《初中数学“数学建模”的教学研究与案例评析》的学习随笔范文合集

时间:2019-05-13 09:07:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《初中数学“数学建模”的教学研究与案例评析》的学习随笔》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《初中数学“数学建模”的教学研究与案例评析》的学习随笔》。

第一篇:《初中数学“数学建模”的教学研究与案例评析》的学习随笔

《初中数学“数学建模”的教学研究与案例评析》的学习随笔

通过课程《初中数学“数学建模”的教学研究与案例评析》的学习,我认识到数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识,总之,它拉近了学生与日常生活的距离,因为它具有应用价值,所以有助于激发学生学习数学的兴趣。首先,数学建模可以培养学生的应用意识和创新意识。以往学生大多认为数学是繁、难,而且在生活中应用太少,这是对数学学科认识的误区,没能真正把数学学活。其实数学发展本来就是与生产、生活分不开的,学习数学的目的就是为了更好地提高生产效率和生活质量。随着数学教育界中“数学应用意识”教育的不断深入,数学应用性的教育日益显著。而数学应用性主要体现在数学的精神、思想和方法,还有就是数学建模。通过数学建模教学,既可以培养学生的数学应用意识、巩固学生的数学方法,又可以培养学生的创新意识以及分析和解决实际问题的能力。

另外,从教学改革角度说,数学建模教学改善了教和学的方式。教师要建立以人为本的学生主体观,要为学生提供一个学数学、做数学、用数学的环境和动脑、动手并充分表达自己想法的机会,教学中注意对原始问题分析、假设等数学加工过程;数学工具、方法、模型的选择和分析过程;模型的求解、验证、再分析、修改假设、再求解的循环过程。教师为学生提供充足的自学实践时间,使学生在亲历这些过程中展开思维,收集、处理各种信息,不断追求新知,发现、提出、分析并创造性地解决问题,数学建模学习成为再发现、再创造的过程,教学过程由以教为主转变为以学为主,支持学生大胆提出各种突破常规,超越习惯的想法,充分肯定学生的正确的、独特的见解,珍惜了学生的创新成果和失败价值,使他们保持敢于作出各种新颖、大胆尝试的热情。

例如:人教版八年级上册第十二章《全等三角形》中就有这样一个问题:一池塘,要测量池塘的两端AB的距离,直接测量有障碍,能有什么方法测出它的长度呢?充分让学生在课堂中讨论,从而就可以得到很多建模的方法。建模一:构造直角三角形,运用勾股定理解决问题,求出AB。建模二:构造等腰三角形或等边三角形,求出AB。

建模三:构造三角形及其中位线,利用中位线的性质求出AB。建模四:构造两个三角形,利用全等或相似性质来求出AB。

在解决问题时,应鼓励学生大胆提出自己的建模方法,然后再补充。当学生自己找到建模方法后,就会获得成功的满足,产生愉快的学习情绪。

但是由于学生现有知识水平的限制,有的方法,学生还不能得出,不过此处恰好可以为以后的学习作个铺垫,更可以吊足学生的胃口,因而对他的学习兴趣与学习欲望是一个很好的促进。

第二篇:初中数学“数学建模”的教学研究

初中数学“数学建模”的教学研究

张思明(北大附中,数学特级教师)鲍敬谊(北大附中数学学科主任,高级教师)

白永潇(北京教育学院数学教师)

一、什么是数学建模?

1.1数学建模(Mathematical Modeling)是建立数学模型并用它解决问题这一过程的简称,有代表的定义如下:

(1)普通高中数学课程标准中认为,数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育的重要内容和基本内容。

(2)叶其孝在《数学建模教学活动与大学数学教育改革》一书中认为,数学建模(Mathematical Modeling)就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的过程。

两种定义的区别在于课程标准对数学建模的定义没有强调建立特定的解决问题的数学模型。数学建模的过程中当然会运用数学思想、方法和知识解决实际问题,但仅仅如此很难称得上是“数学建模”。处理很多事情,比如法律和组织上的问题,常常会用到分类讨论的思想、转化的思想、类比的思想,而并没有建立数学模型,这就不能说是进行了数学建模。这里所谈(实际上,同大部分人认为的一样)的数学建模,其过程是要建立具体的数学模型的。

什么是数学模型?根据徐利治先生在《数学方法论选讲》一书中所谈到,所谓“数学模型”(Mathematic Model)是一个含义很广的概念,粗略的讲,数学模型是指参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括地或近似地表达出来的一个数学结构。广义的说,一切数学概念、数学理论体系、数学公式、数学方程以及由之构成的算法系统都可以称为数学模型;狭义的解释,只有那些反应特定问题或特定的具体事物系统的数学关系结构才叫数学模型。

本论文所谈到的数学建模,其过程一定是建立了一定的数学结构。

另外,我们所谈的数学建模主要侧重于解决非数学领域内的问题。这类问题往往来自于日常生活、经济、工程、医学等其他领域,呈现“原胚”状态,需要分析、假设、抽象等加工,才能找出其隐含的数学关系结构。

一般地,数学建模的过程可用下面的框图表示:

1.2什么是中学数学建模?

这里的“中学数学建模”有两重含义。

一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。

二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,影响学生的学习过程,改变传统的学习方式,实现激发学生自主思考,促进学生合作交流,提高学生学习兴趣,发展学生创新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。

二、数学建模进入中学课堂的背景

(一)数学建模从大学到中学的历程

1.大学开设数学建模课程以及大学生数学建模竞赛的开展。

目前,数学建模在大部分高校已经成为数学专业的必修课,其它工科、金融、社会学科的选修课程。而且,与计算机技术相结合,大学开设了数学实验课程。

美国的大学生数学建模竞赛有MCM(Mathematical Contestin Modeling)和ICM(Interdisciplinar yContestin Modeling),我国的有全国大学生数学建模竞赛(CUMCM)(China Undergraduate Mathematical Contestin Modeling)。

2.数学建模从大学进入中学。

1988年,第六届ICME就把“问题解决、建模和应用”列入大会七个主要研究课题之一,认为“问题解决、建模和应用必须成为从中学到大学——所有学生的数学课程的一部分。”

美国科学院下属的国家研究委员会在1989年发表的调查报告《关于未来数学教育的报告》中,把“数学建模进入中学”列为数学教育改革最急需的项目。

(二)国外中学数学建模相关课程的发展

很多国家在中学开设了类似“数学建模”的数学应用课程,将数学知识和现实生活中的问题融合起来进行学习,形成了各具特色的中学数学课程。

1.美国——两种课程模式。

(1)以项目为中心的学习(Project-Based Learning)

强调长期的、跨学科的、以学生为中心的学习活动,并结合现实世界中的问题与实践进行教学。

(2)以问题为中心的学习(Problem-Based Learning)

是一种关注经验的学习,它围绕现实生活中的一些结构不明确的问题展开调查,并寻求解决方法。

1991年美国出版了由Frank Swetz和JeffersonS.Hartaler编的《中学课程中的数学建模—课堂练习资料导引》。此书介绍了自1975年以来美国的中学数学教学是如何强调问题解决和数学建模的,简要分析了问题解决和数学建模的关系,指出在中学发展数学建模活动的必要性和可能性。

2.英国——课程整合。其主要内容是: ①从现实生活题材中引入数学;

②加强数学和其他科目的联系;

③打破传统格局和学科限制、允许在数学课中研究与数学有关的其他问题。在课程标准下,将“运用和应用数学”单独列为一项成绩目标,贯穿于整个数学课程之中。“运用和应用数学”十分注意面对解决实际问题与日常生活中的问题,包括提出问题、设计任务、做出计划、收集信息、选用数学、运用策略、获得结论、检验和解释结果等环节,而不是局限在书本上现成的“问题”。例如,为研究最好的储蓄方式(或地点),就要去调查各家银行不同存款形式、期限的利率等。

3.日本——课题学习。

受美国“问题解决”等因素的影响,日本教育界提出了“课题学习”(Problem Situation Learning)。“课题学习”于1989年作为中学数学教学内容写进了《中学数学学习指导要领》,自1993年4月开始在初中二、三年级中开始实施。

为了配置“课题学习”的实施,1993年日本出版了6套初中数学科书,共设置255个课题。大阪教育大学松宫哲夫先生提出了CRM(Composite Real Mathematics)型课题学习,特别重视课题的现实性,积极主张从现实世界中的问题情境出发进行课题学习。提出“湖水中的数学”、“高层建筑中的数学”、“田径场中的数学”、“交通安全中的数学”、“铁路运输中的数学”等课题。

日本第15届中央教育审议会在1996年提出了要在中小学设置综合课程的建议,经过论证后修订了中小学《学习指导纲要》,规定小学(从三年级开始)和初中从2002年开始,高中从2003年开始正式开设综合学习课程。综合活动课程不是课外活动,而是利用教学时间进行的正式课程。它没用既定的教学目标和教科书。各校根据自己的兴趣等选择学习内容。

4.法国——多样化途径(初中)有指导的学生个人实践活动(高中)。

1994年,法国开始进行中小学校的课程改革,增加了“多样化途径”课程,并于1995年-1996年首次在初二年级实施。

1999年,法国政府又规定,将这一实验从初二推向初三,规定在初三年级增加“综合实践课程”,并且设为必修课。

2002年,法国几乎所有的高中二年级都开始进行“有指导的学生个人实践活动”。5.国际数学教育大会对数学建模的重视。

在近几届的国际数学教育大会(ICME)上,数学建模与应用都有固定的专题分组。1996年6月在西班牙召开的第八届ICME大会上,不仅有欧美国家的数学建模的专题报告和经验介绍,也有巴西这样的发展中国家的代表介绍巴西国内10年来数学建模的发展情况。我国代表叶其孝教授在“数学建模与应用专业组”报告中,介绍了我国首创的中学数学知识应用竞赛的情况。

(三)国内中学数学建模的发展

中学数学建模竞赛的开展,展示了数学建模在培养学生方面的特殊作用,产生了巨大的影响,对数学建模课程进入中学起了积极的推动作用。从1991年以来,上海市举办了“金桥杯”中学生数学知识应用竞赛;北京市在1994年第一届“方正杯”中学生数学知识应用竞赛,从1997年开始,由北京数学会等五家单位组织,把《高中数学知识应用竞赛》作为正式的科普活动,定期开展。

北京市数学会从1994年起,组织了“中学数学教学改革和数学建模”讨论班;经过研讨形成一批教学素材,在北京师范大学的“数学学校”中进行了教学建模案例实践。评价中,高考逐年加大了对数学应用能力的考察力度。教学中,“研究性学习”、“课题学习”、“数学建模”等教学方式陆续提出。

(四)课堂教学的尝试和教学资源的发展历程

•1993年,北大附中采用叶其孝引进的美国建模教材,组织部分同学在课外活动的时间开始开展数学建模活动。

•1997年,北大附中有了正式选修课,积累了一批案例资源作为教学之用,并为高中数学课程标准中数学建模内容的制订,提供了经验和案例。

•1997年,叶其孝主编的《中学数学建模》出版。

•2000年9月,张思明编著的《中学数学建模的实践与探索》出版。•2002年12月,《北京高中数学知识应用竞赛试题及解析》出版。•2003年,《中学生研究性学习案例---中学生数学建模论文选编》出版。

•2003年,数学建模被写进有教育部制订的《普通高中数学课程标准(实验)》,成为高中数学正式的学习内容。

•2004年,张思明、白永潇编著的《数学课题学习的实践和探索》出版。•2006年,拍摄17集专题片《数学建模走进中学课堂》。

•2007-2009年,在全国部分地区的“数学新课程的网上培训”课程中,数学建模成为培训内容之一。

•2008年,北京“数学建模”双课堂“实验,依托网络、真实课堂和虚拟课堂结合的中学数学建模课程,探索了中学数学建模教学的可操作模式。

三、《义务教育数学课程标准(修订稿)》和高中数学课标中有关数学建模的内容 教育部新启动的《义务教育阶段数学课程标准》的修订中,东北师大史宁中校长提议,将原来的“双基”增加到“四基”,增加了“基本数学活动经验和基本数学思想”。基本活动经验是指学生亲自或间接经历了活动过程而获得的经验。另外,《全日制义务教育数学课程标准(修改稿)》在“数与代数”的内容中提出了“要初步形成模型思想”,对“综合与实践”部分内容加以明确并提供了具体课例。上述变化正是课标对培养学生数学应用能力的应措。相比数学建模,综合与实践部分是学习数学建模的最初阶段,因此内容包含的更加基本、广泛,下面我们将分别介绍全日制义务教育数学课程标准(修改稿)提出的“模型思想”,“综合与实践”的内容,以及内容在实验稿基础上的变化,最后在通过实例来说明综合与实践部分的学习内容。

(一)模型思想

2007年12初全日制义务教育数学课程标准(修改稿)提出在“数与代数”的教学中,应帮助学生建立数感和符号意识,发展运算能力和推理能力,初步形成模型思想。模型思想的建立是帮助学生体会和理解数学与外部世界联系的基本途径。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。

(二)与实验稿相比“综合与实践”部分的变化

目的和内涵进一步明确,统一了名称,给出了明确的定义:“综合与实践”,是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。

明确要求“综合与实践”应当保证每学期至少一次。三个学段“综合与实践”的要求和教学目标有了差异。

(三)“综合与实践”的常用教学形式和案例

按照教学内容不同,“综合与实践”可以分为两种内容形式:体现数学知识内部联系;体现数学与生活和其它学科联系。

若按照活动开展的地点不同,可以分为课堂内、课堂内外结合、课堂外三种形式。(可见下表)

解决数学内部问题

解决数学外部问题(生活、的综合与实践活动 其他学科等)的综合与实践

活动

课堂内进行的综合与实践活动

例80--用几何研究代数、例78--看图说故事

课堂内外结合进行的综合与实践活动 课堂外进行的综合与实践活动

(四)《高中数学课程标准》中关于数学建模的定位

在《高中数学课程标准》的研制过程中,对是否增加数学建模的要求是有争议的。一些专家认为,中学数学是打基础的阶段,核心是学好将来需要的基础知识,应用不必强调,强调了也没有用——在大跃进时期我们曾强调过“理论联系实际”,文革中我们的教学内容里加入了类似“三机一泵”,地主如何算“变天帐”一类的内容,弱化了基础理论的学习,效果是不好的。但一批数学家深刻注意到了数学的发展和变化,姜伯驹、李大潜、丁石孙、叶其孝等先生都分别撰文阐明在中学培养学生数学应用能力的重要性。我们多年开展中学数学建模竞赛和中学数学建模教学的实践也证明了,数学建模对培养中学生应用能力的良好作用。种种努力,使数学建模最终成为新高中数学标准中规定的高中数学内容的一部分。

新高中数学标准在基本理念的第5条即是发展学生的数学应用意识,认为高中数学课

例46--空间想象与分类计数。

例77--包装盒中的数学 例79--利用树叶的特征对树木分类 例21--钮扣分类

例75--直觉的误导 例76--从年历中想到的 程应提供基本内容的实际背景,反映数学的应用价值,开展“数学建模”的学习活动,设立体现数学某些重要应用的专题课程。高中数学课程应力求使学生体验数学在解决实际问题中的作用、数学与日常生活及其他学科的联系,促进学生逐步形成和发展数学应用意识,提高实践能力。由此在数学内容中特别加入了:数学探究、数学建模。这些内容不单独设置,渗透在每个模块或专题中。标准要求高中阶段至少各应安排一次较为完整的数学探究、数学建模活动。

这里标准中谈到的数学建模,内容即是一般意义上的数学建模。数学建模是运用数学思想、方法和知识解决实际问题的过程,已经成为不同层次数学教育重要和基本的内容。数学建模可以通过以下框图体现:

数学建模是数学学习的一种新的方式,它为学生提供了自主学习的空间,有助于学生体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;有助于激发学生学习数学的兴趣,发展学生的创新意识和实践能力。

课程标准提出的教学要求是:

1.在数学建模中,问题是关键。数学建模的问题应是多样的,应来自于学生的日常生活、现实世界、其他学科等多方面。同时,解决问题所涉及的知识、思想、方法应与高中数学课程内容有联系。

2.通过数学建模,学生将了解和经历上述框图所表示的解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。

3.每一个学生可以根据自己的生活经验发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。

4.学生在发现和解决问题的过程中,应学会通过查询资料等手段获取信息。5.学生在数学建模中应采取各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。

6.高中阶段至少应为学生安排1次数学建模活动。还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来。

标准未对数学建模的课时和内容做具体安排。学校和教师可根据各自的实际情况,统筹安排数学建模活动的内容和时间。例如,可以结合统计、线性规划、数列等内容安排数学建模活动。

四、如何在初中开展数学建模

(一)数学建模与数学应用题的区别

与传统应用题相比,数学建模所解决的问题往往呈现一种“混沌”状态,没有明显的数据和关系可用,所给的条件也不一定有用,得出的结论往往不唯一,建立的数学模型也要在实践中反复修改验证,由于具有这些特点,数学建模是学习“数学应用”的最佳方式之一,能让学生更好地体验数学是怎样运用于实际的过程,形成他们的数学经验。

我们之所以要在初中渗透数学建模,一个很重要的理念是,要培养学生的实践能力,需要综合的利用知识,如果仅仅满足于在每一个具体的领域里,介绍具体领域的知识,可能就没有给学生综合使用知识的一个机会,另外,数学的发展非常关注应用,用数学去解决其他学科和领域的问题,用数学去解决我们日常生活的问题,这都是数学发展越来越重视的一件事情,怎么利用数学的知识,去解决生活中其它学科中的问题,我们需要有一个平台,让学生利用这个平台,去做这件事情。其次是对学生创新能力的培养,而创新的基础是需要有问题的,是需要解决问题,是需要在解决问题的过程中,提出自己的想法,而综合与实践活动,恰恰就为学生这方面的能力,提供了一个可操作的,可以实践的一个平台。

对比第三阶段的综合与实践活动的要求,有哪些相对于前两阶段的提升?一个是能够结合实际情况,经历设定解决具体问题的方案,并加以实施的过程,体验建立模型,解决问题的过程,建立模型,并尝试发现问题,提出问题,这是一个比较高一点的要求,在前两个学段,主要是学生一起做老师提供的已经在课本上给好的问题,在这个初中要尝试,看学生自己能不能提出一些有价值的问题。要把数学建模的目标,和学生增长数学学习的经验,改进学生学习的方式联系起来,那么还提出要会反思,参与活动的全过程,会把研究的过程和解决形成报告和小论文,并进行交流,进一步获得社会活动的经验,要求结果要形成一个有价值的数学结果,像个小论文。

(二)初中数学建模的四个环节

第一个环节是提出问题,第二个环节是探求解题的途径,第三个环节是操作实践,第四个是反思交流评价。也可以简单地用“选题,开题,作题,解题”这样的操作方式来表达。具体来做数学建模的教学设计的时候,一个是要有一个清晰的线索,这个线索就是过程设计,核心是个问题,在问题引领下,突出活动。一个是“做”,不是老师做,是学生做,所以要围绕着做来设计,一个是“过程”,过程要让学生更多地参与,在过程中有所发现,有所收获,最后,要积累经验。

(三)数学建模的评价

可以通过几个不同的维度来评价。第一是过程,就是学生能不能完整地完成这个过程,老师给了问题以后,或者我们自己提出的问题也好,首先把问题说清楚,第二件事,要有思路,我们能不能把这个思路说清楚,就是我打算怎么做,先拿纸试,然后拿布裁,然后发现什么问题再怎么解决,在解决的过程中,会用到哪些数学,要先有一个设计。我们看学生是不是能在真正做之前,把这问题想一想清楚,然后就是做,最后就是做的结果的展示。万一出了问题,还可以有改进的一些思考。另外就是能不能拓展。第二是看数学用得怎么样,包括是不是正确,是不是科学,是不是好,能不能改进的问题;比如说还可以考虑,因为我们毕竟是做实践的东西,是否考虑到精度,是不是考虑到节约,是不是考虑到优化。第三就是情感态度价值观。学生做一件事情的关注度,投入度,兴奋度如何,也许做的并不太好,但是他非常专注,他不会的地方会向别人请教,而请教的态度非常好,他还可以去翻书和查资料等等。

将以上内容进行归纳,在数学建模评价中,我们不仅要关注结果,更要关注过程、关注学生的差异、学生个性的彰显、学生在建模前后发生的变化。出可以从以下几个角度入手观察、评价:学生提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。

(四)初中数学建模的若干简要案例

4.1初中数学建模学习案例1:——与自行车有关的问题(小组学习实践)课题:了解自行车中的数学问题,应用学过的数学知识,解决以下问题。问题1:用自己或同学的一辆自行车为观察对象,观察并解决下列问题:(1)我观察的这辆自行车是什么牌子的?

(2)它的直径是cm,轮子转动一周,在地面走过的距离是____________cm,精确到1cm。

(3)自行车中轴的大齿轮盘的齿数是_________齿,后轴的小齿轮(飞轮)的齿数是_____________,中轴的大齿轮被踏动一周时,后轴的小齿轮在链条传动下,不计算惯性将转动_____________周(保留2位小数)。

问题2:如果你有自行车,并骑车上学,你能借助于自行车,测量出从你的家到学校的路程吗?请你设计一个测量方案,并尽可能地通过实际操作测量出从你的家到学校的路程。

问题3:如果你的(或你的朋友)自行车是可以变速的自行车(如山地车、多飞轮的自行车)、请你观察一下在这辆自行车上有几个(中轴上的)大轮盘,几个飞轮,它们都各有多少齿?记录这些数据。如果你骑车时每一秒脚蹬一圈,请你根据上面测量的数据计算出这辆自行车运行时最大的速度和最小的速度各是每小时多少公里?

选做问题4:你认为对问题3中的自行车的各个齿轮的齿数安排的合理吗?你能发现或提出什么样的问题?如果有可能请你做设计改进的话,你会做什么?

求解工作的表格省略。

4.2初中数学建模案例2:——线路设计问题(自学、探索、创新实践)课题:为所在小区设计一个最佳的邮政投递路线,一个合理的保安巡逻路线。实施建议:

1.按居住地成立4-6人的小组,对你们要研究的小区,进行观察,收集必要的数据和信息,(如平面图,楼的门洞的朝向,道路情况,小区的进出口位置等).发挥各自的特长,分工合作完成测量方案的设计、实测、作图、计算、论证、比较、计算机文稿录入、结果介绍等。

2.复习必要的知识,如一笔画方法,最短邮路的画法和算法等。

3.画出小区的平面示意图,(最好复印一下,以避免后面画坏时重画),在图上完成邮政投递路线的设计,(使邮递员走的路线最短)。

4.实践环节:先不加思索按投递要求随意地走一遍,再按你设计的路线,实际走一遍,测算出路程看一看相差多少(记录数据)? 创新实践项目:为你们居住的小区设计一个合理的保安巡逻路线、或合理的送奶的路线。首先思考“合理”的含义。

4.3初中数学建模案例3:——穿衣镜的最佳设计(个人的创意与设计)

课题:自己提出几个有关穿衣镜设计的问题,给出你们认为最合理、最佳、最有创意的设计方案或解决办法。

实施建议:

1.成立工作小组,讨论本小组的工作目标、分工。

2.有可能的话到家具店、超市、(别忘了带尺子或相机)有关杂志或网站上收集一点相关资料,可以发现问题或提出你们更好的设计。

3.分工合作完成你们的设计,最好有一个图、或一个小的模型,可以用纸板做。4.准备在全班交流,可以用实物、照片、模型、“ppt”,等形式表现你们的成果和创意,如果给你3分钟讲演、展示,怎样让班里同学为你们的成果叫好?

4.4数学建模的可供学生选择上的假期作业

1.利用放寒假与父母逛商场的机会,认真注意收集春节商场“打折消费”、“诱导消费”的各种广告信息,测算化1000元可以最多实际买到价值多少的商品。计算实际打折率。开动你的大脑,为消费者设计一种收益较多的购物方式;或者为商场设计一个更好的吸引消费者的、也使的商场收益较多的购物方式。

2.测量一个比较高的建筑物的高度,说明测量方案,测量过程和测量数据。看谁想出更好的方法?

3.自编3道方程和方程组的应用题,要求联系实际,有真实的实际背景,请写出题目、题解,看谁编的有趣。

4.到超市观察各种不同包装设计的同种商品,如同一个牌号的大、小牙膏,收集它们的价格信息,找一个表示它们的重量和价格的公式。5.到各大商场,超市观察不同的商品的外包装,提出一个与“节约”有关的问题,将问题数学化,并用学过的知识试着解决它。进而自己在提出一些新的问题,或将自己得到的结果推广以适用于更大的范围。

6.了解出租车的计价方式,(如起步每公里,每种车型多少钱;运行中每公里,每种车型多少钱;等候时每分钟,每种车型多少钱?)给出一个根据距离、等候时间计算付多少钱的方法或公式。

7.调查邮局中不同重量、寄往本市、外地、港澳、国外的平信(包括航空)的邮资表,如果限定信封上只准贴至多3枚邮票,请你设计邮票应该有哪些面值?

8.自己找到的用学过和还没有学过的数学知识解决的实际问题,(可以只提出问题,或仅仅提供一个解决问题的想法)。

学生实际的学习成果从略。

五、数学建模对教学和教师的影响

开展数学建模学习不仅是学习方式的改变,而且是育人模式的变化。

人才培养模式集中而具体的体现形式是教育教学模式。改革传统的以“升学—应试”为目标的学校教育教学模式,创建以全体学生全面发展为目标的、体现素质教育方向和要求的新型教育教学模式,是当前学校实施素质教育的首要任务。而创建体现素质教育思想和要求的教育教学模式重要的着眼点就是要改变学生那种单纯地被动接受教师知识传输的学习方式,帮助和指导学生在开展有意义接受学习的同时,形成一种对知识技能进行主动探求、并重视实际问题解决的主动积极的学习方式。这就是培养学生在教师指导下,从自身的学习生活和社会生活、自然界以及人类自身的发展中选取研究专题(专题、主题),以探究的方式主动地获取知识、应用知识、解决问题的数学建模。这对于培养学生的创新精神和实践能力、创造能力、终身学习的能力具有十分重要的意义。而数学建模活动的实际结果告诉我们,它不仅对好学生、而且对学习有一定困难的学生都能起到培养兴趣、激发创造的目的。数学建模的成果还可以为学生建立一种更表现学生素质的评价体系。数学建模的过程可以为不同水平的学生都提供体验成功的机会,真正把筛子变成泵。

实际上,数学建模的教学过程(或者更自然地说是师生一起学和做的过程)对教师的成长和专业发展,更新教育观念,主动参与并推进素质教育,有着越来越重要的作用。

主要表现在下面的几个方面:

首先,它可以帮助教师转变教学观,更有利于发挥教师的主导作用和学生的主体作用。教师的主导作用体现在创设好的问题环境,激发学生自主地探索解决问题的积极性和创造性上;学生的主体作用体现在问题的探索、发现、解决的深度和方式尽量由学生自主控制和完成。它体现了教学过程由以教为主到以学为主的重心的转移。课堂的主活动不应都是教师的讲授,而应是学生自主的自学、讨论、调查、探索、解决问题。教师要自觉适时地改变他的教育角色,平等地参与学生的探索、学习活动。教师不应只是“讲演者”、不应是“总是正确的指导者”,而应不时扮演下列角色:模特——他不仅演示正确的开始,也表现失误的开端和“拨乱返正”的思维技能;参谋——提一些求解的建议,提供可参考的信息,但并不代替学生做出决断;询问者——故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度;仲裁者和鉴赏者——评判学生工作及成果的价值、意义、优劣,鼓励学生的有创造性的想法和作法;在教学的组织中体现“学法”,把教和学融为一体。

其次,它可以帮助教师转变学习观。

过去在封闭式教育中,教师是知识的输出者。由于教育被定位为在学校这个“围墙”内,由知识的拥有者和惟一源泉——教师向知识的需求者——学生输出知识的活动,教师和学生之间的关系就是教师“单向输出”和学生“被动接受”的关系。在数学建模的实践活动中,问题环境充分敞开,教师不可能也不再是学生获取知识的惟一源泉,而且常常会无计可施,教师的指导作用更多地表现在“策略”的指导。教师把握教学目标时应立足于“做”而不是讲,立足于学生对问题的分析,对解决问题过程的理解,而不以仅仅有正确的解答为满足。要让学生在问题、困难、挑战、挫折、取胜的交替体验中;在选择、判断、协作、交流的轮换操作中;经历一个个学、用知识,进而发现问题,走向新的学、用知识的过程。从而培养能力、激发兴趣、形成学生主动学习的良性循环。

第三,它还可以改变教师自己的成材观、发展观。

事实上,数学建模对教师也很陌生,对许多问题教师可能都不会,怎么教学生?在数学建模过程中表现出的问题形式与内容的多样,问题解决方法的多样性、新奇性和个性的展示,问题解决过程和结果层次的多样性,无疑是对参与者创造力的一种激发、挑战、考验和有效的锻炼。教师在陌生的问题前感到困难、失去相对于学生的优势是自然的,常常出现的。这里有两个认识需要改变,一是数学建模教学能力提高的主要途径恰恰是自己多参与,多独立的思考和实际去“做”;二是数学建模的教学过程中,教师的角色不应该总是“正确的指导者,总是正确的化身”,而应该平等地参与,适时扮演“同事、参谋、建议者、欣赏者”。教师要在自己的视野内努力寻找宜于学生使用的数学建模问题,做好每个问题解决过程的记录,学生成功的经验和自己在挫折中得到的教训对于今后的数学建模的教学设计有重要的价值,也是教师由数学建模的生手到行家的有效途径之一。

六、对在数学新课程中开展数学建模活动的小结 问题和内容的选择:联系学生和教材的实际。好入手、有趣味、可深入。

常态的环节和步骤:选题(问题引领),开题(交流预设的解决问题方案),做题(合作、探究、利用工具和资源),结题(交流分享、反思评价、积累资源)。

动静结合的资源:你的学生、家长、同事、朋友和他们的实践;相关刊物和网站。教与学的过程设计:强调------学生活动,做中学想、开放思维、小组功能、过程体验、经验积累。

关注和鼓励:激发兴趣、善用工具、提出问题、多途求解、情感交流、共享成果。着力促进:学习方式的转变、学习过程的良性循环、课内知识的学习和应用、对数学的价值的感悟和理解。

评价:关注过程、关注变化。提出问题是否有新意,操作求解是否有创意,合作学习是否有效率,结果呈现是否有特色,反思拓展是否有眼光,自我感受是否有收获,兴趣动力是否有增强,数学素养是否有提高。

第三篇:(初中数学“数学建模”的教学研究与案例评析)作业

中学数学建模及其活动设计

随着“数学应用意识”教育的不断深入,近几年来开始开展的“中学生数学建模”活动也日益得到广泛的注重,它作为“数学应用意识”教育的突破口和出发点,促进数学素质教育的发展,已是历史的必然。

一、数学模型、数学模型法与数学建模

1.数学模型

数学模型有广义和狭义两方面的理解。广义地理解,一切数学概念、数学理论(公式、定理、法则等)、数学事实(各种方程、函数式等),都可以称之为数学模型。狭义地理解,只有反映特定现实原型的数学关系结构才称为数学模型。应用数学中的数学模型都是指狭义理解的数学模型。作为实际问题的数学模型,还必须具有抽象性、准确性、演绎性、预测力等特性。数学模型按其所描述的不同的自然现象和过程,大致有以下四种:

(1)确定性数学模型。它描述自然界中最普遍、最常见的必然现象,这类现象或事物的产生和变化服从确定的因果关系,其表现形式可以是各种各样的方程、关系式、逻辑关系式、网络图等。使用的工具是经典数学的方法。

(2)随机性数学模型。它描述自然界中大量存在的自然现象,这类现象对于某一特定事件来说,它的变化发展结果有许多可能性,但对大量这类事件或同一事件多次重复出现的总体来说,这种变化是有规律的。使用的工具是概率论与数理统计。

(3)变突性数学模型。它描述自然界中不连续的突变现象。使用的工具是变突理论。

(4)模糊性数学模型。它描述一类内涵和外延都没有明确边界的模糊事物或现象。所用的工具是模糊数学。

当然,由于现实世界关系的复杂性和多样性,有些数学模型也可能是兼有几类特性的混合型数学模型。

数学模型具有以下性质:

(1)能通过数学模型对所研究的问题进行理论分析,逻辑推导并能得出明确的解。

(2)数学模型的解能回到具体研究中解决实际问题,能为人们提供更多的信息,推出未知的事实,作出预言。(3)数学模型作为科学抽象的结果,应在不同程度上,抓住支配现象的最基本的东西,能使人们对原系统的认识更加容易,能起到化繁为简、化难为易的作用。

2.数学模型法

数学模型法是将所考察的实际问题化为数学问题,构造出相应的数学模型,通过对数学模型研究结果的解释,使实际问题得以解决的一种数学方法,运用数学解决实际问题是通过数学模型这个桥梁来实现的。

运用数学模型法解决实际问题的大致步骤是:

(1)分析实际问题,忽略某些次要因素,作必要的简化和近似,构成现实模型;

(2)将所得的现实模型用数学语言进行描述,抽象成一个数学问题,建立数学模型;

(3)运用和研究数学理论,对所得的数学模型求解;

(4)将所得的数学解答返回到实际问题进行解释、检验与评价,形成对实际问题的判断或预见。

3.数学建模

数学建模是建立数学模型的过程的缩略表示,是运用数学模型法的重要环节,是对研究对象进行科学的分析、简化、抽象的过程。数学建模的主要过程可用如下框图来说明:

数学建模就是循环执行不断修正、发展的过程。值得注意的是:初步的数学模型建立以后,要根据精确性和简单性统一原则,选用最简单、最容易得到结果而又最能反映对象特征的模型。如果模型不能得出确定的结果,有时需要补充一些实际条件,例如建立的数学模型是一个微分方程,往往需要考虑问题的初始条件与边界条件;如果模型太复杂,参数太多,无法确定结果或所得的模型难以求解,就要设法简化这个模型;如果模型的求解结果与实际测得的数据或常识的预测差距过大,就要设法修改参数或重新考虑被忽略的某些因素,经过反复修改,使建立的数学模型能比较准确地(在允许的误差范围内)反映实际情况。数学建模与数学模型法是两个不同的概念,前者侧重于一种活动、一个过程,后者侧重于一种数学方法。

二、世界各国开展数学建模活动具体做法 早在70年代,西方不少发达国家的一些有识之士已经开始研究在中学开展数学建模活动的可能性,各种案例相继出现。进入80年代,数学建模已成为国际数学教育改革的主旋律,世界各国的课程标准也都要求在各年级水平或多或少地含有数学建模内容,具体做法主要有以下几种:

(1)两分法。数学课程方案由两部分构成,前一部分主要处理纯数学内容;后一部分处理的与前一部分纯数学内容相关的应用和数学建模,它有时是现成模型结果的应用,有时是整个建模过程。着做法可表示为:纯数学内容的学习→数学应用和建模。

(2)多分法。整个教学由很多小单元组成,每个单元的做法类似于“两分法”。

(3)混合法。在这种做法里,新的数学概念和理论的形成与数学建模活动被设计在一起互相作用。这种做法可表示为:问题情景的呈现→数学内容的学习→问题情景的解决→新的问题情景的呈现→„„。

(4)深程内并入法。在这种做法里,一个问题首先被呈现,随后与这问题有关的数学内容被探索和发展,直至问题被解决。

(5)深程间并入法。由于所呈现的问题未必都能单独用数学知识来解决,可能需用其他科知识,即“跨学科设计教学法”。

三、中学数学建模的活动设计

1.中学数学建模的活动设计目标

①树立面向新世纪数学观(数学是工具、技术、文化)。体现数学的应用价值,培养数学的应用意识。

②增强数学学习的兴趣,学会团结合作,提高分析和解决实际问题的能力。

③知道数学知识的发生过程,培养数学创造能力。

2.中学数学建模的活动设计原则

数学建模的活动设计应反映数学教育发展、改革的方向,具体说来它更应强调以下原则:

(1)着重发展学生的数学能力,特别是数学应用的能力,这不仅包括计算、推理、空间想象,还应包括辨明关系、形式转化、驾驭计算工具、查阅文献、能进行口头和书面的分析和交流。(2)强调计算工具(计算器、计算机)使用,这不仅指在计算过程中使用计算工具,而且还指在猜想、争辩、探索、发现、模拟、证明、作图、检验中使用计算工具。

(3)更强调学生积极主动地参与,把教学过程更自觉地变成学生活动的过程。教师不应只是“讲演者”、“总是正确的指导者”,而应不时扮演下列角色:模特――他不仅演示正确的开始,也表现失误的开端和“拨乱反正”的思维技能;参谋――提一些求解的建议,提供可参考的信息但并不代替学生做出决断;询问者――故作不知,问原因、找漏洞,督促学生弄清楚、说明白,完成进度;仲裁者和鉴赏者――评判学生工作及成果的价值、意义优劣,鼓励学生有创造性的想法和做法。

3.中学数学建模活动设计要求

在设计数学建模活动时,应该注意以下几点:

(1)数学建模对教师、学生都有一个逐步的学习和适应的过程,在设计数学建模活动时,特别应考虑学生实际能力和水平,起始点要低,要给学生留有充分思考的余地,形式应有利于更多的学生能参与。比如在低年级的数学教学中,教师可以在讲解知识的同时有意识地介绍知识的应用背景,在应用的重点环节有比较多的训练,如实际语言和代数语言(用字母表示某种量,用代数式表示某些条件和结果)、列方程和列不等式解应用题等,逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地解决教师提供的数学应用问题和建模问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决(或部分解决)这些问题。

(2)注意结合正常教学的教材内容

数学建模应与现行数学教材有机结合,把建模和数学课内知识的学习更好地结合起来,要以建模的视角来对待和处理教学内容,而不要形成两套系统,教师应特别注意把握数学建模与学生现实所学数学知识的“切入点”,引导学生在学中用,在用中学。

(3)注意数学建模的“活动性”

数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识。也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此,不应该把数学建模活动变成老师讲题,学生模仿练习的套路,而应该重过程、重参与,更多地表现活动的特性。

4.中学数学建模的活动设计形式(1)利用数学建模课程

数学建模课程是教师指导学生进行数学建模的主要形式。利用好数学建模课程能加深学生对数学建模的理解,充分战士数学建模的活动特点,更能进行数学建模理论的系统训练,建立一个数学建模的完整体系,提高学生的数学建模能力。

(2)利用中学生数学知识应用竞赛

中学生数学应用知识竞赛,是一种不影响中学生正常教学秩序的具有相当规模的教学改革试验,是一项科技活动,学生喜欢挑战。利用好中学生数学知识应用竞赛,可以开发、培养、发展学生的想象力、联想力和创造力,从而提高他们的数学建模能力。

(3)利用课堂教学

利用课堂教学,在部分环节上“切入”建模的内容,把一些较小的数学建模的问题。通过把问题解决的过程分解后,放到课堂教学的局部环节上去做。比如在新知识的引入、复习课时,可以用一点时间穿插介绍一个数学建模的问题,学生通过讨论仅仅完成“问题数学化”的过程(不如建立起响应的方程或不等式),而把求解过程放到课堂外完成。要注意的是:“切入”的内容应该和教学内容、教材的要求相近,以便于学生的理解和对教材知识的掌握。

(4)利用课外的活动

课外的活动是进行数学建模活动的辅助形式,它不受时间(可以是课间休息、课外活动、周末、节日、寒暑假)、地点(可以在教室内、宿舍内、校外等各场合)、内容(可以是课本某一知识的应用,也可以是某一实际问题,如:电梯问题、七桥问题、四色问题、体育彩票问题、打包问题等的限制。课外活动的形式也多种多样,可以是师生一起研讨数学建模问题,其中包括一起观察实际现象,采纳实际数据,讨论求解方案,让学生宣讲求解的结果或小论文等等,也可以是一个学生或一组学生就实际问题进行数学建模活动,还可以收集有关数学建模方面的资料。组织的方式也较为灵活,如采用数学建模讲座、数学建模欣赏、数学建模竞赛、数学建模阅读、数学建模小论文写作,办数学建模小报等,丰富学生数学建模活动。

5.中学数学建模的活动设计课题的选择

①研究、消化、改造传统的课题,给教学内容赋予生活、生产、科技实验的背景。②从国内外相关教参和期刊中引进、消化、吸收。

③从大学数学建模“成品”中简化、移植。

④亲自到一线调查研究,结合教学实践改编、提炼和挖掘。

⑤发动学生找课题。

立足与中学数学建模,在选择充足的“好问题”、“好课题”时,还应充分考虑:贴近中学学生的数学现实,适合学生的知识和能力水平,求解中并不需要补充大量的知识;有较明显的生产、生活或物理等学科的实际背景和应用价值;求解中能充分体现数学模型或数学建模的特点和过程。并可以在不同水平上运用多种模型来分析和求解;有较强的挑战性、探索性与延展性,以及趣味性;最好还能充分发挥计算机在求解中的作用。

6.中学数学建模的活动设计内容

下面列出的结合高中数学教材的应用和建模的一部分参考素材:

代数:

①结合与映射:计数问题、编码问题、体育比赛的场次设计。

②函数:

一次函数:校车设站问题、线性拟合。

二次函数:栓牛问题、磁带问题。

冥函数:同种商品按包装大小的定价问题。

指、对函数:存款、借贷问题、非线性拟合和预测。

单调性:怎样存款获息多。

极值:容器的设计。

③不等式:

解法:简单线性规划问题。

证明和应用:洗衣机的问题、打包问题、加工顺序问题、罐头问题。

④数列:等差、等比数列:人口的增长、资产的折旧。

递推关系:生物种群的变化、铺转问题、雪花曲线。

求和:存款、还贷、分期付款问题,堆垛问题。

⑤排列组合:扑克牌中的问题、权力问题、电话号码问题。⑥概率统计:有奖促销、字典字词首字母的分布、水库的鱼量、自选市场问题、掷币问题、怎样估计自己的单词量、怎样评价考试成绩、歌手大奖赛的成绩处理――歌手及裁判的水平的评价、体育彩票、密码锁问题。

7.中学数学建模的活动设计评价

评价是对数学建模活动设计成功与否有一个较为客观、便于操作的标准,以促进数学建模活动的开展、目标的完成。

①科学性 科学性是对一个数学建模的活动设计是否科学合理(设计是否符合初衷,能否解决实际问题,最佳方案的选择,设计的难度、复杂程度,设计方案种类的多少)的一个综合评价。

②实践性 实践性是对一个数学建模的活动设计的实用性的综合评价,设计的实践性如何,关键在于模型的应用深度、范围,能否体现数学与实践的最本质的联系。

③价值性 价值性是对一个数学建模活动设计创造多少价值(学术的、经济的、技术的、方法的、观念的等等)的综合评价。

④创造性 创造性是对一个数学建模的活动设计是否具有创造性的综合评价,一个好的数学建模,其创造性是不言而喻的。

总之,在数学建模的活动设计中,教师应把学生当做活动的主题,不要只把问题解决的过程展示给学生看,活动的设计应有利于发挥学生的主动性、创造性、协作性精神,让学生能把学习知识、应用知识、探索发现、使用计算机工具的模型求解更好地结合起来。使学生在建模的过程中学数学、用数学,得到“微科研”的体验,从而达到学好数学、提高素质、增长才干的目的,同时也要避免赶时髦,不顾学生水平,盲目搞数学建模。

第四篇:初中数学教学研究

新课程理念与初中数学课程改革

第一章(重点)

一、《标准》的研究背景

1、《纲要》是制订标准的基本依据

2、中国数学课程改革与发展研究是《标准》的理论与实践基础

二、《标准》的基本理念

1、数学课程要面向全体学生

2、数学的发展要在数学课程中得到反映

3、数学课程要关注学生的生活经验和已有的知识体验

4、数学课程的内容要包括“过程”

5、在合作交流与自主探索的氛围中学习数学

6、教师的角色要向数学学习活动的组织者、引导者和合作者转换

7、评价应关注学习过程,应有助于学生认识自我,建立自信

8、科学合理地使用现代信息技术

三、基本理念在《标准》中的地位和作用

基本理念是构成《标准》的支撑点,《标准》中每一项具体描述都是这些理念物化的结果。

第二章 一、五个国家的数学课程标准

1、改革迭起的美国数学课程标准

包括6条指导性原则和12条标准

2、以水平为标准的英国数学课程标准

3、十年一改的日本数学课程标准

4、现实的数学的荷兰数学课程标准

5、国小影响大的新加坡数学课程标准

二、国际数学的六个特点

1、面向全体

2、注重问题解决

3、注重数学应用

4、注重数学交流

5、注重培养学生的态度、情感与自信心

6、重视信息技术的应用

三、国外初中数学教材的特点

1、与现实生活紧密联系在一起

2、从学生的经验出发,激发学生学习的兴趣

3、以学生的活动为主线来贯穿内容

4、内容呈现方式多样化

5、教材为学生提供了充分的探索空间

6、教材注重对知识及时进行梳理

第三章(重点)

第一节 建立和发展学生的符号感1

符号感主要表现的四个方面

1、能从具体情景中抽象出数量关系和变化规律,并用符号来表示

2、理解符号所代表的数量关系和变化规律

3、能进行符号间的转换

4、能选择适当的程序和方法解决用符号所表示的问题

第二节 数与代数的课程设计

一、代数式的课程设计特点

1、在具体情境中理解字母表示数的意义

2、在代数式、代数式求值、代数式运算的学习中发展符号感

二、方程与不等式的课程设计特点

1、体会方程(组)是刻画现实世界的一个有效的数学模型

2、经历探索方程(组)解的过程

3、掌握求解方程的基本方法,并能检验解的合理性

4、体会具体问题中的不等关系,利用不等式解决问题

三、函数的课程设计特点

1、函数思想的早期渗透

2、探索现实世界中变量之间的关系

3、对函数概念理解的逐步深入

4、在具体函数学习中强调函数模型的思想

5、结合数值、解析式、图像探索具体函数的性质

6、利用函数的观点认识方程和不等式

四、有理数、实数的课程设计特点

1、关注数与现实世界的联系

2、关注对大数、无理数等的估计

3、关注对运算意义的理解以及对运算方法的选择

4、利用计算器解决实际问题和探索规律

第三节 教学上的建议

数与代数课程教学的五点建议

1、注重实际问题数学化的过程,突出数、符号用来表示与交流的作用

2、鼓励学生的充分探索和交流

3、注重培养学生的代数推算能力

4、重视对数与代数知识的理解和应用,避免繁杂的运算

5、注重发挥计算器、计算机等信息技术的作用

第四章(重点)

第一节 几何课程的价值和目标

一、几何课程的三项教育价值

1、更好地理解人类赖以生存的空间

2、发展无穷无尽的直觉源泉,形成创新意识

3、有利于数学思考、解决问题、情感态度的发展

二、几何课程的目标

第二节 建立和发展学生的空间观念

空间观念的主要内容是

1、能由实物的形状想象出几何图形,由几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化,能根据条件作出立体模型或画出图形。

2、能描述实物或几何图形的运动和变化

3、能采用适当的方式描述物体间的位置关系

4、能运动图形形象地描述问题,利用直观来进行思考

第三节 空间与图形课程的设计

一、图形的认识的课程设计

1、在现实情景中抽象出图形,经历建立模型的过程

2、经历探索图形性质的过程,掌握一些基本图形的基本性质

3、增加视图与投影等有关空间的内容,更好地发展空间观念

4、运用所学的图形的性质解决实际问题

5、了解并欣赏一些有趣的图形,感受图形世界的丰富多彩

二、图形与变换的课程设计

1、在丰富的现实情境中,探索变换(轴对称、平移、旋转)现象的共同特征,认识变换(轴对称、平移、旋转)的基本性质

2、探索图形之间的变换关系及基本图形的变换性质

3、灵活运用轴对称、平移和旋转的组合进行图案设计

4、欣赏并体验变换在现实生活中的广泛应用,体会其丰富的文化价值

5、认识图形的相似及其在生活中的广泛运用

三、图形与坐标的课程设计

1、探索刻画物体或图形位置的方法,灵活运用不同的方式确定物体的位置

2、能建立适当的直角坐标系,描述物体的位置

3、在同一直角坐标系中,感受图形变换后点的坐标的变化

四、图形与证明的课程的设计

1、在探索图形性质,与他人合作交流的活动过程中,发展合情推理,学习有关条理的思考与表达

2、体会证明的必要性

3、掌握证明的基本格式,养成说理有据的态度

4、体验证明素材的丰富多彩

五、教学上的四点建议

1、以现实生活中的大量实例为背景,使学生体验图形与现实世界的密切联系

2、注重使学生经历观察、操作、思考、想象、推理、交流、反思等活动,积累数学活动经验

3、全面发展学生的推理能力

4、发挥计算机等信息技术对空间与图形及教学的作用

第五章(重点)

第一节 统计与概率的教育价值

统计与概率的教育价值

1、有助于学生适应现代社会的需要

2、有助于培养学生形成运用数据进行推断的思考方式

3、有助于学生数学思考、解决问题、情感态度等多方面的发展

第二节 统计课程的设计

统计课程的设计

1、核心是发展学生的统计观念(包括三个方面)

2、从事收集、整理、描述和分析数据的活动,并在此活动中学习统计的知识和方法(包括三个方面)

3、认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题

第三节 概率课程的设计

概率课程的设计

1、体会概率的意义,了解频率与概率的关系

2、学习获得事件发生概率的方法

3、通过实例进一步丰富对概率的认识,发展学生的随机观念

第四节 教学上的建议

统计与概率教学的四点建议

1、突出统计与概率的实际意义和应用

2、突出学生在活动过程中的自主探索和合作交流

3、强调对所学知识和方法的理解和应用,避免单纯的计算

4、强调计算器、计算机等信息技术的作用

第六章

第一节 实践与综合运用

一、实践与综合运用的内涵

1、加强数学与外部世界的联系

2、加强数学内容之间的联系

3、加强数学知识、方法、活动经验、思维方式等的综合应用

二、实践与综合运用的教育价值和总体目标

1、教育价值

2、总的要求

第二节 课题学习

一、课题学习的特征与目标

1、特征

2、目标:共4个方面

二、课题学习的教学和评价建议

1、提供给学生充分实践、思考和交流的空间

2、提供适当的课题供学生选择,并鼓励学生独立提出问题

3、注重课题学习后的教学反思

4、对课题的学习评价以质的评估为主

第五篇:《初中数学“统计与概率”的教学研究与案例评析》

通过课程《初中数学“统计与概率”的教学研究与案例评析》的学习,谈谈你印象最深刻的是什么?印象深刻的原因是什么?

通过本课的学习,我印象最深的是:人们要对大量复杂的信息作出恰当的选择和判断。这样更加地证明学习“统计与概率”的价值和必要。在不确定事件中,有很多种可能出现的结果,虽然每种结果都是随机出现的,但出现的次数在统计上存在一定的规律性,这也决定了概率与统计是不可分的。因为“它不仅仅是一种技术,更是一种思想与方法”,所以更加说明随机现象发生的可能性的重要性。原因是:中学数学统计与概率的教学,必须注重学生的日常经验,必须从学生的实际生活出发,让他们在活动中去体验,去认识,去建构。因此,不能将这部分知识的学习,单纯当作统计量的计算、统计图表的制作以及概念识记等活动来组织。

所以让我我意识到在当今社会里,数据是一种重要的信息,统计概率所提供的“运用数据进行推断”的思考方法已成为现代社会一种普遍使用的思维方式。在我们教学的过程中要注意培养学生:

1、统计意识,就是在现实生活中,应用统计的方法解决实际问题的一种行为,统计意识是统计活动的起点,是统计教学的最为核心的内容。

2、统计技能,就是完成统计活动所必须的各种能力和技能。它是统计活动得以顺利完成的保障。

3、在最终的统计过程中,学生应该具备对他人所提供的数据或结果的评判能力,因为统计的目的在于应用。

4、理解确定事件和不确定事件的基本概念,能够辨别一个事件是否是确定事件。

5、粗略地感知某一事件发生的可能性。在定性地知道了某一事件有时发生、有时不发生的情况下,学生自然希望知道到底这一事件发生的可能性大还是不发生的可能性大,例如转动如图1所示的转盘,停止转动时指针落在红色区域和落在蓝色区域的可能性哪个大,而用如图2的转盘呢?再如现在经常听到某人购买某种彩票获得巨额奖金的报道,那是否购买彩票就能获奖呢,获得巨奖的可能性有多大呢?应该说明的是,人人梦想一夜暴富的心理是不健康的,也是不现实的,我们的学生应对这些事件发生的可能性有个直觉的估计。用数量具体刻画具体某一事件发生的可能性。

下载《初中数学“数学建模”的教学研究与案例评析》的学习随笔范文合集word格式文档
下载《初中数学“数学建模”的教学研究与案例评析》的学习随笔范文合集.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学数学建模案例

    小学数学建模案例 相遇问题。①创设问题情境,激发学生的求知欲。先请两位同学在黑板的两边同时相向而行,可以让学生重复多走几次。接着可以问同学们看到了什么。学生的回答会......

    初中数学建模论文

    初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质......

    初中数学建模论文

    初中数学建模论文 有意义地利用“压岁钱” 在正月里,长辈们每年都会给我们压岁钱,而大多数同学都把压岁钱当做了零花钱,没有意义。为了能帮助失学儿童,学校办一个“压岁钱小银行......

    浅谈初中数学建模教学

    浅谈初中数学建模教学 摘要:所谓数学建模,就是把所要研究的实验问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究,使原问题获得解决的过程。关键词:数学;建模;教学G633.......

    初中数学随笔

    初中数学随笔 课程改革要求把“以学生发展为本”作为新课程的基本理念,提出“改变过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于研究、勤于动手”,“大......

    数学建模学习心得体会

    刚参加工作那阵子就接触到“建模”这个概念,也曾对之有过关注和尝试,但终因功力不济,未能持之以恒给力研究,也就一阵烟云飘过了一下罢了。许校的讲座再次激起了我们对这个曾经的......

    学习数学建模感想[精选]

    学习数学建模感想 张立云 校组织学习了小学数学建模,通过学习,使我对新数学建模有了进一步的理解,有了一个新的认识。自己对数学建模的理解谈点体会。们的数学教学,都是在原有......

    学习数学建模心得体会

    学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考......