度量法,以及把四边形分割成三角形的方法,让学生体会四种分割方法,有利于深入领会转化思想,既激发了他们的学习兴趣,又培养了他们合作交流的能力;
探究二:让学生选择自己认为最好的一种分割方法求五边形、六边形、七边形的内角和,鼓励学生用多种方法求它们的内角和,通过图形的复杂性,再一次让学生经历转化的过程,加深对转化思想的理解。同时关注学生用类比的方法解决问题,进一步提高学生的推理表达能力。
探究三:n边形内角和是多少?学生很快借助求任意五边形、六边形、七边形内角和的方法推出n边形的内角和等于:
(n-2)·180°,180°n-360°,(n-1)·180°-180°,并由此引导学生通过观察发现上面三个式子是相等的,是可以互相转化的,通过比较还发现(n-2)·180°这个式子形式较简单,所以把它作为多边形的内角和公式,由此获得了新知。
一节课下来,我觉得整个思路还是很连贯的,也是很清晰的。新的课 1
程标准强调教学不能把知识的结果强加给学生,不能单纯地只让学生掌握知识的结果,而应重视获取知识的过程。因此,本课我借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生‘的“解放学生的手,解放学生的大脑,解放学生的时间”思想,把更多的机会、更多的时间让给学生,让学生分小组交流与探究,然后由各小组代表汇报探索的思路与方法,讲明理由,学生汇总所探索出的不同方法,让学生来发现、归纳和总结规律。一个结论若由教师“给”只需用1分钟,而真正放手让学生自己去“取”的时间就可能是其数倍,甚至几十倍。这样做让学生的学习能力确实得到了锻炼,学生的学习热情提高了,小组主动合作了,同学敢于上台讲题了,这样做发掘了学生的潜能和创造力,培养学生的探索求知的精神。具体还表现在:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者,在引导学生通过观察、探究、讨论后,发现结论,展示成果,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变,学生的角色从学会转变为会学。本节课学生不是停留在学会本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变,整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”、“提问”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
整节课虽然让学生通过动手操作体验了多边形内角和定理的形成过
程,但在具体的课堂实施时还存在一些不足之处:
(1)本课较多的着眼于课堂形式的多样化及学生能力(如:合作、探究、交流等)的培养,而忽视了教学中最重要的知识点的落实。学生做练习的机会不多,时间偏少,学生没有板演的机会。
(2)我虽然本着以学生为本的原则,但是没有兼顾个体差异,基础较薄弱的学生也许不能真正理解并运用多种方法去求多边形的内角和。
最后,我将在今后的教学中,继续为学生提供更多自主探究知识的机会,发展每位学生的数学才能,让自己的课堂教学更有魅力。
第三篇:多边形内角和教学反思
《多边形内角和》教学反思
歇马镇中心学校 吴秀珍
《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。
在这节课的设计中,我采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究。总之我对探究课有了更深刻的理解。
在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。
总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。
第四篇:《多边形内角和》教学设计及反思
《多边形内角和》教学设计及反思
一、教材分析
本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。
二、教学目标
1、知识目标:了解多边形内角和公式。
2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。
4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。
三、教学重、难点
重点:探索多边形内角和。
难点:探索多边形内角和时,如何把多边形转化成三角形。
四、教学方法:引导发现法、讨论法
五、教具、学具
教具:多媒体课件
学具:三角板、量角器
六、教学媒体:大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思 师:大家都知道三角形的内角和是180º,那么四边形的内角和,你知道吗?
活动一:探究四边形内角和。
在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360º。
方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360º。
接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?
活动二:探究五边形、六边形、十边形的内角和。学生先独立思考每个问题再分组讨论。
关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。
(2)学生能否采用不同的方法。学生分组讨论后进行交流(五边形的内角和)
方法1:把五边形分成三个三角形,3个180º的和是540º。方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。
方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。师:你真聪明!做到了学以致用。
交流后,学生运用几何画板演示并验证得到的方法。
得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。
(二)引申思考,培养创新
师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。思考:(1)多边形内角和与三角形内角和的关系?
(2)多边形的边数与内角和的关系?
(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。
发现2:多边形的边数增加1,内角和增加180º。
发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。
得出结论:多边形内角和公式:(n-2)·180。
(三)实际应用,优势互补
1、口答:(1)七边形内角和()
(2)九边形内角和()
(3)十边形内角和()
2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?
(2)一个多边形的内角和是1440º,且每个内角都相等,则每个内角的度数是()。
3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?
(四)概括存储
学生自己归纳总结:
1、多边形内角和公式
2、运用转化思想解决数学问题
3、用数形结合的思想解决问题
(五)作业:练习册第93页1、2、3
八、教学反思:
1、教的转变
本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。
2、学的转变 学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。
3、课堂氛围的转变
整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。
第五篇:多边形的内角和教学反思
多边形的内角和教学反思
(一)《多边形内角和》这节课,我基本上完成了教学任务,教学目标基本达成。学生明确了转化的思想是数学最基本的思想方法,知道研究一个新的问题要从简单的已知入手,能够用多种方法探究出多边形的内角和,并且能够运用多边形的内角和公式解决相关问题。同时也有几个地方引起了我深深的思考。
首先,在这节课的设计中,我大胆的尝试并使用网络教学。在我最初的设计过程中,按照常规的方法引导学生先用分割的方法得到四边形内角和,再探究多边形的内角和。但是网络教学教学就成为一种形式,没有充分的发挥它的作用,效果也不是很好。后来改为不做任何方法的指导,采用完全开放的探究,每步探究先让学生尝试,把学生推到主动位置,放手让学生自己学习,教学过程主要靠学生自己去完成,尽可能做到让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。要充分体现学生学习的自主性:规律让学生自主发现,方法让学生自主寻找,思路让学生自主探究,问题让学生自主解决。课前我很担心,但事实说明,这种探究才是真正的让学生去尝试,去挑战。因此,在课堂教学中选用探究式,可以让学生在自主学习中探究,在质疑问题中探究,在观察比较中探究,在矛盾冲突中探究,在问题解决中探究,在实践活动中探究。总之我对探究课有了更深刻的理解。
这节课的第一个环节:引入,我认为比较精彩。利用诸葛八卦村作为情景引入,通过介绍他的三奇,一下子吸引学生的注意力。这样这节课的开头就像一块无形的“磁铁”,虽然只有短短的一两分钟,却有效的调动了学生的情绪,打动学生的心灵,形成良好的课堂气氛切人口。第三个环节:分层练习。充分发挥了网络课的优势,真正做到了分层。
其次,在探究这个环节中,有一个关键的地方处理的很不到位。即:当一个学生提出分割方法时,这时没有及时把握住这个时机,让更多的学生去尝试这种方法,而是让他自己把所得到的结论直接告诉大家,因此没有让更多的学生去体验转化的思想,我认为这节课最大的败笔就在于此。课下我反复的思考出现问题的原因,是因为对学生估计的不足造成的。我总认为,在教师不指导的情况下,不会有学生想到分割这种方法,当课堂上学生出现这种方法时,我就有点激动,顺着学生的思路走了,而忽视了大多数。因此,在备课时一定要更为细致的研究学生可能出现的情况,在上课时才能应对自如。
总之,这节课我不是很满意,细分析,偶然当中也包含着必然。新课标要求数学教学过程中要注重学生学习的过程,而知识的学习是一个建构过程,教师通过以组织者、合作者、和引导者的身份,根据学生的具体情况,对教材进行再加工,有创造地设计教学过程,在教学设计中要求新求变。用“新”和“变”来激发学生学习数学的欲望和兴趣。根据不同的教学内容选择不同的教学模式。因为只有这样,课堂教学才能焕发出生机和活力。教师在这个过程中要为学生营造一个积极的、宽松的教学氛围。所以,要做一个新时代的教师,除具备一定的专业知识外,还要具备领导才能,能够驾御整个课堂。发现了自己的不足就意味着自己的进步。在今后的教学中,我会更加努力,让我的每一位学生在我的每一节课上都能够有新的收获。
多边形的内角和教学反思
(二)本节课是在学生已有知识经验基础上,设计了一系列探究活动,让学生经历观察、思考、推理、归纳的过程,体会从特殊到一般的探寻规律方法。教师在教学中力图体现以下两点思考。
1.经历“猜想+验证”,体会转化思想的运用。
在探究新知之初,教师鼓励学生猜想任意四边形的内角和,并动手验证。学生很快呈现的方法精彩而有丰富,在辨析的过程中,充分感受到转化的思想在解决问题中的作用。他们收获的不仅是数学知识,更重要的是习得了解决问题的策略和方法。
2.在算术的情境中,发展学生的代数思维。
教学从熟悉的生活情境引入,较好地激发了学生的探究欲望。()在学会用转化的思想初步探索四边形内角和之后,教师组织学生继续探究五边形、六边形等的内角和,同时不断引导学生观察和发现:每次分割出的三角形个数与多边形边数之间的关系,并将这一关系符号化、一般化、结构化,从而概括出n边形的内角和计算公式。在探索新知的过程中,发展了学生的代数思维。
正如知名华人数学家、美国特拉华大学数学系和教育学院教授蔡金法说过:“帮助学生在小学阶段形成代数思维的习惯,是更有效减缓或消除日后他们对代数学习的抵制的方法”。如果我们能在平时的教学中,结合算术情境中相关联的素材渗透代数思维,一定能帮助学生积累丰富的代数学习经验,并为他们打通算术和代数思维的学习通道。
多边形的内角和教学反思
(三)《探索多边形的内角和》一课终于上完了,然而对这一课的思考才刚刚开始,正如周梦莉校长所说,我们的目标不是这一课本身,而是对于这一课的研究给我们数学教学的一点启发。
有幸与实验小学赵丽老师同时选中《多边形的内角和》这一课,但我们从不同角度不同方式对它进行了解读。20世纪90年代,因为农村小学学生人数的急剧减少,我们学校在课堂上尝试性的进行了分层异步教学,在同一节课中,根据学生认知水平差异,把学生分成A,B两组,在组内又依托知识水平相近原则,把3,4名学生分为一个小组,通常采用合——分——合的模式进行教学,即,当A组同学教学时,B组自学,反之亦然,经过与普通班的对比研究,发现复式班学生在学习效果上有着明显的成效。基于这一基础,我采用分层的模式来进行多边形的内角和的教学,这一尝试,让我对自己的数学教学有了如下反思:
1,以经验为基础,让学生得到不同的发展。
基于学生的认知经验及活动经验,对学生进行分组,以期达到不同的学生在数学上得到不同程度的发展的目标,学习能力较强的同学要能吃饱,学习能力较弱的同学要在原有基础上有所进步。在实际教学中,对于A组和B组的学生,除了在教学形式上有所区别外,A组教学为主,B组自学为主,我在教学时间的分配上对AB组并没有显着区分,在以后的尝试探索中,我应对A组加以更细致的教学指导,对B组更大胆的放手,让学生上台说,做,教,减少B组的教学时间。
2,勇于放手,培养学生自学的能力。
在一开始设计B组的学习单时,即使B组同学学习能力较强,但出于对学生的担忧,担心学生想不到用分一分的方法,在学习单上,我引导学生,多边形能够分成几个三角形,内角和怎么算。而周校长建议我,是否能给学生更多的空间,把“小问题”变为“大问题”,直接提问学生,多边形的内角和是多少,让学生去尝试探索各种方法,而不仅局限于转化为三角形内角和的方法。在后来的实际教学中,采用了“大问题”的提问方式,我惊喜的发现,学生的探究自学能力比我预想的出色许多。
3,细节入手,培养学生良好习惯。
小学数学良好习惯的培养不仅对学生自身的数学学习有所裨益,对课堂教
效果的影响更是尤为明显。在分层教学的模式中,为避免AB组互相间的干扰,必须在课堂上对每组学生提出明确的要求,课前乃至平时都要对学生的学习习惯进行培养,这样才能让我们的数学老师对课堂全局的把握更加深刻,才能够让数学课堂井然有序,数学教学效果得到最大程度的保证。
“授人以鱼,不如授人以渔。”我们的数学分层教学不光是为了学生掌握某一定的知识,而是让学生在不同的学习方式中不断感悟体会,寻找适合自己的学习方法,最终以得到不同程度的发展。