第一篇:实验40光栅衍射法测定光波长实验报告书写纲要
实验40光栅衍射法测定光波长实验报告书写纲要 1实验目的2实验原理
2.1光栅衍射
2.2光栅衍射法测量光波长的方法
2.3分光计调节步骤
2.4衍射角测量步骤
3实验数据与处理
3.1 实验数据
用规范的表格列出实验数据并进行数据检验结果说明。
3.2 数据处理
给出各个直接测量物理量的平均值、标准偏差以及仪器极限误差等数据。进行各个直接测量物理量的测量不确定度计算。
进行光波长测量平均值计算。
进行光波长测量不确定度计算。
注意:计算过程表述必须完整、严密。实验结果
结果文字说明时必须说清什么光的波长。
5讨论
可以谈体会、方法改进、新方法、提高测量精确度、回答讨论题等。
第二篇:《大学物理实验》教案实验22 衍射光栅
实验 22 衍射光栅
一、实验目的:
1.观察光栅的衍射光谱,理解光栅衍射基本规律。2.进一步熟悉分光计的调节和使用。
3.测定光栅常数和汞原子光谱部分特征波长。
二、实验仪器:
分光计、光栅、汞灯。
三、实验原理及过程简述:
1.衍射光栅、光栅常数 光栅是由大量相互平行、等宽、等距的狭缝(或刻痕)构成。其示意图如图 1 所示。
图2
光栅上若刻痕宽度为 a,刻痕间距为 b,则 d=a 十 b 称为光栅常数,它是光栅基本参数之一。2.光栅方程、光栅光谱
根据夫琅和费光栅衍射理论,当一束平行单色光垂直入射到光栅平面上时,光波将发生衍射,凡衍射角
满足光栅方程: 图1,k 0,± 1,± 2...(1)时,光会加强。式中λ为单色光波长,k 是明条纹级数。衍射后的光波经透镜会聚后,在焦平面上将形成分隔得较远的一系列对称分布的明条纹,如图 2 所示。如果人射光波中包含有几种不同波长的复色光,则经光栅衍射后,不同波长光的同一级(k)明条纹将按一定次序排列,形成彩色谱线,称为该入射光源的衍射光谱。图 3 是普 0通低压汞灯的第一级衍射光谱。它每一级光谱中有四条特征谱线:紫色λ14358 A ;绿色λ 0 0 025461 A ;黄色两条 λ3=5770 A 和λ45791 A。
3.光栅常数与汞灯特征谱线波长的测量 由方程(1)可知,若光垂直入射到光栅上,而第一级光谱中波长λ1 已知,则测出它相应的衍射角为 1,就可算出光栅常数 d;反之,若光栅常数已知,则可由式(1)测出光源发射的各特征谱线的波长 i。角的测量可由分光计进行。
4.实验内容与步骤
a.分光计调整与汞灯衍射光谱观察(1)调整好分光计。
(2)将光栅按图 4 所示位置放于载物台上。通过调平螺丝 a 1 或 a 3 使光栅平面与平行光管光轴垂直。然后放开望远镜制动螺丝,转动望远镜观察汞灯衍射光谱,中央(K 0)零级为白色,望远镜转至左、右两边时,均可看到分立的四条彩色谱线。若发现左、右两边光谱线不在同一水平线上时,可通过调平螺丝 a 2,使两边谱线处于同一水平线上。
(3)调节平行光管狭缝宽度。狭缝的宽度以能够分辨出两条紧靠的黄色谱线为准。
b.光栅常数与光谱波长的测量
第三篇:光栅衍射实验的误差分析及改进途径
光栅衍射实验的误差分析及改进途径
摘要:平行光未能严格垂直人射光栅将形成误差,常用的对称测盘法只能消除误差的一阶修正项,仍存在二阶修正项误差。采用测t最小衍射角的方法能有效地消除一阶、二阶修正项的误差,而且能观测到更高级次的衍射条纹,从而减少读数误差,提高实验精度。
1光栅放置误差的理论分析
当平行光与光栅平面法线成a角斜入射时的光栅方程为
或
上两式中Φk,Φ'k的物理意义如下图所示。因此,如果光栅放置得不严格垂直于人射光,而实验测量时仍用公式(1)进行波长、分辨率等物理量的计算,将造成实验误差。不失一般性,就方程(2)考虑人射角θ对测量结果的影。
图1 平行光斜入射光栅
将方程(2)展开并整理,得
(4)
与(1)式比较可知,由于人射角θ不等于零而产生了两项误差,如果θ很小,第一项tan(Φk/2)sinθ≈tan(Φk/2)x θ可视为一阶小量,第二项2sin2θ/2≈θ2/2可视为二阶小量,为
方便计,称第一项为误差的一阶修正项,第二项为误差的二阶修正项。如果θ较大,则引起的误差不能忽略。进一步分析表明,在相同人射角θ的条件下,当衍射级次k增加时,Φk增加,由于tanΦk是递增函数,因此一阶修正项增大,测量高级次的光谱会使实验误差 增大;而误差的二阶修正项与衍射级次k和衍射角Φk无关。
从测量理论来看,衍射级次k越高,衍射角Φk越大,估读Φk引起sinΦk的相对误差越小,因为△sinΦk/sinΦk = ctgΦk△Φk,而ctgΦk是递减函数。另外角色散率dΦk /dλ= tanΦk/λ因正比于tanΦk而增大;角分辨率因正比于衍射级次k而增加。因此测量高次的光谱非但不增大二阶修正项的相对误差,反而能减小其它物理量的测量误差,而误差的一级修正项则与此矛盾。
2减少误差的途径 如果能测出θ值代入(4)进行计算,理论上能对光栅放置不精确而引起的误差进行修正。但作为教学型实验,人射角θ的测量有一定难度,而且从测量理论上考虑,应尽可能减少直接测量量的数目。考虑到第一修正项系数为奇函数,因此可以用对称测量的方法来消除,这也是通常实验所采用的。为此将(2)式和(3)式相加并两边同除2,得
可见第一修正项已消除,但第二修正项仍然存在。如按对称测量方法,取左右两个衍射角的平均值,计算波长等物理量应该用公式(5),而不能简单地把(Φk+Φ'k)当作Φk代人(1)式计算。
比如波长几的计算,若不计第二修正项,则有
因此,平行光不垂直入射引起波长测量的相对误差为
其相对误差完全由人射角θ决定,与衍射级次k和衍射角Φk无关,而且对不同光栅,第二修正项误差都一样。其误差随人射角θ改变的理论计算结果如图2所示。
图2 光栅放置未能使平行光垂直入射引起的误差
我们在JJY型(测量精度为δ=1',光栅常数d = 1/300mm,待测光波长λ= 589.3nm)分光计上进行了测量,测量结果以散点形式在图2上标出,测量误差与理论计算误差相一致。当人射角θ=2°时,理论计算误差为0.061%,实验测定误差为0.11%;人射角θ=4°时理论计算误差为0.24%,实验测定误差为0.26%;人射角θ=30°时,理论计算误差为15%,实验测定误差为14%;理论计算和实验测量结果都表明,当不垂直而偏离的角度较小时(θ<2°),这部分误差较小而可以忽略;如果偏离角度大时,测量误差会显著增加。因此通常的对称测量方法并非是最佳的实验方案。
考虑(2)式,注意到衍射级次k和衍射角Φk与入射角θ有关,经过简单的数学证明可知,对于一定的衍射级次k,当θ=Φk /2时,dΦk /dθ=0,而且d2Φk /dθ2> 0,因此存在一个最小衍射角Φkmin,此时光栅方程简化为
正如找三棱镜最小偏向角一样,可以通过实验方便地测量出这一最小衍射角。即首先把望远镜的十字叉丝对准某一衍射级次的谱线,转动载物台带动光栅作微小转动,在望远镜中可见到光谱线跟随着光栅转动而移动,由此可确定最小衍射角的截止位置,记下此时的读数Φ1,然后取走光栅,将望远镜对准平行光管,记下此时的读数Φ2,则Φkmin=|Φ2-Φ1|。与通常的测量方法一样,只需两次读数就能测出波长等物理量,而且消除了第一、第二修正项引起的误差。因此,测量光栅最小衍射角,由方程(8)进行波长、分辨率等物理量的计算,不仅消除了一阶、二阶修正项引起的误差,而且还有另外一个优点,即增加光栅的衍射级次k,如实验室常用光栅,用对称测量法一般只能观测到二级衍射条纹,采用最小衍射角法,则能方便地观则到四级衍射条纹,因而增加Φkmin值,减少读数引起的相对误差,从而有效地提高测量精度。
图3 最小衍射的测量
3结束语
光栅衍射实验是测量精度比较高的普通物理实验,以波长测量为例,如果分光计的调整和光栅放置精确,则测量最大误差可由下式
进行估算。取分光计的仪器误差δ作为测量角度的误差,光栅常数d通过测量某一标准波长为λ0的入射光的衍射角求得,则测量光栅常数d的误差为△d/d二ctgΦk*△Φk,所以
可见,测量波长的相对误差随衍射角的增加而快速减小。以对汞灯光谱的绿光波长测量为例,对一、二级谱线,其衍射角分别约为9°33',和19°23',取△Φk =δ=1',则△λ/λ分别为0.24%和0.12%,但学生测量结果的相对误差大多超过1.0%,其主要原因在于分光计的调整和光栅放置不精确。我们将其改为测量三阶最小衍射角,结果实验精度在1.0%以内。因此测量最小衍射角法可以在学生实验推广使用。
4讨论测量误差
这种方法的主要误差在于用光强来判断两套莫尔条纹重合的光强测量精度。因此,提高测量精度的主要方法是提高光强测量精度或增加z2-z1之值。
设由光强测量误差引起的位置误差为△z,则
当光强测量精度为0.5%,则△z=1.16mm,按照(15)式计算的值为0.28%。实际测量中常用不同K时的位置代入式(14)中计算,取平均值作为测量结果,偶然误差的影响减少。
干涉条纹重迭法中,单独每一套条纹在空间任一位置对比度都比较好,因此,当两套干涉条纹重合时,对比度是更好的,测量将是更精确。此方法的条件限制是要求试件φ角比较小。
第四篇:实验记录及实验报告的书写
实验记录及实验报告的书写
生化实验是在生化理论及有关理论指导下的实践。实验目的在于经过实践掌握科学观察的基本方法和技能,培养科学思维、分析判断及解决实际问题的能力,培养尊重科学事实和真理的学风和科学态度。当然,通过实验还可以加深和扩大对生化理论的认识。
为了达到实验的目的,要求学生在实验前进行预习,通过预习对实验的内容、目的要求、基本原理、基本操作及注意事项有初步的了解;要求学生在实验中合理组织安排时间,严肃认真地进行操作,细致观察各种变化并如实做好实验结果的记录;还要求学生在操作结束后认真进行计算或分析,写好实验报告。
一、实验记录
实验记录应及时、准确、如实、详尽、清楚。
“及时”是指在实验中将观察到的现象、结果、数据及时记录在记录本(或《实验指导》合适位置)上。回顾性的记录容易造成无意或有意的失真。实验结果的记录不可参杂任何主观因素,不能受现成资料及他人实验结果的影响。若出现“不正常”的现象,更应如实详尽记录。
表格式的记录方式简练而清楚,值得提倡使用。如无专用的记录本,可分项记录于《实验指导》中相应的操作项目之下。记录时字迹必须清楚,不提倡使用易于涂改及消退的笔、墨作原始记录。
完整的实验记录应包括日期、题目(内容)、目的、操作,现象及结果(包括计算结果及各种图表)。使用精密仪器进行实验时还应记录仪器的型号及编号。
二、实验报告
实验结束后,应及时整理和总结实验结果,写出实验报告。
完整的实验报告应包括实验名称、实验日期、目的要求、实验原理、试剂、仪器设备、操作方法、实验结果、讨论等项内容。
其中,目的要求、原理、设备、试剂及操作方法等项只要求作简明扼要的叙述,不必也不应将《实验指导》原版抄录一遍。但对实验的条件,操作要点等实验成败的关键环节应作清楚描述。
实验结果首先是如实记录实验中观察到的现象及各种原始数据,还应包括根据实验要求整理、归纳数据后进行计算的过程及计算结果,包括根据实验数据及
计算作出的各种图表(如曲线图,对照表等)。
讨论部分不是对结果的重述,而是对实验结果、实验方法和异常现象进行探讨和评论,以及对实验设计的认识、体会及建议。
一般要有实验结论。结论要简单扼要,以说明本次实验所获得的结果。如在临床生化检验项目中,可评价样本检出值与相应正常值之间的异同及其临床意义。
第五篇:X射线衍射实验报告
X射线衍射实验报告
姓名:XXX 专业:有机化学
学号:312070303004
时间:2012.12.05
一、实验目的
1.了解X射线衍射仪的结构; 2.熟悉X射线衍射仪的工作原理;
3.掌握X射线衍射仪的基本操作。
二、实验原理
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
满足衍射条件,可应用布拉格公式:2dsinθ=λ
应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。
三、仪器组成
X射线衍射仪的基本构造原理图, 主要部件包括4部分。1
X射线衍射仪电路图
(1)高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。(4)衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
四、实验步骤
1)开启循环水系统:将循环水系统上的钥匙拧向竖直方向,打开循环水上的控制器开关ON,此时界面会显示流量,打开按钮RUN即可。调节水压使流量超过3.8L/min,如果流量小于3.8L/min,高压将不能开启。
2)开启主机电源:打开交流伺服稳压电源,即把开关扳到ON的位置,然后按开关上面的绿色按钮FAST START, 此时主机控制面板上的“stand by”灯亮。
3)按下Light(第三个按钮),打开仪器内部的照明灯。
4)关好门,把HT钥匙转动90°,拧向平行位置,按下X'Pert仪器上的Power on(第一个按钮),此时HT指示灯亮,HT指示灯下面的四个小指示灯也会亮,并且会有电压(15KV)和电流(5mA)显示,等待电压电流稳定下来。如果没有电压电流显示,把钥匙拧向竖直位置稍等半分钟再把钥匙拧向平行位置,重复此操作,直到把HT打开。
5)点击桌面上的X'Pert Data Collector软件,输入账号密码。
6)点击菜单Instrument的下拉菜单Connect,进行仪器连接,出来以对话框,点击OK,再出来对话框还点击OK,此时软件的左侧会出现参数设定界面Flat sample stage。
7)Flat Sample Stage界面共有3个选项卡Instrument Settings,Incident Beam Optics 和 Diffracted Beam Optics,设备老化和电压电流操作均在Instrument Settings下设定,后两个参数设定一般不要动。
8)如果两次操作间隔100个小时以上应选择正常老化,间隔在24~100个小时之间的应选择快速老化。老化的方式:在第7步的Instrument Settings下,展开Diffractometer→X-ray →Generator(点击前面的小“+”号),此时Generator下面有三个参数:Status,Tension和Current,双击这三个参数中的任一个或者右击其中的任一个选择change,会出现Instrument Settings对话框,此时正定位在此对话框的第三个选项卡X-ray上,界面上有X-Ray generator,X-Ray tube和Shutter三项,点击X-Ray tube下的Breed„按钮,会出现Tube Breeding对话框,选择breed X-Ray tube的方式:at normal speed或者fast,然后点击ok,光管开始老化,鼠标显示忙碌状态。老化完毕后,先升电压后升电流,每间隔5KV,5mA地升至40KV,40mA,即设备将在40KV和40mA的状态下工作。
9)试样制备:根据样品的量选择相应的试样板,粉体或者颗粒都应尽量使工作面平整。
10)打开设备门,放入样品,把门合上,应合紧,否则会提示Enclosure(doors)not closed的错误。
11)首先选择project,点击X'Pert Data Collector的Customize菜单下的Select Project„,出现Select Current Project的对话框,选择自己的文件夹,点击ok即可。如果还没有自己的project,打开X'Pert Organizer软件,点击菜单Users & Projects菜单下的Edit Projects,点击New„,出现New Project对话框,新建自己的project,点击ok即可。然后重复第11步前半部分。
12)点击菜单Mearsure下的Program„,出现Open Program对话框,默认Program type为Absolute scan,默认选择cell-scan,点击ok,出现Start对话框,由于第11步的工作,所以Project name一栏已经选择在自己的文件夹,在Data set name一栏填入试样代号,点击ok,即开始扫描。
13)开始扫描后会出现Positioning the instrument,然后“咔”的一声,仪器门锁上,两臂抬起,开始扫描试样,默认衍射角10~80°。
14)扫描结束后“咔”的一声,两臂开始降落,显示Positioning the instrument,此时一定要等两臂降下来(衍射角约为12.000°时)之后再开门,不然又会提示Enclosure(doors)not closed的错误。
15)测试结束后,先降电流再降电压,把电流和电压分别降到10mA和30KV(每间隔5mA,5KV的降),将钥匙转动90°到竖直位置,关闭高压;等待约2分钟后按下Stand by按钮,关闭主机和循环水系统。如果下次测试时间间隔不超过20小时,就不用关闭高压(不拧钥匙),不关主机和循环水,但是要把电流和电压降下来。
16)导出数据。打开X'Pert Organizer,Database的下拉菜单的Export的Scans„,出来Export scans对话框,点击下面的Filter„按钮,通过过滤,查找到相应文件,选中,点击ok,然后点击Folder„找到存放的目录,点击ok,然后把rd和csv的格式勾上,并全部选中,ok即可。
17)光盘刻录。准备好空白光盘,打开刻录软件,按照提示操作。
五、实验结果
TiO2的X射线衍射图谱如下:
六、实验分析
如上图所示,样品所获峰与所选标准卡片主要的峰在出现位置和强度上吻合得都是非常好的,只有样品的第一个峰不能满足,当选用其他能够满足第一峰出现位置的其他标准卡片时,都会带来明显的样品没有的峰,又因为该峰的强度很小,故可以认为是某种干扰或杂质带来的,但我们可以确定的是样品中的最绝大多数物质就是所选标准卡片所对应的物质。