第一篇:节能水泵新技术泵-变频恒压型水泵控制器节能
节能水泵新技术泵-变频恒压型水泵控制器节能
---湖南利圣德节能科技有限公司
“LPC-泵控技术”采用先进的节能控制技术,使用V/F变频节能控制方式,可实现水泵电机的高效率运行、根据负载情况,自动优化,实现节能运行。“LPC-泵控技术”变频恒压型水泵控制器能快速稳定的自动观测用水使用情况,根据用户用水情况自动调节运行方式和输出频率,水泵运行在变频控制方式,电机冲击电流几乎为零。高效节能,节能达到30%以上。
“LPC-泵控技术”变频恒压型水泵智能控制器变频调速技术的基本原理是根据水泵电机转速与工作电源输入频率成正比的关系:n =60 f(1-s)/p,(式中 n、f、s、p 分别表示转速、输入频率、电机转差率、电机磁极对数)由流体力学可知,水泵流量 Q 与转速的一次方成正比,压力 H 与转速的平方成正比,轴功率 P 与转速的立方成正比,即 Q∝n,H∝n2,P∝n3 当流量减少,水泵转速下降时,其功率下降很多。例如水泵流量下降到 80%,转速也下降到 80%时,则轴功率下降到额定功率的 51%;如流量量下降到 50%,功率 P 可下降到额定功率的 13%,当然由于实际工况的影响,节能的实际值不会有这么明显,即使这样,水泵节能的效果也是十分明显的。因此在水泵的机械设备中,采用“LPC-泵控技术”变频恒压型水泵智能控制保护器来调节流量,在节能上是一个最有效的方法。水泵电机转速与LPC节能率的关系表频率 f(Hz)转速 N% 流量 Q% 压力 H% 轴功率 P% 节电率 根据“LPC-泵控技术”变频恒压型水泵控制器上述原理可知改变水泵的转速就可改变水泵的功率。
目前变频调速技术已经成为现代电力传动技术的一个主要发展方向。卓越的调速性能、显着的节电效果改善现有设备的运行工况、提高系统的安全可靠性和设备利用率、延长设备使用寿命等优点随着应用领域的不断扩大而得到充分的体现。
第二篇:风机水泵压缩机变频调速节能技术讲座
风机水泵压缩机变频调速节能技术讲座
(一)国家电力公司热工研究院自动化所 徐甫荣
前言
我国是能源消费和生产大国,一方面是资源相对不足,尤其是石油、天然气资源匮乏;另一方面是能源利用效率低,且浪费严重,因而经济增长的质量和效益不高,且环境问题日益严重。大量的调查表明我国存在巨大的节能潜力,总节能潜力约为目前能源消费总量的30%~40%,各行各业都存在大量的技术上和企业财力上都可行的节能项目,但绝大多数至今还没有实施。
我国经济持续高速增长了30年。经济总量已达到世界第三位,国内生产总值、工业增长速度、固定资产投资都在高速增长。我国经济持续高速发展带动了能源工业的发展,而能源工业的发展,又成为经济发展的动力,是经济发展的基础。但是也带来了日益严重的环境问题,在世界144个国家和地区的“环境可持续发展指数”排序中,我国被排在133位,我国以煤碳为主的能源结构问题严重。由于向大气层中排放CO2、SO2、氮氧化物,有时阴霾,有时下些酸雨,离开了蓝天、白云、碧水、绿地的生态环境。能源的消耗带来了严重的环境问题。
我国是“气候变化框架公约”的重要签约国,肩负着全球环境方面的责任,节能既解决能源紧张,相当于建设了能效电厂,又减少了污染,保护了环境,在降低能耗的同时,使我国的经济由粗放型向节约型转变,进而促进了经济的发展,既节能又促进、优化了经济、能源、环境。经济(Economics)、能源(Energy)、环境(Environment)、节能(Energy Saving)是国民经济发展的四个重要的方面,称作4E。四者之间相互依存、相互需求、相互支持、相互制约,要求一个好的平衡。国民经济的发展要求能源相应发展,能源工业的发展促进了经济的发展,经济的发展、能源的消耗又导致大量的CO2、SO2、氮氧化物排放到大气层中,形成酸雨,温室效应。除了建立电厂以外(热电、水电、核电、风电、太阳能等,主要是热电),节能是能源开发的最好补充,相当于建设了能效电厂。对比热电,它洁净,又不需要煤,不需要运力,不排放CO2、SO2、、氮氧化物等,因而我国政府确立了“开发和节约并重”的能源方针。
电动机系统节能工程是节能的重点工程之一。目前,我国各类电动机总装机容量约4.2亿kW,实际运行效率比国外发达国家低10%~30%。用电量占全国的总用电量的60%左右。“十一五”期间重点推广高效节能电动机、稀土永磁电动机;在煤炭、电力、有色、石化等行业采用高效节能电动机,实施对风机、水泵、压缩机系统的优化改造,推广变频调速、自动化系统控制技术,使运行效率提高2个百分点,年节电200亿kW.h。
电动机系统变频调速节能工程中,又首推负载为叶片式风机、水泵、压缩机的调速节能技术,因为叶片式风机、水泵、压缩机属于平方转矩型负载,即其轴上需要提供的转矩与转速的二次方成正比。风机、水泵、压缩机在满足流体力学的三个相似条件:即几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变,而仅转速改变时,其性能参数的变化遵循比例定律:即流量与转速的一次方成正比;扬程(压力)与转速的二次方成正比;轴功率则与转速的三次方成正比。即:
Hn2Pn3pn2Qn()();;;()''''''''HnPnpnQn由于目前绝大部分风机水泵(压缩机)都采用风门挡板(阀门)调节流量,造成大量的1 节流损耗,若采用转速调节,具有巨大的节能潜力。直到上世纪七十年代,都采用机械调速或滑差电机调速,但这属于低效调速方式,仍有较大的能量损耗,并且驱动功率受到限制;到上世纪80年代,开始采用液力耦合器调速,并且突破了驱动功率的限制,向大功率方向发展,但它与滑差电机调速一样,属于低效调速方式,仍有较大的能量损耗。直到上世纪90年代,随着电力电子技术和计算机控制技术的发展,变频器很快占领电动机调速市场,并向高压、大容量领域发展,使采用高压电动机驱动的风机、水泵、压缩机进行变频调速节能改造成为可能。进入新世纪以来,国产高压变频器生产企业如雨后春笋般的涌现,并且其质量和可靠性直逼进口产品,且价格低廉,服务周到,因此在很多领域大有取代进口产品的趋势。风机、水泵、压缩机变频调速节能改造的发展前景一片大好。
随着节能减排指标的层层落实,工业设备的节能改造已成为企业的自觉行动。为了帮助企业在确定节能改造项目时做到心中有数,使有限的改造资金取得最大的经济效益,改造前根据设备参数和运行工艺数据进行的节能估算(能效审计)就显得尤为重要;尤其是目前为了推动节能减排工作的全面推广,国家鼓励采用“合同能源管理”的模式实施节能改造工程,那么改造前的节能估算(能效审计)工作就成为重中之重了:因为它直接关系到“合同能源管理”实施企业的经济利益,甚至关系到“合同能源管理”项目的成败!
目前见到的变频调速节能改造项目的节能计算多有偏颇不实之处,这主要是缺乏理论指导和实践经验,而教科书上又缺乏系统的内容,致使大家各行其是,无所适从。当然也不排斥有些节能厂商为了推广其节能产品而误导用户,故意夸大节能效果;但是更多的则是由于没有掌握节能计算方法。
所以,根据长期以来从事风机、水泵、压缩机变频调速节能工程的实践,有责任将其总结成文,作为用户在节能改造时参考;同时也希望引起大家的讨论,以便形成共识。
第一讲 风机变频调速节能技术 概论
风机与水泵是用于输送流体(气体和液体)的机械设备。风机与水泵的作用是把原动机的机械能或其它能源的能量传递给流体,以实现流体的输送。即流体获得机械能后,除用于克服输送过程中的通流阻力外,还可以实现从低压区输送到高压区,或从低位区输送到高位区。通常用来输送气体的机械设备称为风机(压缩机),而输送液体的机械设备则称为泵。风机的主要功能和用途
风机按工作原理的不同,可以分为叶片式(又称叶轮式或透平式)和容积式(又称定排量式)两大类。叶片式风机又可以分为离心式风机、轴流式风机、混流式风机和横流式风机;容积式风机又可以分为往复式风机和回转式风机,而回转式风机又可用分为罗茨风机和叶氏风机。
风机除按上述工作原理分类外,还常按其产生全压的高低来分类:
(1)通风机:指在设计条件下,风机产生的额定全压值在98Pa~14700Pa之间的风机。在各类风机中,通风机应用最为广泛,如火力发电厂中用的各种风机基本上都是通风机。
(2)鼓风机:指气体经风机后的压力升高在14700Pa~196120Pa之间的风机。(3)压缩机:指气体经风机后的压力升高大于196120Pa以上,或压缩比大于3.5的风机。(4)风扇:指在标准状况下,风机产生的额定全压低于98Pa的风机。这类风机无机壳,故又称自由风扇。风机的性能参数
风机的基本性能参数表示风机的基本性能,风机的基本性能参数有流量、全压、轴功率、效率、转速、比转速等6个。(1)流量:以字母Q(q)表示,单位为(升)l/s、m/s、m/h 等。
(2)全压:风机的全压p表示空气经风机后所获得的机械能。风机的全压p是指单位体积气体从风机的进口截面1流经叶轮至风机的出口截面2所获得的机械能。风机全压的计算式为:
3p(p211v22)(p1v12)N/m2 22风机的全压等于风机的出口全压(出口静压和出口动压之和)减去风机的进口全压(进口静压和进口动压之和)。
(3)轴功率:由原动机或传动装置传到风机轴上的功率,称为风机的轴功率,用P表示,单位为kW。
P式中:Q——风机风量(m/s);
P——风机全压(kPa);
ηr——传动装置效率;
ηf——风机效率;
ηd——电动机效率。电动机容量选择:P3
Q.prf
Q.prfd
(4)效率:风机的输出功率(有效功率)Pu与输入功率(轴功率)P之比,称为风机的效率或全压效率,以η表示:
fPuQ.p PP(5)转速:风机的转速指风机轴旋转的速度,即单位时间内风机轴的转数,以n表示,单位为r/min(rpm)或s-1(弧度/秒)。
(6)比转速:风机的比转速以ny表示,用下式定义:
ny5.54nq
1.23/4(p) 作为性能参数的比转速是按风机最高效率点对应的基本性能参数计算得出的。对于几何相似的风机,不论其尺寸大小、转速高低,其比转速均是一定的。因此,比转速也是风机分类的一种准则。风机的性能曲线
图1所示为300MW火电机组离心式一次风机性能曲线,该风机为进口导叶调节,图中0为调节门全开位置,负值为调节门向关闭方向转动的角度;图中虚线为等效率线。图
2o所示为300MW火电机组动叶可调轴流式送风机性能曲线,图中虚线为等效率线,0代表设计安装角,负值为动叶片从设计安装角向关闭方向转动的角度,正值则相反。
由图
1、图2可见,风机性能曲线呈梳状,随着风门(动叶片)开大,风机的出口风量和风压都沿阻力曲线增大,其等效率曲线是一组闭合的椭元。这一点是与水泵的性能曲线不同的。
图
2、图4所示是典型的动叶可调轴流式风机的性能曲线。由图2可见,动叶可调轴流o 3 式风机叶片的安装角可在最小安装角到最大安装角之间从0~100%调节,随着叶片安装角的增大,风机沿阻力曲线方向风量和风压同时增大,反之则同时减小。100%锅炉负荷(B-MCR)
0时,叶片开度为70%左右,相对于安装角+5;100%汽轮机负荷(THB)时,叶片开度为
065%左右,相对于安装角0;这两个点应在风机的最高效率区内。但是在锅炉设计时,由于无法精确计算锅炉风道的阻力曲线(图2中上面一条是双风机运行时的阻力曲线,下面一条则是单风机运行时的阻力曲线),因此所选用的风机性能曲线不能保证B-MCR点和THB点在高效区内,从而就降低了风机的运行效率,有时甚至可达20%~30%!轴流式风机叶片的安装角过大或过小,都会使风机的运行工况点偏离高效点,降低风机的运行效率。
为了将两种风机的性能进行比较,图5所示为定速轴流风机和离心风机性能曲线的重叠。由图5可见,离心式风机的最高效率在进口调节门的最大开度处,等效率线和锅炉阻力曲线接近垂直,效率沿阻力线迅速下降。能满足TB点(锅炉风机设计点),而100%MCR点(锅炉满负荷连续运行点)在低效率区,变工况时效率则更低,其平均运行效率比动叶可调的轴流风机要低得多。如采用转速调节,可将风门开到最大,使风机在高效区运行,而通过改变风机的转速达到控制风量的目的,风机将在很大的范围内维持高效运行,从而达到节能的目的。
而动叶可调的轴流式风机的等效率线与锅炉的阻力曲线接近平行,高效率范围宽,且位置适中,因而调节范围宽。锅炉设计点(TB)与最大连续运行工况点(100%MCR)相比,流量约大15%~25%,压力约高30%~40%。在满足锅炉设计点条件下,100%MCR工况点位于高效区,平均运行效率高,单风机运行时可满足锅炉60%~80%负荷。就运行效率而言,动叶可调的轴流式风机是除变转速调节外的风机最佳调节方式。
图1 某300MW机组离心式一次风机的性能曲线 图2 某300MW机组动叶可调轴流式送风机的性能曲线
图3 某600MW机组静叶可调轴流引风机的性能曲线 图4 某660MW机组动叶可调轴流式送送风机的性能曲线
图5 定速轴流风机和离心风机性能曲线重叠比较
如采用转速调节,可将风机的安装角固定在高效区,而通过改变风机的转速达到控制风量的目的,风机将在很大的范围内维持高效运行,从而达到节能的目的,但是由于这时的调速范围小,节能效果也就差。所以也可以将风机的安装角调到最大,这样虽然会降低一些运行效率,但是却大大增加了调速范围,而风机轴功率的下降是与转速的三次方成正比的,所以功率的降低远大于效率的下降,采用这种运行方式能取得更大的节能效果,详见下面具体工程案例的计算结果。风机拖动系统的主要特点
叶片式风机水泵的负载特性属于平方转矩型,即其轴上需要提供的转矩与转速的二次方成正比。风机水泵在满足三个相似条件:几何相似、运动相似和动力相似的情况下遵循相似定律;对于同一台风机(或水泵),当输送的流体密度ρ不变仅转速改变时,其性能参数的变化遵循比例定律:流量与转速的一次方成正比;扬程(压力)与转速的二次方成正比;轴功率则与转速的三次方成正比。即:
Hn2Pn3pn2Qn()();;;()H'n'P'n'p'n'Q'n'风机与水泵转速变化时,其本身性能曲线的变化可由比例定律作出,如图6所示。因管
''路阻力曲线不随转速变化而变化,故当转速由n变至n时,运行工况点将由M点变至M点。
应该注意的是:风机水泵比例定律三大关系式的使用是有条件的,在实际使用中,风机水泵由于受系统参数和运行工况的限制,并不能简单地套用比例定律来计算调速范围和估算节能效果。
当管路阻力曲线的静扬程(或静压)等于零时,即HST=0(或PST=0)时,管路阻力曲线是一条通过坐标原点的二次抛物线,它与过M点的变转速时的相拟抛物线重合,因此,''M与M又都是相似工况点,故可用比例定律直接由M点的参数求出M点的参数。对于风5 机,其管路静压一般为零,故可用相似定律直接求出变速后的参数;而对于水泵,其管路系统的静压一般不为零,故对于每一个工作点,都要经过相似折算后,才能用比例定律的三个公式求出变速后的参数。
PH扬程P-qvP-q'vM'nMM'nn'HSTn>n'Mn'n>n'O
O
(a)
(b)图6 转速变化时风机(水泵)装置运行工况点的变化
(a)风机(当管路静压Pst=0时)
(b)水泵(当管路静扬程Hst≠0时),qvqv
作者简介
徐甫荣(1946-)男,1970年毕业于西安交通大学电机工程系发电厂电力网及电力系统专业,后在西安电子科技大学攻读硕士研究生。毕业后在国家电力公司热工研究院自动化所工作,任总工程师,教授级高工,现为深圳市科陆变频器公司工程技术总监,享受国家特殊津贴的专家。主要从事火电厂热工自动化和交直流电机调速拖动及节能技术的研究工作,在国内外各类学术刊物上发表论文五十余篇,专著“高压变频调速技术应用实践”等两本。
参考文献(略)
第三篇:水泵机械节能总结
1.改造背景
我司柳东、柳南、城中水厂于2006年将取水泵全部更换为KSB的OMEGA型单级双吸离心卧式清水泵,共11台。该批水泵的轴封形式全部选用填料密封,外接清水用于填料冷却及润滑(原水浊度高,水泵循环水不宜用于填料冷却及润滑)。
经过几年的使用,我们发现在使用过程中存在如下几个问题:
1.1轴封漏水大,填料压盖调整困难;
1.2更换填料需要拆除泵盖,增加维修人工及维修强度;
1.3填料切制合适与否受人为因素影响太大,密封质量不易控制;
1.4不锈钢轴套磨损大,更换成本高。
鉴于以上问题,我司认为有必要将KSB的OMEGA型取水泵的填料密封更换为机械密封,可在一定程度上降低水厂值班人员及水维部人员的工作强度及密度,也可在一定程度上达到节能降耗的目的。2.理论分析
机械密封与填料密封相比存在以下优缺点:
2.1优点:
2.1.1密封可靠,在长期运转中密封状态很稳定,泄露量很小,其泄露约为填料密封的1%。
2.1.2使用寿命长,在油,水介质中一般可达1~2年或更长。
2.1.3摩擦功率消耗小,其摩擦功率仅为填料密封的10%~50%。
2.1.4轴或轴套基本上不摩损。
2.1.5维修周期长.端面磨损后可自动补偿,一般情况下不需要经常性维修。
2.1.6抗震性好,对旋转轴的振动以及轴对密封腔的偏斜不敏感。
2.1.7适用范围广,机械密封能用于高温,低温,高压,真空,不同旋转频率,以及各种腐蚀介质和含磨粒介质的密封。
2.2缺点:
2.2.1结构较复杂,对加工要求高,成本较高。
2.2.2安装与更换比较麻烦,要求工人有一定的技术水平。
2.2.3发生偶然性事故时,处理较困难。3.改造过程
3.1机械密封的选型
根据OMEGA型水泵的结构及KSB厂家推荐,并考虑到我司维护人员的操作习惯,我司确定选用博格曼的BGM7型机械密封,该机械密封为单端面、非平衡型、任意旋向,密封端面采用碳化硅及石墨,具有应用广泛、互换性强、结构紧凑、性能可靠等优点,运行参数均符合我司水泵的运行工况。
3.2机械密封各配套零件的加工
3.2.1轴套加工
因原使用填料的轴套已有较大磨损,已不适用于机械密封,故需重新加工,材料选用304不锈钢。
3.2.2挡套加工
挡套用于定位位于轴套上的机械密封的不锈钢底座,材料选用304不锈钢。
3.2.3密封压盖加工
密封压盖用于放置并定位机械密封的静环,材料选用球墨铸铁。
3.3机械密封的安装
此次改造涉及水泵较多,而我司维护人员人手有限,故采取逐厂逐台的安装计划,整个改造耗时较长。但单台泵的改造则相对简单,其简略安装步骤如下:
3.3.1水泵本身结构不变。
3.3.2拆除原水泵填料函内的填料、分水环及填料压盖。
3.3.3拆除原水泵已磨损的轴套。
3.3.4依次安装轴套、挡套、机械密封及密封压盖。
3.3.5堵死原填料密封的冷却水入水口,机械密封冷却水改由密封压盖上的进水口接入。
从上可知,改造机械密封步骤简单,一台水泵的改造需时约1周(包括水泵解体、安装及调试)。其改造难点在于其密封端面安装时受力易崩裂,造成密封失效。
4.改造效果分析
4.1机械密封改造后使用情况
在机械密封改造完成并经历了约3个月的原水高浊过程后,我们发现:
4.1.1机械密封可靠性高,轴封处无泄漏,无需进行调整,降低了员工的工作强度。同时可靠的密封也有利于提高水泵的水力性能;
4..1.2运行平稳,水泵振动与填料密封相比相差不大;
4.1.3轴套无磨损。使用填料密封轴套易磨损,导致密封质量下降;
4.1.4机械密封在运行过程中要保持有冷却高压水,水压应在0.2MPa以上,除起冷却、润滑作用外,还可有效防止异物进入密封端面。
4.2节能效果分析
更换水泵的轴封形式,从原理上说仅避免(减少)了泵壳泄漏以及填料和泵轴套间磨擦所造成的能量损耗,节能效果并不明显。从水泵改造前后的取水单耗数据来看,其下降幅度在0.5%左右。
4.3改造的经济性分析
4.3.1机械密封改造的费用估算:
水泵改造机械密封需新增机械密封压盖、机械密封挡套、机械密封、不锈钢轴套,每台泵费用约需1.8万元。因配件为自制,故费用较低,如购买原厂配件,则费用更高。
4.3.2使用填料密封的成本及人工成本估算:
①每台水泵年更换外填料4次,材料费用约为240元;
②每次每台水泵每年更换填料的人工费用约为1120元;
③根据经验,每台水泵年更换轴套费用约为2667元;
④估算年费用4027元;则11台泵总费用44297元。
4.3.3使用机械密封的配件成本及人工成本估算:
根据机场加压站的机械密封使用经验来看,其机械密封更换周期约为3年,以3年为周期计算,每个机械密封的平均价格约为3000元/个,每次换2个机械密封;换算为年费用约为2000元;则11台取水泵估算年费用约为22000元。
4.3.4取水单耗下降0.5%所节约的电费估算:
据统计,柳东、柳南、城中三水厂的取水量约为6316万m3;
按三水厂年平均取水单耗78KWh/Km3,电费0.66元/KWh计算,得机械密封改造后的年节约电费16257.38元。计算可得年节约费用为 38554.38元,改造投资回收期为:19.8万元÷38554.38元/年=5.14年。
5.结论
此次各水厂取水泵的机械密封改造的经济效益从以上的估算来看并不明显,但改造的意义甚大,主要表现为:
5.1封的密封可靠性有效提高,有利于水泵水力性能提升;
5.2降低了员工的工作强度。因KSB泵的填料压盖呈喇叭型,易与泵壳挤死,造成员工在进行拆卸工作时存在很大困难,且易于形成安全隐患;
5.3大大减少了水泵的停泵检修次数,有利于保障供水生产。
第四篇:浅谈变频恒压供水系统中水泵选择
浅谈变频恒压供水系统中水泵选择
目前,供水行业中经常用到无负压给水设备和变频恒压给水设备,以上两种设备的基本原理都是根据供水系统的压力变化(对应流量变化)。利用变频器调节执行单元(水泵、电机)的转速,达到恒压供水目的(f1:f2=n1: n2= Q1: Q2=H12: H22。该系统中,执行单元是系统中主要工作消耗能源的设备及主要影响系统综合性能的设备之一。泵的选择合理与否则直接影响到系统的两个重要指标:
一、运行费用——耗电量及出水量。
二、使用维护成本——设备使用寿命,日常维护费用。
所以,在变频恒压供水系统中,水泵的选择至关重要。
变频恒压供水系统中水泵的选择必须考虑以下几方面:
1.流量、扬程,满足系统设计的供水要求,泵的基本参数合理与否是系统供水功能的基本保障。
2.水泵配电机的供电要求必须满足使用地供电情况。
3.尽量选择高效率水泵,由于变频恒压供水为不间断供水,运转时间长,水泵在该系统中又是主要耗能单元,高效率的水泵选择是系统节能理念的根本保证。4.性能曲线(Q-H线)选择较陡峭的水泵。
变频恒压供水主要是通过水泵转速的变化来调节因用水量变化带来的压力变化,使压力恒定、平稳,性能曲线陡峭的泵相对于性能曲线平稳的泵在转速、流量发生变化压力恒定时频率的调节幅度大,选择性能曲线陡峭的水泵在变频恒压给水系统中满足不同用水量的变化更加节能。
5.选择使用寿命相对长的水泵。水泵作为能量转换工作单元,本身就是易损坏,高维修保养的部份。高品质的水泵关系到整个系统的使用寿命,直接影响使用成本。6.选择维修维护简单的水泵
一般设备将交到物业公司管理,物业公司的维修技术力量不强,不方便维修或维修技术要求高的水泵会增加使用成本,特别是零部份互换性差的水泵更会增加日常的维护成本。
其它如:使用环境对防护等级及噪音要求等根据实际情况加以考虑。
以下为典型不能用于变频恒压供水系统中的水泵实例:
一、填料密封水泵
该类水泵启动转矩大,变频启动的启动转矩小,使用中经常会使变频器报故障,并且使用中密封耗能量大,也不节能。
二、屏蔽泵
1.该泵效率相对于单端面机械密封离心泵低,一般不会高于60%。
2.变频恒压供水系统流量是变化的,经常会出现长时间小流量供水,如夜间及其他供水各区,屏蔽泵在长时间小流量情况下运转,由于其效率低,会导致发热,使液体蒸发,而导致干转,从而损坏滑动轴承或过热后烧毁电机。
3.屏蔽泵为单级泵,性能曲线较为平坦,压力恒定,流量发生变化要求的转速变化不大,变频调节(频率变化)幅度很少,不节能。
4.屏蔽泵相对普通离心泵寿命短,一般机修人员不能解决,需要专业维修人员,一旦发生泄漏电机就会烧毁。
5.零配件互换性差,基本无维修价值,解体维修后极不易处理密封。
第五篇:水泵节能工艺的优劣对比
节能减排已经成中国经济发展规划纲要的主要内 容,尤其对电力、钢铁、有色、石油化工、水处理等 工业领域高耗能企业提出了更加严格的减排目标。水 泵作为工业核心流体输送设备,占据着耗能的主要部 分,已经成为节能工作首要需解决的问题。传统的节能方式主要有变频与改变构造,长期的发展以经没有更大的提升空间陷入瓶颈状态。
传统水泵节能工艺主要为三种:
1. 改变泵体构造,即抛去旧泵重新购买新型泵比如电磁泵等,由于技术有改
进,水泵效率确实可以得到提高,只是因此产生的设备浪费与高昂的金钱
成本往往太高,使很多企业难以承受。
对电机进行变频改造,即添加一变频器,但这种情况不能一概而论,必须
在水泵运行在大马拉小车的情况下才能见效,否则效果会恰如其反
造成出水量与扬程的下降
改变流体效率,水泵的生产工艺千差万别,除材质的区别外,粗糙程度也
大大影响泵体效率,长时间运行难以避免气蚀与污垢的产生,在泵
体内部产生具大的阻力损失,这部分利用高分子超滑涂层可大大体
现在流量与扬程的提高,用电量的下降,出色的效果可节能20%。2. 3.
高分子超滑金属涂层 是由美国高分子公司出品的一种饮用水的涂层系统(泵节能改造),可提高流体设备效率,并保护设备防止化学腐蚀。该(泵节能改造)材料经检验达到美国国家卫生组织(ANS/NSF61)标准并符合英国供水规定第25款中的饮用水标准。1999年11月,国家城市供水水质检测网武汉检测站也对送检的超滑涂层(泵节能改造)浸泡液出具了符合国家饮用水卫生标准的检测报告(990111——
1),所以高分子超滑涂层(泵节能改造)材料可广泛用于城市给水系统。
高分子超滑涂层(泵节能改造)材料是由基本原料和加固原料两种组分组成的高分子抗磨材料。
高分子超滑涂层(泵节能改造)材料具有表面光滑、粗糙度小的特性,表1为超滑涂层(泵节能改造)材料与其它不同材料表面粗糙的对比数据。从表1可以看出,超滑涂层(泵节能改造)材料的表面粗糙度要比其它几种材料小一个或几个数量级,所以可在流体设备内产生光滑的表面,减少涡流的产生。