第一篇:《多边形及其内角和》教案设计2
多边形的内角和教案
在新人教版教材中,《三角形》一章的章节结构是:“与三角形有关的线段”,“与三角形有关的角”,“多边形及其内角和”,“课题学习——镶嵌”。这种结构是一种专题式设计,以内角和为主题,先三角形内角和,再顺势推广到多边形内角和,最后将内角和公式应用于镶嵌。因此,多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习习近平面镶嵌的基础,也是今后学习空间几何的基础。学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,可以培养学生的探索精神与归纳能力,体会从简单到复杂,从特殊到一般和转化等重要的数学思想方法。
本课的教学目标如下:
1.掌握多边形的内角和公式,并能熟练运用。
2.通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。
3.通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
4.通过猜想,推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习热情。
因为本节课内容是探索多边形内角和公式,公式推导上采用引导探索法,公式应用上采用递进练习法。借助多媒体辅助教学,课前准备探究实验报告。
新课程理念下的课堂教学已由“关注知识”转向“关注学生”,由“给出知识”转向“引起活动”,由“完成教学任务”转向“促进学生发展”。我以学生原有的知识和经验为起点,以活动开展教学,在教学的各环节中对学生的活动过程进行评价,不但要关注结果,更重要的是关注学生的学习过程。关注学生能否积极主动参与,关注学生对有关问题的好奇心和求知欲,关注与伙伴间的合作意识和合作精神,评价小组成效与个人表现相结合。
在“创设情境,引入新课”时提出问题: 把一个长方形纸片剪去一个角还剩几个角?所得图形的内角和分别是多少度呢?在学生的回答中引出本课学习内容:多边形的内角和。因为学生前面已经学过三角形的有关知识,从学生熟悉的情境入手引入新知识, 再通过学生自己动手、动脑,启发了学生的思维:多边形与三角形有什么密切的联系呢? 渗透了本课一个非常重要的思想---转化。
在“合作交流,探索新知”这个环节,我设计了三个活动: 活动1:猜想验证四边形的内角和
学生已经掌握了三角形和特殊的四边形(如长方形、正方形)的内角和知识,已经意识到通过添加辅助线,将四边形转化为三角形,可以求出任意四边形的内角和。学生小组合作交流,在课前老师发给每个小组的“探究实验报告”上讨论并记录探究方法。在讨论的过程中,教师给出“自我评价标准”,给出了合格、良好、优秀的尺度,鼓励学生用多种方法解决问题,每个小组对照评价表给出评价。为了验证猜想是否正确,学生通过合作想出多种办法,体现探索活动的多元化、开放性和创造性,并通过展示探究实验报告、说明验证方法,培养学生的语言表达能力,同时学生在汇报交流中使问题逐渐明朗化,最终验证了自己的猜想。教师重点引导学生比较三种不同的分割方法,分别将四边形分成了几个三角形,如何利用三角形的内角和是180°得到四边形的内角和是360°,如何将四边形内角和的表示与边数n联系起来。让学生体会多种分割形式,有利于深入领会转化的本质——四边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。活动2:类比探索五边形、六边形、七边形的内角和
在四边形内角和探究的基础上,让学生自主探索五边形、六边形、七边形的内角和。由于分割方法与四边形相同,学生比较容易理解和掌握,把内角和的表示与边数n联系起来需要重复加深印象,也要写出表示过程,此时学生动手实践,自主探索的能力得到进一步的升华。教师用幻灯片提示三种不同的分割方法,并请做得快的学生下座位与老师一道帮助学习有困难的学生。活动2的设置为下面学生归纳n边形内角和与边数的关系准备好了素材。通过活动2的充分准备,再探索任意多边形的内角和公式,可以说是水到渠成。通过增强图形的复杂性,使学生的思维层层展开,逐渐深入,体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,加深对转化思想方法的理解。活动3:归纳总结n边形的内角和
接下来请同学们猜想n边形的内角和,并由三种分割方法得到验证,从而归纳出n边形的内角和公式(n-2)180°。
探究多边形内角和的过程,采用小组合作、动手操作和互动交流的形式,以三个活动模块展开教学。在学生合作探究、展示结论、自主验证、归纳总结的基础上,教师板书结论,演示课件。这种操作直观与课件直观相结合、猜想与验证相结合以及特殊与一般相结合的教学活动设计,为学生提供思考、尝试、探索、发现的机会,使学生以一个发现者的身份去探究知识,从而形成学生主动参与、自觉实践的氛围,使学生经历、体验、感悟,达到收获的目的。
本节课通过由浅入深的练习和灵活的变式,引导学生善于抓住图形的基本特征和题目的内在联系,达到触类旁通的效果,分层布置作业让“不同的学生在数学上得到不同的发展”。数学的学习要重视学习方法的指导。教师把课堂还给学生,让学生充分开展活动,合作交流、畅谈自己发现问题的过程,将更有利于学生的全面发展。
第二篇:《多边形及其内角和》教案设计1
多边形的内角和教案
[教学目标] 1.使学生了解多边形的内角、外角等概念.
2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点:
(1)多边形的内角和公式.(2)多边形的外角和公式.
2.难点:多边形的内角和定理的推导. [教学过程]
一、探究
1.我们知道三角形的内角和为180°.
2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.
3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.
从中你得到什么结论?
同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.
二、思考几个问题
1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?
3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?
综上所述,你能得到多边形内角和公式吗?
设多边形的边数为n,则
n边形的内角和等于(n一2)·180°.
想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)
分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.
如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.
A E341O2B5DC
分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠
1、∠
2、∠
3、∠4不是五边形的内角,应舍去.
∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°
用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.
EDA 12O
三、例题
34CB
例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.
分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.
BCA D
解:如图,四边形ABCD中,∠A+∠C=180°。
∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°
这就是说:如果四边形一组对角互补,那么另一组对角也互补.
例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角
和.六边形的外角和等于多少?
A B216F53CD4E
已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.
求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.
这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°. 解:∵六边形的任何一个外角加上它相邻的内角和为180°.
∴六边形的六个外角加上各自相邻内角的总和为6×180°.
由于六边形的内角和为(6—2)×180°=720°
∴它的外角和为6×180°一720°=360°
如果把六边形横成n边形.(n为不小于3的正整数)
同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
四、课堂练习
课本P89练习1、2、3题. P90第2、3题
五、课堂小结
引导学生总结本节课主要内容.
第三篇:《多边形及其内角和》教案设计3
多边形及其内角和教案
三维目标
1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理能力,•养成主动探究的习惯.
2.能运用多边形内角和公式解决问题.
3.通过运用内角和公式解决问题,使学生认识到数学来源于实践,•又反过来作用于实践的观点.
教学重点
多边形内角和与外角和定理.
教学难点
多边形内角和公式的推导.
教学过程
导入新课
我们知道三角形的内角和等于180°,正方形、长方形的内角和都等于360°,那么其他四边形的内角和等于多少?如图1•中的这两个漂亮的多边形的内角和又是多少呢?想信在本节课结束时,大家都会轻而易举地作出回答.
推进新课
动手试一试,你会有收获
活动1.问题:
任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,•量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180•°得出这个结论?
设计意图:通过学生自己动手操作,让他们积极参加数学活动,主动思考、合作交流的“做数学”过程,让学生亲自体验数学发现的过程,增强动手能力、主动思考的能力.
师生活动:生:任意一个四边形,它的四个内角和都为360°.
我们可以利用上节课学过的知识来解决.
如图2,画出任意一个四边形的一条对角线,•都能将这个四边形分为两个三角形.这样,任意一个四边形的内角和,都等于两个三角形的内角和,即360°.
活动3.问题:
从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,•请填空:
从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.
从六边形的一个顶点出发,可以引_____条对角线,它们将六边形分为_____个三角形,六边形的内角和等于180°×______.
设计意图:
在得出任意四边形的内角和的求法后,再让学生思考五边形、六边形的内角和的求法,旨在让学生能从中找中规律,为后面求n边形的内角和打基础.
师生活动:
师:从五边形的一个顶点出发,可以引2条对角线,它们将五边形分成3个三角形,五边形的内角和等于3×180°=540°.
从六边形的一个顶点出发,可以引3条对角线,它们将六边形分成4个三角形,•因此六边形的内角和等于4×180°=720°.
师:由此我们可以看出,求多边形的内角和,可以把多边形用对角线分成若干个三角形,利用三角形的内角和求解,而分得的三角形的个数又与从一个顶点引出的对角线的条数有关.
通过以上问题,你能发现多边形的内角和与边数的关系吗?
一般地,怎样求n边形的内角和呢?请填空:
从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.
生:从n边形的一个顶点出发,可以引(n-3)条对角线,它们将n边形分成(n-2)•个三角形,n边形的内角和等于180°×(n-2),即n边形内角和等于(n-2)·180°.(n是大于等于3的整数)
师:利用刚才的思路,大家猜想一下,还有其他的方法吗?
生:以五边形为例,可以在五边形内部任找一点,如图4,•把这一点与各个顶点连接起来,把五边形分成五个三角形,这时多了一个周角,因此,五边形的内角和为:5×180°-360°=540°.
师:非常了不起.
生:老师,我还有别的方法,如图5可以在五边形的任一条边上取一个点,•然后将这个点与各顶点连接,这时五边形被分割成四个三角形,但多了一个平角.所以,五边形的内角和为180°×4-180°=540°.
生:我还有不同方法,如图6,可以在五边形的外部任取一点,•将此点与各顶点连接,这时图中共有五个三角形,原五边形的内角和等于4•个三角形的内角和减去最下边一个三角形的内角和,即为4×180°-180°=540°.
师:大家思维敏捷,富有创新精神,很棒.哪位同学来总结一下,•如何推导多边形的内角和公式呢?
生:数学中有一个重要的思想是转化思想,即把求多边形的内角和转化为求若干个三角形的内角和,关键是将n边形分割转化为三角形,分割的方法很好,上面给出了好多方法.因此,可以得出结论:n边形的内角和公式为(n-2)·180°.
尝试反馈 巩固练习
1.一个多边形的每个内角都等于140°,那么这个多边形是几边形? 2.一个多边形有35条对角线,则这个多边形是几边形?
答案:1.九 2.十
活动3.例1:如果一个四边形的一组对角互补,那么另一组对角有什么关系?
设计意图:
利用多边形内角和解决问题.
师生活动:
师:大家思考一下,应从哪儿入手?
生:应从四边形内角和入手.因为它只有一组对角互补,要求另一组对角之间的关系,而这两组对角和恰好构成四边形的内角和,是360°,从而可以求出另一组对角间的关系.
师:可以写出证明过程吗?
生:解:如图7,四边形ABCD中,∠A+∠C=180°.
因为∠A+∠B+∠C+∠D=(4-2)×180°=360°,所以∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.
这就是说,如果四边形的一组对角互补,那么另一组对角也互补.
活动4.例2:如图8,在六边形的每个顶点处各取一个外角,•这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
设计意图:利用内角和求外角和,从而得出n边形内角和.
师生活动:师:请大家先分析题意,然后找出解决问题的方法.
生:外角和是指每个顶点处各取一个外角,而每个顶点处的一个外角与它相邻的内角是互为邻补角,因此外角和与内角和之和就是6个平角再减去内角和,•就是外角和.
师:请大家把过程写出来.
生:∵∠1+∠BAF=180°,∠2+∠ABC=180°;
∠3+∠BCD=180°,∠4+∠CDE=180°;
∠5+∠DEF=180°,∠6+∠EFA=180°;
∴(∠1+∠2+∠3+∠4+∠5+∠6)+(∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠AFE)=•6×180=1080°.
∵∠BAF+∠ABC+∠BCD+∠CDE+∠DEF+∠AFE=(6-2)·180°=720°,∴∠1+∠2+∠3+∠4+∠5+∠6=1080°-720°=360°.
∴六边形的外角和为360°.
师:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?
生:还相同.因为三角形、四边形、六边形的外角和都是360°.
生:那也不一定正确,这只能作为猜想,不能作为结论,还要经过证明才行.
师:能证明出来吗?
生:可以.根据刚才的思路,n边形中,•每个顶点处的内角和外角组成一个平角,n个顶点处有n个平角,它们的和180°n即为多边形的内角和与外角和的和,而内角和为(n-2)·180°,所以外角和应为180°·n-(n-2)·180°=180°·n-n·180•°+360°=360°.
师:很好,还有其他的证明方法吗?
生:有.
你也可以像以下这样理解为什么多边形的外角和等于360°.
如图9,从多边形的一个顶点A出发,沿多边形的各边走过各顶点,再回到点A,•然后转向出发时的方向.在行程中所转的各个角的和,就是多边形的外角和.•由于走了一周,所转的各个角的和等于一个周角,所以多边形的外角和等于360°.
师:前面我们学习了n边形的内角和为(n-2)·180°,外角和为360°,下面我们做一些巩固练习.
尝试反馈 巩固练习
1.一个多边形的内角和等于900°,求它的边数. 2.一个多边形的每一个内角都等于140°,求它的边数. 3.一个多边形的每一个外角都等于40°,求它的边数.
答案:1.7 2.9 3.9 课堂小结
本节学习了以下主要内容:
1.探索了n边形的内角和公式、外角和公式. 2.学会转化的数学思想方法.
布置作业
习题7.3 4、5.
活动与探究
1.如图10,六边形ABCDEF的每个内角都是120°,AF=AB=2,BC=CD=3.
求DE、EF的长.
解:把边AB、CD、EF向两方延长,分别交于M、N、P.
∵六边形的每个内角都是120°,∴△MNP是等边三角形,△NAF、△MBC、•△PDE也都是等边三角形.
设EF=x,DE=y,则 x+2+y=3+3+y=2+2+3.
∴x=4,y=1.
2.在一个凸n边形中,有(n-1)个内角的和恰为8 940°,求边数n的值.
解:设此凸n边形中有一个内角为α,剩余(n-1)个内角之和恰好8940°.
∴α=(n-2)·180°-8940°.
∵0°<α<180°,∴0°<(n-2)·180°-8940°<180°.
∴89409120n2. 180180 ∴49.67 ∵n-2是整数,∴n-2=50,∴n=52. ∴这个凸多边形是凸52边形. 多边形及多边形的内角和 【教学目标】 知识与能力: 1.了解多边形定义。 2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”. 4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法: 1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。 2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力; 3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】 Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】 1、创设情境,导入新课 1/4页 (1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】 (1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。 (2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。 (3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固 【总结回顾,反思内化】 这节课学了什么?学生自由发言。 教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为 (4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】 多边形 教学目标: 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. 教学重点、难点: 1.重点: (1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形. 2.难点: 多边形定义的准确理解. 课时安排:第一课时 教学方法:自主探索,合作交流 预习提示: (1)你能仿照三角形的定义给多边形定义吗? (2)什么叫多边形的边、顶点、对角线、内角和外角?试画图说明。(3)凸多边形与凹多边形有什么区别?(4)什么叫正多边形? 教学过程: 一、知识探索 投影:图形见课本P84图7.3一l. 你能从投影里找出几个由一些线段围成的图形吗? 上面三图中让同学边看、边议. 在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内. (2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的. 这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢? 提问:三角形的定义. 你能仿照三角形的定义给多边形定义吗? 1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.) 2.多边形的边、顶点、内角和外角. 多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 3.多边形的对角线 连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形 看投影:图形见课本P80.7.3—6. 在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形. 5.正多边形 由正方形的特征出发,得出正多边形的概念. 各个角都相等,各条边都相等的多边形叫做正多边形. 二、课堂练习 课本P81练习1.2. 三、课堂小结 引导学生总结本节课的相关概念. 四、课后作业 课本P84第1题. 课堂检测: 1.下列不是凸多边形的是() 2.下列图形中∠1是外角的是() 3.下列说法正确的是() A.一个多边形外角的个数与边数相同。B.一个多边形外角的个数是边数的二倍。C.每个角都相等的多边形是正多边形。D.每条边都相等的多边形是正多边形。 4、为迎接2008奥运会,北京四家宾馆A、B、C、D 决定建一个停车场,使它到四个宾馆的距离和最小.请你帮他们确定停车场的位置,并说明理由.7.3.2 多边形的内角和 [教学目标] 1.使学生了解多边形的内角、外角等概念. 2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点: (1)多边形的内角和公式. (2)多边形的外角和公式. 2.难点:多边形的内角和定理的推导. [教学过程] 一、探究 1.我们知道三角形的内角和为180°. 2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°. 3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢? 画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果,从中你得到什么结论? 同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导. 二、思考几个问题 1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? 2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度? 3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度? 综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则 n边形的内角和等于(n一2)·180°. 想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗? 由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例) 分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°. 如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°. A 1O234EB5 分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠ 1、∠ 2、∠ 3、∠4不是五边形的内角,应舍去. ∴五边形的内角和为(5—1)×180°一180°=(5—2)×180° 用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°. CDEDA 12O34CB 三、例题 例 1如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系. 分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案. BCA D 解:如图,四边形ABCD中,∠A+∠C=180°。 ∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180° 这就是说:如果四边形一组对角互补,那么另一组对角也互补. 例 2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边 形的外角和.六边形的外角和等于多少? A B216F5C3ED4 已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°. 这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°. 解:∵六边形的任何一个外角加上它相邻的内角和为180°. ∴六边形的六个外角加上各自相邻内角的总和为6×180°. 由于六边形的内角和为(6—2)×180°=720° ∴它的外角和为6×180°一720°=360° 如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°. 所以我们说多边形的外角和与它的边数无关. 对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°. 四、课堂练习 课本P83--84练习1、2、3题. 习题7.3 第2、3题 五、课堂小结 引导学生总结本节课主要内容. 六、课后作业 课本P85第4、5、6题.第四篇:多边形及多边形内角和教案
第五篇:多边形及其内角和教案