多边形内角和简案

时间:2019-05-12 18:00:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《多边形内角和简案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《多边形内角和简案》。

第一篇:多边形内角和简案

《多边形内角和》教学设计

执教:师苑小学 吴雪婷

一、教材分析:

多边形在现实生活中普遍存在,它是初中数学中空间与图形的重要内容之一。这节课是在学习了三角形的内角和、认识了多边形并且了解了正多边形的基础上来探索多边形的内角和。这一课是三角形内角和知识的延伸,也为后面解决平行四边形、梯形、正多边形等多边形的问题提供了方法和条件。因此,本课的学习有着重要的意义,在平面几何的学习中,起着承前启后的作用。

二、教学目标 1.知识与技能

掌握多边形的有关概念,了解多边形的内角和公式,并运用其解决相关问题。2.过程与方法:

(1)通过测量、类比、推理等数学活动,探索多边形内角和公式,感受数学思考过程中的条理性,发展推理能力和语言表达能力。

(2)通过把多边形转化为三角形,使学生体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。3.情感态度与价值观:(1)在自主探究,合作交流过程中,让学生感受数学活动的重要意义和合作成功的喜悦,提高学生学习的热情和合作意识。(2)让学生经历探索多边形内角和的过程,进一步发展学生的合情推理意识、主动探究的学习习惯;通过实际情景的引入,让学生进一步体会数学与现实生活的紧密联系。

三、教学重点/难点/易错点 1.教学重点:

探索求多边形内角和的方法。2.教学难点:

探索多边形内角和时,如何把多边形转化为三角形。

四、教学过程

(一)出示课题回顾三角形内角和

1.揭示课题。今天,我们一起来研究一下多边形的内角和。板书课题:多边形内角和 2.你们有什么疑问吗?

3.什么是多边形?引导生回答。有很多条边的图形。

4.出示多边形图案。这些都是多边形?它们也有只属于自己的名字,你知道吗? 三角形、长方形 它的内角和你知道吗?板书:三角形内角和180°

(二)探索四边形内角和

1.分组探究四边形内角和。小组汇报。

2.那么,四边形可以分割成2个三角形来求出它的内角和。

(三)探索五边形内角和,找出边与分割的三角形个数之间的关系。

1.这些图形是否也像四边形一样,和三角形之间也有着某种联系呢?按顺序排列出来的多边形及表格。动手划一划,找出它们之间的联系,并完成下面的表格。独立作图分割图形,小组合作完成表格,找出规律。巡视、指导。2.多媒体展示汇报。

3.整体出现完整表格,找出规律。板书:三角形的个数=边数-2

(四)求多边形的内角和

1.现在,我们回过头来看,你会求多边形的内角和了吗?你可以把多边形的内角和问题转化成三角形的内角和问题来解决吗?五边形可以分成3个三角形,所以五边形的内角和就是3个三角形的内角和。那六边形呢?七边形呢?八边形呢?

2.n边形呢?

(五)课堂总结(n-2)×180°

板书:(n-2)×180°

五、板书设计

多边形内角和

三角形内角和

180°

不交叉的对角线

三角形的个数=边数-2 n边形内角和=180×(n-2)

教师简介:吴雪婷,女,现任教于马鞍山市师苑小学。俞洁文数学名师工作室成员,汪

尊明数学名师工作室成员。自参加工作以来,始终坚持以学生为本,全身心投入到教育教学工作中。我一直担任不同年级的数学教学工作,能积极配合学校教导处开展各项教研活动,以身作则,带头参加各种业务培训,秉承“用真情教书,用真心育人”的教育理念潜心教研。在教学上认真钻研,艰辛付出,相信一份耕耘一份收获。多次参与省市级课题实验;并积极参加省、市、区各项教研活动,所参加的论文、优质课比赛多次获得市级一等奖。教育理念:教师对待学生要用“放大镜”、“反光镜”和“显微镜”:“放大镜”——发掘学生的闪光点;“反光镜”——摘掉学生的缺点;“显微镜”——彰显学生的个性。

第二篇:多边形及多边形内角和教案

多边形及多边形的内角和

【教学目标】 知识与能力: 1.了解多边形定义。

2.掌握多边形内角和的计算公式.3.掌握“多边形外角和等于360°”.

4.会用多边形的内角和与外角和的性质解决简单几何问题. 过程与方法:

1.通过类比归纳得出多边形的概念,培养学生的类比能力,渗透化归思想方法。

2.探索并了解多边形的内角和公式,进一步发展学生的说理和简单推理的意识及能力;

3.通过探索多边形的内角和公式,感受数学思考过程的条理性; 4.探索多边形内角和公式,体验归纳发现规律的思想方法. 【教学重点、难点】

Ø重点:本节教学的重点是任意多边形的内角和公式. Ø难点:例2的解题思路不易形成,是本节教学的难点.。【教学过程】

1、创设情境,导入新课 1/4页

(1)昨天我们已经学习了四边形的定义,今天清晨,小明在广场的小路上跑步,请问小明跑步的图案可以抽象出什么图形呢?(2)上图广场上的小路可以抽象出一个边数为5的多边形——五边形。我们知道边数为 3的多边形——三角形,边数为4的多边形——四边形,„„边数为n的多边形——n边形(n≥3,n是整数).[设计意图:数学源于生活。教师创设生活情境,通过类比让学生有意识地整理所学习的内容,激发了学生的探究欲望和兴趣,从而自觉参与数学知识整理的活动和探究新知的过程。] 【合作交流,探究新知】

(1)你能设法求出这个五边形的五个内角和吗?先启发学生回顾四边形的内角和及推理 方法,提出多边形对角线定义:连结多边形不相邻两顶点的线段叫做多边形的对角线(是下面解决多边形问题的常用辅助线)。

(2)启发学生用连结对角线的方法把多边形划分成若干个三角形来完成书本第96页的合作学习。

(3)再启发学生观察所能划分成的三角形个数与边数n有关。(4)结论:n边形的内角和为(n-2)×180°(n≥3).(5)及时巩固

【总结回顾,反思内化】 这节课学了什么?学生自由发言。

教师小结:(1)从n边形的一个顶点出发有 条对角线.(2)一个n边形共有 条对角线】。(3)n边形的内角和为

(4)任何多边形的外角和为360°(5)数学思想:类比(多边形定义类比四边形定义)转化(多边形内角和问题可以转化为三角形问题)。【作业布置,延伸拓展】

第三篇:多边形及其内角和教案

多边形

教学目标:

1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形.

教学重点、难点:

1.重点:

(1)了解多边形及其有关概念,理解正多边形及其有关概念.(2)区别凸多边形和凹多边形. 2.难点:

多边形定义的准确理解.

课时安排:第一课时

教学方法:自主探索,合作交流 预习提示:

(1)你能仿照三角形的定义给多边形定义吗?

(2)什么叫多边形的边、顶点、对角线、内角和外角?试画图说明。(3)凸多边形与凹多边形有什么区别?(4)什么叫正多边形?

教学过程:

一、知识探索

投影:图形见课本P84图7.3一l.

你能从投影里找出几个由一些线段围成的图形吗?

上面三图中让同学边看、边议.

在同学议论的基础上,老师给以总结,这些线段围成的图形有何特性?(1)它们在同一平面内.

(2)它们是由不在同一条直线上的几条线段首尾顺次相接组成的.

这些图形中有三角形、四边形、五边形、六边形、八边形,那么什么叫做多边形呢?

提问:三角形的定义.

你能仿照三角形的定义给多边形定义吗?

1.在平面内,由一些线段首位顺次相接组成的图形叫做多边形. 如果一个多边形由n条线段组成,那么这个多边形叫做n边形.(一个多边形由几条线段组成,就叫做几边形.)

2.多边形的边、顶点、内角和外角.

多边形相邻两边组成的角叫做多边形的内角,多边形的边与它的邻边的延长线组成的角叫做多边形的外角.

3.多边形的对角线

连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线. 让学生画出五边形的所有对角线. 4.凸多边形与凹多边形

看投影:图形见课本P80.7.3—6.

在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是凸多边形.

5.正多边形

由正方形的特征出发,得出正多边形的概念.

各个角都相等,各条边都相等的多边形叫做正多边形.

二、课堂练习

课本P81练习1.2.

三、课堂小结

引导学生总结本节课的相关概念.

四、课后作业

课本P84第1题.

课堂检测:

1.下列不是凸多边形的是()

2.下列图形中∠1是外角的是()

3.下列说法正确的是()

A.一个多边形外角的个数与边数相同。B.一个多边形外角的个数是边数的二倍。C.每个角都相等的多边形是正多边形。D.每条边都相等的多边形是正多边形。

4、为迎接2008奥运会,北京四家宾馆A、B、C、D 决定建一个停车场,使它到四个宾馆的距离和最小.请你帮他们确定停车场的位置,并说明理由.7.3.2 多边形的内角和

[教学目标] 1.使学生了解多边形的内角、外角等概念.

2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.

[教学重点、难点] 1.重点:

(1)多边形的内角和公式.

(2)多边形的外角和公式.

2.难点:多边形的内角和定理的推导. [教学过程]

一、探究

1.我们知道三角形的内角和为180°.

2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.

3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?

画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果,从中你得到什么结论?

同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.

二、思考几个问题

1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?

2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?

3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?

综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则

n边形的内角和等于(n一2)·180°.

想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?

由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)

分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°.

如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°.

A 1O234EB5

分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠

1、∠

2、∠

3、∠4不是五边形的内角,应舍去.

∴五边形的内角和为(5—1)×180°一180°=(5—2)×180°

用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°.

CDEDA 12O34CB

三、例题

1如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.

分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案.

BCA D

解:如图,四边形ABCD中,∠A+∠C=180°。

∵∠A+∠B+∠C+∠D=(4-2)×360°=180°,∴∠B+∠D= 360°-(∠A+∠C)=180°

这就是说:如果四边形一组对角互补,那么另一组对角也互补.

2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边

形的外角和.六边形的外角和等于多少?

A B216F5C3ED4

已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°.

这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°.

解:∵六边形的任何一个外角加上它相邻的内角和为180°.

∴六边形的六个外角加上各自相邻内角的总和为6×180°.

由于六边形的内角和为(6—2)×180°=720°

∴它的外角和为6×180°一720°=360°

如果把六边形横成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于360°.即 多边形的外角和等于360°.

所以我们说多边形的外角和与它的边数无关.

对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.

四、课堂练习

课本P83--84练习1、2、3题.

习题7.3

第2、3题

五、课堂小结

引导学生总结本节课主要内容.

六、课后作业

课本P85第4、5、6题.

第四篇:多边形内角和教学设计

《多边形内角和》教学设计

一、教学目标

1、知识目标

(1)使学生了解多边形的有关概念。

(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

2、能力目标

(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

(2)通过变式练习,培养学生动手、动脑的实践能力。

3、情感与态度目标

通过公式的猜想、归纳、推断一系列过程,体验数学活动充满着探索性和创造性,培养学生对学习数学勇于创新的精神。

二、教材分析

为了更好地突出重点、突破难点,圆满地完成教学任务,取得较好的教学效果。根据教材和学生的特点,本节课我采用了“观察、点拨、发现、猜想”等探究式教学方式,在创设问题,新课引入等教学环节中,我提出问题,质疑,引导学生观察,分析、思考等。启发、点拨下发现问题的方法。这种教学方法目的在让学生通过观察、猜想、主动探讨获得新知识,同时培养学生分析、归纳、概括能力,培养学生的创新意识和创造精神。

三、教学重点和难点

重点:多边形内角和定理的理解和运用 难点:多边形内外角和的灵活运用

四、教学设计

(一)创设问题情境,引出新课。

1、复习提问,知识巩固。⑴三角形内角和等于多少度? ⑵四边形内角和定理以及推导方法。(3)从多边形的一个顶点能引多少条对角线,这些对角线将多边形分成了几个三角形。

3、引入新课

上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题(板书课题)。

(二)引导探索,研讨新知

1、以动激趣,浅探求知。

一画:画三角形、四边形、五边形、六边形(让学生自己动手画)。二量:量出五边形、六边形各内角,并求出其和(让学生自己求知)。三比较:比较四边形、五边形、六边形分别是三角形内角和的多少倍,并由此去探索他们之间的初步规律。

2、观察联想,启迪思维。

(1)观察引探:观察比较以上结论后,启发提问:“边数少的多边形可以通过量角来求和,如果边数很多那又怎么办?由上述结论可知,多边形的内角和是三角形内角和的若干倍,那么这个倍数与多边形的边数有何关系?能否找出其规律?”(让学生猜想,大胆尝试)

(2)启发联想:我们已经学过求四边形内角和的推导方法,它是以三角形为基础求得的,即连结一条对角线,将四边形分割为两个三角形,其和为180°×2,那么五边形、六边形、……n边形能否依此类推呢?

3、讨论、交流、创新 探索方法

(一):

(1)启发连线:依照四边形求内角和的方法,从任一角的顶点作对角线,将多边形分割为若干个三角形。(先让学生想,再启发学生)

(2)自主探索、讨论交流:让学生自己去研讨发现多边形内角和与各三角形内角和之间的关系,三角形个数与多边形边数的关系。

三角形有(?-2)个三角形,内角和是180°×(?-2);

四角形有(?-2)个三角形,内角和是180°×(?-2); 五角形……

有(?-2)个三角形,内角和是180°×(?-2);

n边形 有(?-2)个三角形,内角和是180°×(?-2);(4)揭示规律(由学生汇报)

a、三角形的个数与多边形边数有何关系?(比边数少2)b、多边形的内角和与所有三角形的内角和有何关系?(相等)(5)归纳结论(由学生概述)

n边形内角和等于(n-2)×180°[让学生自主探索,寻找规律,发现知识] 探索方法

(二):

(1)变换分割:在多边形内任取一点O,顺次边各顶点。

(2)再次研讨:让学生去发现多边形内角和与三角形内角和之间的关系。(多边形的内角和=所有三角形的内角和-1周角)

(3)找规律,填空(让一名学生上黑板填写,其他学生各自完成)。

三角形有?个三角形,内角和是180°×?-360°=180°×(?-2);

四角形有?个三角形,内角和是180°×?-360°=180°×(?-2)

五角形……

有?个三角形,内角和是180°×?-360°=180°×(?-2)

n边形 有?个三角形,内角和是180°×?-360°=180°×(?-2)(4)归纳结论(由学生得出)n边形的内角和是:180°×(n-2)探索方法

(三):(1)改变连线:以多边形任一边上的一点为起点,连结各顶点。(2)再次研讨:让学生去发现多边形内角和与三角形内角和之间的关系。(多边形的内角和=所有三角形的内角和-1平角)

(3)找规律,填空。(抽一名学生登台填空,其他学生各自完成)

三角形的内角和是180°×(?-2)

四角形有(?-1)个三角形,内角和是:

180°×(?-1)-180°=180°×(?-2)

五角形有(?-1)个三角形,内角和是:

180°×(?-1)-180°=180°×(?-2)……

n边形 有?个三角形,内角和是: 180°×(?-1)-180°=180°×(?-2)(4)揭示其特点(启发学生去发现)a、分割后三角形的个数有何变化?

b、求多边形内角和的方法有何不同?(探索方法1,是由多边形内角和等于各三角形内角和求得;探索方法2,是由多边形的内角和=各三角形内角和-1周角求得;探索方法3,是由多边形的内角和=各三角形内角和-1平角求得)。(5)比较结论(由学生总结)[进一步让学生自主探索,培养学生一题多证的能力和兴趣。

(6)课堂训练。

1、已知一个多边形的内角和等于1440°,求它的边数。

2、在四边形ABCD中,∠A=120度,∠B:∠C:∠D

= 3:4:5,求∠B=

,∠C =

,∠D =。

3、如果一个四边形的一组对角互补,那么另一组对角的关系是。

4、一个多边形的各内角都等于120°,它是_____ 边形。

(三)推导n边形外角和定理

(1)引导学生找出各内角与相邻外角的关系。(互补)(2)找出多边形外角和与内角和之间的关系:

外角和=n个平角-多边形内角和=n×180°-(n-2)×180°=360°(3)推出结论:n边形的外角和等于360°(由学生得出)。

(四)例题讲解

例:已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数。

(五)随堂练习• • • • •(1)一个多边形的内角和为4320°,则它的边数为______(2)五边形的内角和为_____,它的对角线共有_____条(3)一个多边形的每一个外角都等于30°,则这个多边形为____边形(4)一个多边形的每一个内角都等于135°,则这个多边形为_____边形(5)如果一个多边形的边数增加一条,那么这个多边形的内角和增加________,外角和增加_______.

第五篇:多边形内角和教学设计

《多边形内角和》教学设计

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:

(1)使学生了解多边形的有关概念。

(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

2、能力目标

(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

(2)通过变式练习,培养学生动手、动脑的实践能力。

3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具及辅助教学媒体

教具:多媒体课件

学具:三角板、量角器

教学媒体:大屏幕、实物投影

六、教学过程:

(一)创设情境,设疑激思

1、以疑导入,引发求知欲。先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。由此激发学生自己要设计,怎样设计的求知欲。然后提出具体问题。

2、复习提问,知识巩固。(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。

3、引入新课

上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的? 活动二:探究五边形、六边形、十边形的内角和。学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180º的和是540º。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180º的和减去一个周角360º。结果得540º。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180º的和减去一个平角180º,结果得540º。

方法4:把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,十边形内角和是1440º。

(二)引深思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗? 活动三:探究任意多边形的内角和公式。

思考:(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180º的和,五边形内角和是3个180º的和,六边形内角和是4个180º的和,十边形内角和是8个180º的和。

发现2:多边形的边数增加1,内角和增加180º。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)六边形内角和()(2)九边形内角和()

2、抢答:(1)一个多边形的内角和等于1260º,它是几边形?

(2)已知一个多边形的每个外角都等于72°,这个多边形是几边形?(3)若多边形的外角和等于内角和的三分之二,则这个多边形的边数是多少?

3、讨论回答:一个多边形的内角和比四边形的内角和多540º,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、3

七、教学反思:

上完这节课后,自我感觉良好,学生在课堂上也积极参与思考、大胆尝试、主动探讨、勇于创新。

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话、讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的放向,判断发现的价值。

4.不足:

(1)班级学习不是很好的学生在展示时还是不理想,声音小,站姿也不行。

(2)粉笔字写的不理想。特别是做学案或答题时字写的很乱,并且一点也不规范。(3)没有给学生整理出现问题的时间,因此效果不理想。

下载多边形内角和简案word格式文档
下载多边形内角和简案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《多边形内角和》教学反思

    《7.3.2多边形内角和》教学反思 钦州市浦北外国语学校 本节课,我先从问题“把一个四边形纸片剪去一个角后会得到一个什么图形呢?”入手,让学生思考,通过验证得到“五边形、四边......

    《多边形及其内角和》教案设计2

    多边形的内角和教案 在新人教版教材中,《三角形》一章的章节结构是:“与三角形有关的线段”,“与三角形有关的角”,“多边形及其内角和”,“课题学习——镶嵌”。 这种结构是一种......

    《多边形的内角和》说课稿

    《多边形的内角和》说课稿 《多边形的内角和》说课稿1 各位评委老师大家好,我是来自,我今天说课的题目是《多边形的内角和》。它是人教版,七年级下册第七章第三节的内容,分两课......

    《多边形的内角和》教案

    《多边形的内角和》教案 以下是查字典数学网为您推荐的 《多边形的内角和》教案,希望本篇文章对您学习有所帮助。 《多边形的内角和》教案 众所周知,数学课堂是以学生为中......

    多边形的内角和教案

    一、教学目标1、知识目标 (1)使学生了解多边形的有关概念。 (2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。2、能力目标 (1)通过对“多边形内角和公式”......

    11.3多边形及其内角和 教案(汇编)

    11.3 多边形及其内角和 11.3.1 多边形 [教学目标] 1.了解多边形及有关概念,理解正多边形及其有关概念. 2.区别凸多边形与凹多边形. [教学重点、难点] 1.重点: (1)了解多边形及其有关......

    《多边形及其内角和》教案设计1

    多边形的内角和教案 [教学目标] 1.使学生了解多边形的内角、外角等概念. 2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点: (1......

    《多边形及其内角和》教案设计3

    多边形及其内角和教案 三维目标 1.经历探索多边形内角和公式的过程,进一步发展学生的合情推理能力,•养成主动探究的习惯. 2.能运用多边形内角和公式解决问题. 3.通过运用内角......