关于两个不等式证明的研究性学习

时间:2019-05-13 09:03:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于两个不等式证明的研究性学习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于两个不等式证明的研究性学习》。

第一篇:关于两个不等式证明的研究性学习

龙源期刊网 http://.cn

关于两个不等式证明的研究性学习

作者:王红权

来源:《教学月刊·中学版(教学参考)》2014年第03期

高中数学选修课程是为希望提高数学素养的学生而设置的,其中所涉及的内容反映了某些重要的数学思想和数学方法,有助于学生进一步打好数学基础,拓展数学视野,提升数学能力,支持这部分学生的后继学习.浙江省高中课程中的《IB选修模块》是为考“第一批本科院校”的学生而专门设计的,实际上选学数学IB模块的学生数学基础都比较好,因而数学IB模块也是开展研究性学习的好素材.下面是笔者开设《不等式选讲(选修4-5)》的一节研究性学习课,课堂上一波三折,笔者在惊叹数学精美之余,也惊叹数学课堂的精彩.参考文献

[1] Pham Kim Hung.不等式的秘密(第一卷)[M].哈尔滨:哈尔滨工业大学出版社,2012.[2] 安振平.三十个有趣的不等式问题[J].中学数学教学参考,2011(11).[3]安振平.2007 年全国中学数学教师解题基本功技能大赛[J].中学数学教学参考,2007.

第二篇:Zirakzadeh不等式的两个简捷证明

龙源期刊网 http://.cn

Zirakzadeh不等式的两个简捷证明

作者:曹嘉兴

来源:《中学数学杂志(高中版)》2012年第06期

1960年,Zirakzadeh提出了如下不等式:

命题 设P、Q、R分别位于△ABC的边BC、CA、AB上,且将△ABC的周界三等分,记BC=a,CA=b,AB=c,则PQ+QR+RP≥1/2(a+b+c).

第三篇:两个常见不等式的证明及推广

龙源期刊网 http://.cn

两个常见不等式的证明及推广

作者:姬婷 魏春强

来源:《学园》2013年第13期

【摘 要】本文根据两个常见不等式的证明和分析,引发联想,进而推广,得到命题1和命题2。

【关键词】平均值不等式 幂平均不等式 推广

【中图分类号】O12 【文献标识码】A 【文章编号】1674-4810(2013)13-0016-01参考文献

[1]陈传理、张同君.竞赛数学教程[M].北京:高等教育出版社,2004

〔责任编辑:庞远燕〕

第四篇:不等式证明

不等式证明

不等式是数学的基本内容之一,它是研究许多数学分支的重要工具,在数学中有重要的地位,也是高中数学的重要组成部分,在高考和竞赛中都有举足轻重的地位。不等式的证明变化大,技巧性强,它不仅能够检验学生数学基础知识的掌握程度,而且是衡量学生数学水平的一个重要标志,本文将着重介绍以下几种不等式的初等证明方法和部分方法的例题以便理解。

一、不等式的初等证明方法

1.综合法:由因导果。

2.分析法:执果索因。基本步骤:要证..只需证..,只需证..(1)“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件。

(2)“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可利用分析法寻找证题的途径,然后用“综合法”进行表达。

3.反证法:正难则反。

4.放缩法:将不等式一侧适当的放大或缩小以达证题目的。放缩法的方法有:

(1)添加或舍去一些项,如:

2)利用基本不等式,如:

(3)将分子或分母放大(或缩小):

5.换元法:换元的目的就是减少不等式中变量,以使问题

化难为易、化繁为简,常用的换元有三角换元和代数换元。

6.构造法:通过构造函数、方程、数列、向量或不等式来证明不等式。

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法。

7.数学归纳法:数学归纳法证明不等式在数学归纳法中专门研究。

8.几何法:用数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

9.函数法:引入一个适当的函数,利用函数的性质达到证明不等式的目的。

10.判别式法:利用二次函数的判别式的特点来证明一些不等式的方法。当a>0时,f(x)=ax2+bx+c>0(或<0).△<0(或>0)。当a<0时,f(x)>0(或<0).△>0(或<0)。

二、部分方法的例题

1.换元法

换元法是数学中应用最广泛的解题方法之一。有些不等式通过变量替换可以改变问题的结构,便于进行比较、分析,从而起到化难为易、化繁为简、化隐蔽为外显的积极效果。

注意:在不等式的证明中运用换元法,能把高次变为低次,分式变为整式,无理式变为有理式,能简化证明过程。尤其对含有若干个变元的齐次轮换式或轮换对称式的不等式,通过换元变换形式以揭示内容的实质,可收到事半功倍之效。

2.放缩法

欲证A≥B,可将B适当放大,即B1≥B,只需证明A≥B1。相反,将A适当缩小,即A≥A1,只需证明A1≥B即可。

注意:用放缩法证明数列不等式,关键是要把握一个度,如果放得过大或缩得过小,就会导致解决失败。放缩方法灵活多样,要能想到一个恰到好处进行放缩的不等式,需要积累一定的不等式知识,同时要求我们具有相当的数学思维能力和一定的解题智慧。

3.几何法

数形结合来研究问题是数学中常用的方法,若求证的不等式是几何不等式或有较明显的几何意义时,可以考虑构造相关几何图形来完成,若运用得好,有时则有神奇的功效。

第五篇:不等式证明

不等式的证明

比较法证明不等式

a2b2ab1.设ab0,求证:2.ab2ab

2.(本小题满分10分)选修4—5:不等式选讲

(1)已知x、y都是正实数,求证:x3y3x2yxy2;

(2对满足xyz1的一切正实数 x,y,z恒成立,求实数a的取值范围

.,1综合法证明不等式(利用均值不等式)3.已知abc, 求证:1 114.abbcac

4.设a,b,c均为正数,且a+b+c=1,证明:

1(Ⅰ)ab+bc+ac3;

a2b2c2

1ca(Ⅱ)b

5.(1)求不等式x32x1的解集;

121225(a)(b)a,bR,ab1ab2.(2)已知,求证:

6.若a、b、c是不全相等的正数,求证:

分析法证明不等式

7.某同学在证明命题“7要证明732”时作了如下分析,请你补充完整.62,只需证明________________,只需证明___________,+292,展开得9即,只需证明1418,________________,所以原不等式:62成立.22263,(72)(63),因为1418成立。

abc8.已知a,b,cR。3

9.(本题满分10分)已知函数f(x)|x1|。

(Ⅰ)解不等式f(x)f(x4)8;{x|x≤-5,或x≥3}(Ⅱ)若|a|1,|b|1,且a0,求证:f(ab)|a|f().10.(本小题满分10分)当a,bMx|2x2时,证明:2|a+b|<|4+ab|.反证法证明不等式

11.已知a,b,c均为实数,且a=x2y+2baπππ22,b=y2z+,c=z2x+,236

求证:a,b,c中至少有一个大于0.12.(12分)若x,yR,x0,y0,且xy2。求证:1x和1y中至少有一个小于2.yx

放缩法证明不等式

13.证明不等式:1111121231

123n2

214.设各项均为正数的数列an的前n项和为Sn,满足4SnannN,且

14n1,a2,a5,a14构成等比数列.

(1)证明:a2

(2)求数列an的通项公式;an2n1

(3)证明:对一切正整数n,有11a1a2a2a311. anan12

15.设数列an的前n项和为Sn.已知a11,2Sn12an1n2n,nN*.n33

(Ⅰ)求a2的值;a24(Ⅱ)求数列an的通项公式;ann2(Ⅲ)证明:对一切正整数n,有数学归纳法证明不等式

16.(本小题满分12分)若不等式11

n1n21a对一切正整数n都成立,求正3n12411a1a217.an4

整数a的最大值,并证明结论.25

17.用数学归纳法证明不等式:

下载关于两个不等式证明的研究性学习word格式文档
下载关于两个不等式证明的研究性学习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    不等式证明经典[精选]

    金牌师资,笑傲高考2013年数学VIP讲义 【例1】 设a,b∈R,求证:a2+b2≥ab+a+b-1。【例2】 已知0d,故保留a,消b,c,d中任一个均可。 由ad=bc得:dbca1abbccaabcabc≥1。 bcabcab(ab)(ac)a0......

    不等式证明[精选]

    §14不等式的证明 不等式在数学中占有重要地位,由于其证明的困难性和方法的多样性,而成为竞赛和高考的热门题型. 证明不等式就是对不等式的左右两边或条件与结论进行代数变......

    不等式证明

    不等式证明 1. 比较法: 比较法是证明不等式的最基本、最重要的方法之一,它可分为作差法、作商法 (1)作差比较: ①理论依据a-b>0a>b; a-b=0a=b; a-b0),只要证;要证A0),只要证②证明......

    不等式证明练习题

    不等式证明练习题(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+......

    常用均值不等式及证明证明

    常用均值不等式及证明证明这四种平均数满足HnGnAnQn、ana1、a2、R,当且仅当a1a2an时取“=”号仅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上简化,有一个简单结论,......

    均值不等式证明

    均值不等式证明一、已知x,y为正实数,且x+y=1求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/......

    分析法证明不等式专题

    分析法证明不等式已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|0【2】显然,由|a+b|>0可知原不等式等价于不等式:|a|+|b|≤(√2)|a+b|该不等式等价于不等式:(|a|+|b|)²≤².整理即是:a......

    证明不等式方法

    不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。 1比较法比较法是证明不等式的最基本方法......