第一篇:传感器测量技术总结
检测系统:传感器、信号调理电路、显示器、数据处理装置、执行机构。传感器:感受被测量(物理量、化学量、生物量)的大小,并输出相对应的可用输出信号的期间或装置。传感器静态特征:灵敏度、迟滞、线性度、重复性、精度、漂移。金属与半导体电阻应变有何区别:灵敏度系数K受两个因素影响:一个是应变片受力材料几何尺寸的变化,即1+2u;另一个是应变片受力后材料电阻率发生的变化,即(dp/p)/E.金属材料,电阻丝灵敏度系数表达式中1+2u的值要比(dp/p)/E大得多,而半导体材料的(dp/p)/E项的值1+2u大得多。大量实验证明,在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即K为常数。直流电桥平衡:其相应两臂电阻的比值相等或相对两臂电阻的乘积应相等。R1R4=R2R3或R2/R1=R4/R3
交流电容电桥:相对两臂电阻的乘积应相等及对应电阻电容乘积相等R1C1=R2C2及R1R4=R2R3
零点残余电压:理想情况下,当衔铁位于中心位置时,两个次级组感应电压大小相等、方向相反,差动输出电压为0,但实际情况是差动变压器输出电压往往不等于0。差动变压器在零点位移时的输出电压。它的存在使传感器在输出特性不经过零点,造成实际特性与理论特性不完全一致。N=60f/z
正压向效应:当沿着一定方向收到外力作用时,不仅几何尺寸会发生变化,而且晶体内部产生极化现象,同时在晶体的某两个表面上产生符号相反的电荷;当外力去掉后,又恢复到不带电的状态。
霍尔效应:金属或半导体薄片在磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,称为霍尔效应,该电电动势为霍尔电势。光电效应:内光电效应(光电管、光电倍增管)外光电效应(光敏电阻、光敏二极管、光敏晶体管)
热敏电阻:当电极正常运行时温度较低,晶体管VT截止,继电器J不动作;当电动机过负荷或断相或一相接地时,电动机温度急剧升高,使热敏电阻阻值急剧减小,到一定值后,VT接通,继电器J吸合,使电动机工作回路断开,实现保护作用。根据电动机各种绝缘等级的允许升温值来调节偏流电阻R2值,从而确定晶体管VT的动作点。
热电效应:当两个分态点温度不同时,回路中将产生电动势。这种现象叫热电效应。冷端零摄氏度恒温法补偿导线法补偿电析法和冷端温度修正法。三线制接线:可以消除接线电阻的影响。
不等位电势U。和等位电阻r.。U.不为零的原因 1存在电极的安装位置不对称。
2半导体材料电阻率不均衡或几何尺寸不均匀。3激励电极接触不良造成激励电流不均匀分布等。路灯自动控制器
当天黑无光时,控制电路中VT1,VT2均处于截止状态。当白天有光时,控制电路中VT1,VT2均处于导通状态。
当黑天无光照射时,控制电路中VT1,VT2均处于截至状态,线电器K的线圈断电,其常闭触电接通电路中交流接触器KM线圈,从而使接触器的常开主触点闭合,路灯亮。当天亮时,硅电池收到光的照射产生0.2-0.5的电动势,使三极管VT1VT2导通,最终导致接触器点断开,路灯熄灭。
莫尔条纹:两块光栅叠合时,出现光明相间的条纹。特性:1消除光栅刻线的不均匀误差2位移的放大特性3移动特性4光强与位置关系。愿意:电磁场的变化,零件的摩擦,间隙,热起伏,空气扰动气压及温度的变化,测量人员的错误感觉。消除:当测量次数足够时,就整体而言,服从一定的规律,通过数据的统计可以计算出误差出现。原因:测量方法不完全,零点未调整,采用今世的计算公式测量者的经验不足。消除:首先要查找误差根源,并设法减少和消除,对于无法消除的恒指系统误差,可以在测量结果中加以修正。
检测系统:传感器、信号调理电路、显示器、数据处理装置、执行机构。传感器:感受被测量(物理量、化学量、生物量)的大小,并输出相对应的可用输出信号的期间或装置。传感器静态特征:灵敏度、迟滞、线性度、重复性、精度、漂移。金属与半导体电阻应变有何区别:灵敏度系数K受两个因素影响:一个是应变片受力材料几何尺寸的变化,即1+2u;另一个是应变片受力后材料电阻率发生的变化,即(dp/p)/E.金属材料,电阻丝灵敏度系数表达式中1+2u的值要比(dp/p)/E大得多,而半导体材料的(dp/p)/E项的值1+2u大得多。大量实验证明,在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即K为常数。直流电桥平衡:其相应两臂电阻的比值相等或相对两臂电阻的乘积应相等。R1R4=R2R3或R2/R1=R4/R3
交流电容电桥:相对两臂电阻的乘积应相等及对应电阻电容乘积相等R1C1=R2C2及R1R4=R2R3
零点残余电压:理想情况下,当衔铁位于中心位置时,两个次级组感应电压大小相等、方向相反,差动输出电压为0,但实际情况是差动变压器输出电压往往不等于0。差动变压器在零点位移时的输出电压。它的存在使传感器在输出特性不经过零点,造成实际特性与理论特性不完全一致。N=60f/z
正压向效应:当沿着一定方向收到外力作用时,不仅几何尺寸会发生变化,而且晶体内部产生极化现象,同时在晶体的某两个表面上产生符号相反的电荷;当外力去掉后,又恢复到不带电的状态。
霍尔效应:金属或半导体薄片在磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,称为霍尔效应,该电电动势为霍尔电势。光电效应:内光电效应(光电管、光电倍增管)外光电效应(光敏电阻、光敏二极管、光敏晶体管)
热敏电阻:当电极正常运行时温度较低,晶体管VT截止,继电器J不动作;当电动机过负荷或断相或一相接地时,电动机温度急剧升高,使热敏电阻阻值急剧减小,到一定值后,VT接通,继电器J吸合,使电动机工作回路断开,实现保护作用。根据电动机各种绝缘等级的允许升温值来调节偏流电阻R2值,从而确定晶体管VT的动作点。
热电效应:当两个分态点温度不同时,回路中将产生电动势。这种现象叫热电效应。冷端零摄氏度恒温法补偿导线法补偿电析法和冷端温度修正法。三线制接线:可以消除接线电阻的影响。
不等位电势U。和等位电阻r.。U.不为零的原因 1存在电极的安装位置不对称。
2半导体材料电阻率不均衡或几何尺寸不均匀。3激励电极接触不良造成激励电流不均匀分布等。路灯自动控制器
当天黑无光时,控制电路中VT1,VT2均处于截止状态。当白天有光时,控制电路中VT1,VT2均处于导通状态。
当黑天无光照射时,控制电路中VT1,VT2均处于截至状态,线电器K的线圈断电,其常闭触电接通电路中交流接触器KM线圈,从而使接触器的常开主触点闭合,路灯亮。当天亮时,硅电池收到光的照射产生0.2-0.5的电动势,使三极管VT1VT2导通,最终导致接触器点断开,路灯熄灭。
莫尔条纹:两块光栅叠合时,出现光明相间的条纹。特性:1消除光栅刻线的不均匀误差2位移的放大特性3移动特性4光强与位置关系。愿意:电磁场的变化,零件的摩擦,间隙,热起伏,空气扰动气压及温度的变化,测量人员的错误感觉。消除:当测量次数足够时,就整体而言,服从一定的规律,通过数据的统计可以计算出误差出现。原因:测量方法不完全,零点未调整,采用今世的计算公式测量者的经验不足。消除:首先要查找误差根源,并设法减少和消除,对于无法消除的恒指系统误差,可以在测
量结果中加以修正。
特性:1消除光栅刻线的不均匀误差2位移的放大特性3移动特性4光强与位置关系。愿意:电磁场的变化,零件的摩擦,间隙,热起伏,空气扰动气压及温度的变化,测量人员的错误感觉。消除:当测量次数足够时,就整体而言,服从一定的规律,通过数据的统计可以计算出误差出现。
原因:测量方法不完全,零点未调整,采用今世的计算公式测量者的经验不足。消除:首先要查找误差根源,并设法减少和消除,对于无法消除的恒指系统误差,可以在测量结果中加以修正。
检测系统:传感器、信号调理电路、显示器、数据处理装置、执行机构。传感器:感受被测量(物理量、化学量、生物量)的大小,并输出相对应的可用输出信号的期间或装置。传感器静态特征:灵敏度、迟滞、线性度、重复性、精度、漂移。金属与半导体电阻应变有何区别:灵敏度系数K受两个因素影响:一个是应变片受力材料几何尺寸的变化,即1+2u;另一个是应变片受力后材料电阻率发生的变化,即(dp/p)/E.金属材料,电阻丝灵敏度系数表达式中1+2u的值要比(dp/p)/E大得多,而半导体材料的(dp/p)/E项的值1+2u大得多。大量实验证明,在电阻丝拉伸极限内,电阻的相对变化与应变成正比,即K为常数。直流电桥平衡:其相应两臂电阻的比值相等或相对两臂电阻的乘积应相等。R1R4=R2R3或R2/R1=R4/R3
交流电容电桥:相对两臂电阻的乘积应相等及对应电阻电容乘积相等R1C1=R2C2及R1R4=R2R3
零点残余电压:理想情况下,当衔铁位于中心位置时,两个次级组感应电压大小相等、方向相反,差动输出电压为0,但实际情况是差动变压器输出电压往往不等于0。差动变压器在零点位移时的输出电压。它的存在使传感器在输出特性不经过零点,造成实际特性与理论特性不完全一致。N=60f/z
正压向效应:当沿着一定方向收到外力作用时,不仅几何尺寸会发生变化,而且晶体内部产生极化现象,同时在晶体的某两个表面上产生符号相反的电荷;当外力去掉后,又恢复到不带电的状态。
霍尔效应:金属或半导体薄片在磁场中,当有电流流过时,在垂直于电流和磁场的方向上将产生电动势,称为霍尔效应,该电电动势为霍尔电势。光电效应:内光电效应(光电管、光电倍增管)外光电效应(光敏电阻、光敏二极管、光敏晶体管)
热敏电阻:当电极正常运行时温度较低,晶体管VT截止,继电器J不动作;当电动机过负荷或断相或一相接地时,电动机温度急剧升高,使热敏电阻阻值急剧减小,到一定值后,VT接通,继电器J吸合,使电动机工作回路断开,实现保护作用。根据电动机各种绝缘等级的允许升温值来调节偏流电阻R2值,从而确定晶体管VT的动作点。
热电效应:当两个分态点温度不同时,回路中将产生电动势。这种现象叫热电效应。冷端零摄氏度恒温法补偿导线法补偿电析法和冷端温度修正法。三线制接线:可以消除接线电阻的影响。
不等位电势U。和等位电阻r.。U.不为零的原因 1存在电极的安装位置不对称。
2半导体材料电阻率不均衡或几何尺寸不均匀。3激励电极接触不良造成激励电流不均匀分布等。路灯自动控制器
当天黑无光时,控制电路中VT1,VT2均处于截止状态。当白天有光时,控制电路中VT1,VT2均处于导通状态。
当黑天无光照射时,控制电路中VT1,VT2均处于截至状态,线电器K的线圈断电,其常闭触电接通电路中交流接触器KM线圈,从而使接触器的常开主触点闭合,路灯亮。当天亮时,硅电池收到光的照射产生0.2-0.5的电动势,使三极管VT1VT2导通,最终导致接触器点断开,路灯熄灭。
莫尔条纹:两块光栅叠合时,出现光明相间的条纹。特性:1消除光栅刻线的不均匀误差2位移的放大特性3移动特性4光强与位置关系。愿意:电磁场的变化,零件的摩擦,间隙,热起伏,空气扰动气压及温度的变化,测量人员的错误感觉。消除:当测量次数足够时,就整体而言,服从一定的规律,通过数据的统计可以计算出误差出现。原因:测量方法不完全,零点未调整,采用今世的计算公式测量者的经验不足。消除:首先要查找误差根源,并设法减少和消除,对于无法消除的恒指系统误差,可以在测量结果中加以修正。
第二篇:测量技术总结
专业技术工作总结
我从1984年参加工作以来,就分配到队测量分队工作,一直从事野外测量工作。经过多年的学习和工作经验的积累,我已经从一个对测量方面没有任何实际经验的学生逐渐成为公司测量方面的主力军,先后完成多项测量工程项目。从开始对测量仪器的使用、外业地形测量的细节到室内地形图的编制,跟随一些有经验的测量工程师学习野外的编录及编写,这个过程让我受益匪浅,让我对测量工作有了整体的认识,知道了测量的基本方法和基本工作,同时也锻炼了我的吃苦耐劳精神,这对我以后的工作也起了很大的促进作用,也将成为我以后工作中的一笔财富。因我工作勤奋认真,实事求是,吃苦耐劳,所以我负责的测量工程项目多次受到委托方、设计方及施工单位的好评。
从1984年到1988年期间,我作为五一一队测量组的一员,在老员工的手把手教导和本人的认真学习下,逐渐掌握了一些基本的专业知识及工作技能,并开始独立完成一些简单的工程,包括从进场开始的现场踏勘、选点、仪器操作、资料整理及报告的编写。通过几年的实际操作和学习,我基本掌握了测量的基础知识和基本操作方法,并逐步走上了测量技术工作岗位。
从1989年至1991年,我参加了乌拉特中旗赛音呼都格铜矿普查项目的测量工作,在这里我对测量有了更好的认识和得到了更大的发挥,这个工程比较大,从地形测量到控制测量,我带领了一个队进行
工作,很细心也很努力,通过认真细致的开展工作,全面系统地完成了设计的测量工作任务。
1991年在获各琦铜矿引水工程项目中,我担任水准测量组长,翻山越岭,测区地形复杂,为了保持精度,在实际测量中经常重复施测,做到了对导线控制点的高程精确测量,使控制点达到设计等级,精确地完成测量工作,保证了为输水管线提供了精确数据。
随着经济高速发展和地质勘查市场的进一步完善,对各种有用矿物的勘查提出了更高的要求,由于地表浅层矿床不断开采,人们就必须向深度找矿进军,物化探将成为地质找矿的重要手段,而物化探工作必须和测量相配合,由测量人员在矿区按规定距离布设纵横的网线。为了适应新的地质找矿形势的发展,近几年我队引入RTK定位技术及多台套GPS接收机,测量的工作模式有了很大的改观。我在2010年乌拉特后旗欧布拉格铜矿普查项目中,负责控制测量方面的工作,因该项目属相对独立断点分布的矿区,我们采用了先进的测量设备和技术,工程点不再需要长远距离的测三角锁从其他地方引入控制点,只需从起算点采用边点连接跳跃式地可以直接引入到测区,极大地简化了工作步骤,节省了时间和人力。
我在单位里近几年参加的地质找矿项目所进行的地形测量,工程点测量,先后完成了1:2000地形测量45平方公里,1:5000地形测量80平方公里,600多个工程点测量。因为我们大量采用了GPS技术,RTK,全站仪等全野外数字化测图手段,极大地提高了工作效率,出色地完成了测量任务,得到了合作方的认可。
工作的同时,单位在适当的时间给我们安排了基础知识及专业理论的培训,加强了我们工作的理论基础,进而提高了我们的专业水平和工作技能。多年的工作经历,从理论的专业学习到工作实践,我渐渐地熟悉了测量及勘查的各种专业技术和技能,对本行业有较充分的了解和认识,对或大或小的各类工程的参与,使我有信心出色的完成各种大中型、复杂工程。作为一名技术工作者,在今后的工作中我将以百倍的热情迎接新的挑战,继续完善技术发展体系,强化技术创新能力,形成以高、大、精、尖为核心竞争力的技术差别竞争优势,逐步建立完整高效的技术发展体系,只有不断的努力和提高自己的专业能力,才能无愧于社会和单位,才能取得更大的成绩。
内蒙古有色地质勘查局五一一队齐志强
二0一一年七月十八日
第三篇:测量技术总结
轮台县红桥石油服务区二期工程1:1000地形测量
技术总结
库尔勒天拓勘察测绘院
二00七年五月
轮台县红桥石油服务区二期工程1:1000地形测量
技术总结
单位负责人:宋顺安
项目技术负责:
总结编写人
总结审核 :王健刘晓晨
编 制 单 位:库尔勒天拓勘察测绘院
二00七年五月
1.项目来源
1.1受轮台县项目区管理委员会的委托,我院于2007年5月—
2007年6月完成了轮台县红桥石油服务区二期工程1:1000地形测
量,及一期范围内部分补修测及排污管线测量。
1.2 测区地理概况
测区位于轮台县红桥石油服务区的沙漠公路以东314国道
以南,交通较为便利。整个测区地形为西高东低、北高南低,地势较
为平坦,由于施工期为5月,浮尘大,通视条件较困难,在此期间气温
偏高,降雨量少,气候干燥。
2.完成工作量
2.1 E级GPS点7个
2.2 等外水准测量18.96公里
2.3 1:1000地形测量16平方公里
2.4 红桥一期修补测2.1平方公里及8公里排污管线
3、依据规程
3.1 《城市测量规范》CJJ8-99
3.2 《全球定位系统(GPS)测量规范》GB/T18314-2001
3.3 《1:500、1:1000、1:2000地形图图式》GB/T7929-1995
3.4《1:5000、1:10000地形图航空摄影测量外业规范》GB/T13977-92
3.5 《测绘技术设计规定》CH/T1004-2005
3.6 《测绘技术总结编写规定》CH/T1001-2005
3.7 《测绘产品检查验收规定》CH1002-9
53.8 《测绘产品质量评定标准》CH1003-95
3.9测区技术设计书及批复意见
4.0测区现有成果的利用
轮台县城建局提供的由新疆第二测绘院2001年4月施测的1:1000数字化地形图,及1:5000地形图,作为测区设计和外业选点使用。
5、作业方法
5.1平面控制
利用新疆第二测绘院1995年施测的两个四等控制点IV轮03、IV轮07作为测区的首级控制,GPS(E)级网使用4台Trimble5700接收机(精度为±5+2PPm)进行观测。网中相邻点间的平均距离≤5Km,有效观测卫星总数≥4颗,平均重复设站数≥1.6,每时段长度≥45分钟。
5.2 高程控制测量
GPS(E)级网点的高程采用四等水准的观测方法进行联测等外水准,起闭于四等水准点IV轮07,水准观测采用自动安平水准仪(NA2(N0.5333357),双面区格式木质标尺(N0.01、02),仪器、标尺均按规范做了鉴定。观测方法采用单程单测中丝法读数直读数据,记录采用南方控制精灵进行电子记录,计算采用南方公司生产的南方平差仪2002软件进行平差。一期修补测及排污管线测量
修补测工作以道路划分的街坊为单位进行,采用全站仪进行地形地物的外业修补测,在有图根点的区域内,可以直接架站
进行修补测,没有点的地方采用RTK施测测站点进行修补测,等高距按0.5m要求施测。宽度在小于0.6米,长度小于5米的小绿地可省略,单位内部的通讯线可不表示,厂区内部的简易路灯可不表示,检修井密集表示困难时可按规范移位表示,移位不得大于规范规定。
6.1排污管线纵断面测量
纵断面测量采用RTK采集各碎部点的三纬坐标,并
记录出各碎部点的里程,每20米采集一个碎部点,遇到地形变化或线形地物时需加桩(加注地物属性),起终点、转点及各百米桩应实地打桩并标注里程。
6.2内业成图用南方公司的CASS5.1内外业一体化成图软件对量测数据进行处理,通过野外绘制的地物草图将地物逐个连接编辑,并且自动生成等高线,形成完整的地形图。
7、结论
本次测量工程各项技术操作过程和结果均达到设计书并满足本次地形测量要求。
库尔勒天拓勘察测绘院
二00七年五月
第四篇:传感器与检测技术总结
《传感器与检测技术》总结
姓名:王婷婷 学号:14032329 班级:14-1
1传感器与检测技术
这学期通过学习《传感器与检测技术》,懂得了很多,以下是我对这本书的总结。第一章 概 述
传感器的作用是:传感器是各种信息的感知、采集、转换、传输和处理的功能器件,具有不可替代的重要作用。
传感器的定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。
传感器的组成:被测量量---敏感元件---转换元件----基本转换电路----电量输出
传感器的分类:按被测量对象分类(内部系统状态的内部信息传感器{位置、速度、力、力矩、温度、导演变化}、外部环境状态的外部信息传感器{接触式[触觉、滑动觉、压觉]、非接触式[视觉、超声测距、激光测距);按工作机理分类(结构型{电容式、电感式}、物性型{霍尔式、压电式});按是否有能量转换分类(能量控制型[有源型]、能量转换型[无源型]);按输出信号的性质分类(开关型[二值型]{接触型[微动、行程、接触开关]、非接触式[光电、接近开关]}、模拟型{电阻型[电位器、电阻应变片],电压、电流型[热电偶、光电电池],电感、电容型[电感、电容式位置传感器]}、数字型{计数型[脉冲或方波信号+计数器]、代码型[回转编码器、磁尺]})。
传感器的特性主要是指输出与输入之间的关系。当输入量为常量,或变化极慢时,称为静态特性;输出量对于随时间变化的输入量的响应特性,这一关系称为动态特性,这一特性取决于传感器本身及输入信号的形式。可以分为接触式环节(以刚性接触形式传递信息)、模拟环节(多数是非刚性传递信息)、数字环节。动态测量输入信号的形式通常采用正弦周期(在频域内)信号和阶跃信号(在时域内)。
传感器的静态特性:线性度(以一定的拟合直线作基准与校准曲线比较LLmaxY100%)、迟滞、重复性、灵敏度(K0=△Y/△X=输出变化量/输入变化量=k1k2···kn)和灵敏度误差(rs=△K0/K0×100%、稳定性、静态测量不确定性、其他性能参数:温度稳定性、抗干扰稳定性。
传感器的动态特性:传递函数、频率特性(幅频特性、相频特性)、过渡函数。
0阶系统:静态灵敏度;一阶系统:静态灵敏度,时间常数;二阶系统:静态灵敏度,时间常数,阻尼比。
传感器的标定:通过各种试验建立传感器的输入量与输出量之间的关系,确定传感器在不同使用条件下的误差关系。国家标准测力机允许误差±0.001%,省、部一级计量站允许误差±0.01%,市、企业计量站允许误差±0.1%,三等标准测力机、传感器允许误差±(0.3~0.5)%,工程测试、试验装置、测试用力传感器允许误差±1%。分为静态标定和动态标定。
第二章 位 移 检 测 传 感 器
测量位移常用的传感器有电阻式、电容式、涡流式、压电式、感应同步器式、磁栅式、光电式。参量位移传感器是将被测物理量转化为电参数,即电阻、电容或电感等。发电型位移传感器是将被测物理量转换为电源性参量,如电动势、电荷等。属于能量转换型传感器,这类传感器有磁电型、压电型等。
电位计的电阻元件通常有线绕电阻、薄膜电阻、导塑料(即有机实心电位计)等。电位计结构简单,输出信号大,性能稳定,并容易实现任意函数关系。其缺点是要求输入能量大,电刷与电阻元件之间有干摩擦,容易磨损,产生噪声干扰。
Rx线性电位计的空载特性:
RxKRxl,KR----电位计的电阻灵敏度(Ω/m)。电位计输出空载电压为U0UixKuxl,Ku------电位计的电压灵敏度(V/m)。
C电容式传感器的基本原理:
SroSδ、S和εr中的某一项或几项有变化时,就改变了电容C0,δ或S的变化可以反映线位移或角位移的变化,也可以间接反映压力、加速度等的变化;εr的变化则可反映液面高度、材料厚度等的变化。ε0=8.85×10-12F/m。
Ka.变极距型电容位移传感器的灵敏度为
CSC00,C00;b.变极板面积型电C容位移传感器2(lx)xCxC0C0lnRB/RAl, C0l ; c.变介质型电容式位移传感器
C0Sd/r,其中ε0为真空介电常数(空气介电常数ε1=ε0)εr为介质的相对介电常数,r/0,ε为介质的介电常数; d.容栅式电容位移传感器
Cmaxnab(RRrr)n2,其中n为可动容栅的栅极数,a、b分别为栅极的宽度宽度和长度,α为每条栅极所对应的圆心角,R、r分别为栅极外半径和内半径。特点分辨力高、精度高、量程大,刻划精度和安装精度要求有所降低。
电容式传感器的转换电路:电桥电路、二极管双T形电路、差动脉冲调宽电路、运算放大器式电路、调频电路。
电容式传感器的特点:优点:温度特性好,结构简单、适应性强,动态响应好,可以实现非接触测量、具有平均效应。缺点:输出阻抗高、负载能力差,寄生电容影响大。
电感式位移传感器:是一种利用线圈自感和互感的变化实现非电量电测的装置。感测量:位移、振动、压力、应变、流量、比重。种类有:根据转换原理:分自感式和互感式两种;根据结构型式,分气隙型、面积型和螺管型。
电感式传感器的转换电路:调幅电路;调频电路;调相电路。
自感式电感受位移传感器:NmLi ;
mNiNNLRm ;Rm ;Rml2S0S0;其中l----铁心与衔铁中的导磁长度;μ---铁心与衔铁的磁导率(H/m);S---铁心与衔铁中的导磁面积;δ---气隙厚度;μ0---真空磁导率;S0---气隙导磁横截面积。互感式位移传感器:将被测物理量的变化转换成互感系数的变化。常接成差动形式,故也称差动变压器式位移传感器,属于螺管型。则总输出电动势E0E1E2(M2M1)di1dt
互感式位移传感器的误差因素:零点残余电压(当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。电涡流式传感器:电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,该电流的流线呈闭合回线,类似水涡形状,称之为电涡流。电涡流式传感器是以电涡流效应为基础,由一个线圈和与线圈邻近的金属体组成,当线圈通入交变电流I时,在线圈的周围产生一交变磁场H1,处于该磁场中的金属体上产生感应电动势,并形成涡流。金属体上流动的电涡流也将产生相应的磁场H2,H2与H1方向相反,对线圈磁场H1起抵消作用,从而引起线圈等效阻抗Z或等效电感L或品质因素相应变化。金属体上的电涡流越大,这些参数的变化亦越大。如图如式:
涡流位移传感器主要分为高频反射和低频透射两类。电涡流式传感器的转换电路:电桥电路法、谐振电路法、正反馈法。其特点是涡流式传感器结构简单,易于进行非接触测量,灵敏度高,应用广泛,可测位移、厚度、振动等。
霍尔效应的定义:磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。该电势称霍尔电势,霍尔效应的大小:UHBI/nedUHkHBI
霍尔式传感器的误差因素:元件几何误差以及电极焊点的大小造成的影响;不等位电势的影响;寄生直流电势的影响;感应电势的影响;温度误差的影响(恒流源供电和输入回路并联电阻;合理选取负载电阻;恒压源和输入回路串联电阻;采用温度裣元件。)
光栅式位移传感器:长光栅(测量线位移)、圆光栅(测量角位移)。长光栅:是根据
BH莫尔条纹效应设计的。两个莫尔条纹的间距
WW2sin/2。光栅条纹密度有25条/mm,50条/mm,100条/mm或更密,栅线长度一般为6~12mm。其测长精度可达0.5~3μm(3000mm范围内),分辨力可达0.1μm。圆光栅:圆光栅同心放置时,条纹间距BHWRWRBHr1r2;偏心放置时,e,测量精度可达到0.15“,分辨力可达0.1”。W:光栅栅距。R:圆的半径。R1、R2:分别为切线圆半径。e :偏心量。
光栅可以制成透射光栅和反射光栅,透射光栅的栅线刻制在透明村料上,要求较高时,可以采用光学玻璃;而指示光栅最好采用光学玻璃,反射光栅的栅线刻制在具有反射率很高的金属或镀以金属膜的玻璃上。
感应同步器:利用电磁感应原理将线位移和角位移转换成电信号的一种装置。根据用途可将感应同步器分为直线式和旋转式两种,分别用于测量线位移和角位移。
激光式位移传感器:由激光器、光学元件、光电转换元件构成的将测位移量转换成电信号。常用的激光干涉测长传感器分为单频激光干涉传感器和双频激光干涉传感器。
第三章 力、扭矩和压力传感器 测力传感器:用于测力的传感器多为电气式。电气式测力传感器根据转换方式不同又分为参量型和发电型。参量型测力传感器有电阻应变式、电容式、电感式等。发电测力传感器有压电式、压磁式等。
电阻应变式测力传感器:将力作用在弹性元件上,弹性元件在力作用下产生应变,利用贴在弹性元件上的应变片将应变转换成电阻的变化。然后利用电桥将电阻变化转换成电压(或电流)的变化,再送入测量放大电路测量。最后利用标定的电压(或电流)和力之间的对应关系,可测出力的大小或经换算得到被测力。
dRdLdSd2LE(12)LELS应变片:R;其中μ:电阻丝的泊松系数;ζ:电阻丝受到的应力(Pa);E:电阻丝的弹性模量;πL:电阻丝材料的dR(12)K纵向压阻系数。对于金属丝,(1+2μ)ε»πLEε,则R;其中K:金属电阻丝灵敏系数,K约在1.7~3.6之间。常用金属丝材料在200℃~300℃以下工作可选用康铜丝应变丝,在300℃以上工作可选用镍铬合金应变片、铂铱合金应变片等。
半导体应变片:其工作原理是基于压阻效应。压阻效应:是指当半导体受到应力作用时,由于截流子迁移率的变化,使其电阻率发生变化的现象。表达电阻丝电阻应变效应的公
K式也适用于半导体电阻材料。其应变灵敏系数为:
dR/RLE,半导体应变片的缺点是应变灵敏系数的离散性大,机械强度低,非线性误差大,温度系数大。
应变片的布置和接桥方式:则电桥的输出U0电压为:
R1R3R2R4Ui(R1R2)(R3R4),当R1=R2=R3=R4=R,U0UiR1R2R3R4()4RRRR,应变仪电桥式作方式有:单臂、双臂、四臂。应变片在弹性元件上典型的布片和接桥方式有:柱型、环形、悬臂梁式、两端固定梁、轴。压电式力传感器:是基于压电元件的压电效应而工作的。正压电效应:当某些晶体沿一定方向受到外力作用而变形时,在其相应的两个相对表面产生极性相反的电荷,当外力去掉后,又恢复到不带电状态。晶体受力所产生的电荷量与外力的大小成正比,电荷的极性取决于变形的形式。逆压电效应:在某些晶体的极化方向(受力能产生电荷的方向)施加外电场,晶体本身将产生机械变形,当外电场撤去后,变形也随之消失。
压电元件及其晶片连接方式有:单片式、两片串联式、两片并联式、剪切式、扭转式。压磁式力传感器:在机械力作用下,铁磁材料内部产生应力或应力变化,使磁导率发生变化,磁阻相应也发生变化的现象。外力是拉力时,在作用方向铁磁材料磁导率提高,垂直作用力方向磁导率降低;作用力为压力时,则反之。常用的铁磁材料有硅钢片和坡莫合金。
第四章 速度、加速度传感器
直流测速发电机:按定子磁极的励磁方式不同,可分为电磁式、永磁式两类;若按电枢的结构形式不同,可分为无槽电枢、有槽电枢、空心杯电枢、圆盘印刷绕组等。电枢感应电动势为EsKenCen,其中Ke:感应系数;Φ:磁通;n:转速;Ce:感应电动势与转速的比例系数。空载时:Is=0 ,则有直流测速发电机的输出电压和电枢感应电动势相等,因而输出电压与转速成正比。有负载时,直流测速发电机的输出电压为VCFEsIsrs,rS:电枢回路的总电阻。电枢电流为
ISVCFRL,RL:测速发电机的负载电阻。则可得VCFCenCn1rs/RL
直流测速发电机在工作中,其输出电压与转速之间不能保持比例关系,原因和改进方法:一是有负载时,电枢反映去磁作用的影响,使输出电压不再与转速成正比(在定子磁极上安装补偿绕组,或使负载电阻大于规定值)。二是电刷接触压降的影响(应采用接触压降较小的铜-石墨电极或铜电极,并在它与换向器相接触的表面上镀银)。三是温度的影响(在直流测速发电机的绕组回路中串联一个电阻值较大的附加电阻,再接到励磁电源上)。
交流测速发电机:可分为永磁式、感应式、脉冲式三种。永磁式并流测速发电机实质上是单向永磁转子同步发电机,定子绕组感应的交变电动势的大小和频率都随输入信号而变f化:
ppnE4.44fNKwm44.4NKwmnKn6060 ;
;其中K:常系数,K4.44pNKwm60 ;p:电机极对数;N:定子绕组每相匝数;KW:定子绕组基波绕组系数;Φm:电机每极基波磁通的幅值。通常此电机只做指示式转速计使用。感应式测速发电机与脉冲式测速发电机的工作原理基本相同,都是利用定子、转子齿槽相互位置的变化,使输出绕组中的磁通产生脉动,从而感应出电动势,也称为感应子式发电机原理。输出电动f势的频率为ZrnHz60,其中Zr:转子齿数;n:电动机转速(r/min)线振动速度传感器:当一个绕有N匝的线圈作垂直于磁场方向相对运动时,线圈切割磁力线,由法拉第电磁感应定律可知,线圈产生感应电动势ENBlv,其中B:线圈所在磁场的磁感应强度(T);l:每匝线圈的平均长度;v:线圈磁场的运动速度。
变磁通式:开磁路式:测量时,齿轮随被测旋转体一起转动,每转过一个齿,传感器磁路磁阻变化一次,磁通亦变化一次,因此线圈产生感应电动势的变化频率等于齿轮的齿数与转速的乘积。闭磁路式:测量转速时,磁能周期变化,线圈产生感应电动势的频率与转速成正比。n60f/z ; w(2/z)f(rad/s)
陀螺式角速度传感器:包括转子陀螺、压电陀螺、激光陀螺、光纤陀螺。半导体硅流速传感器是一种可测流速、流动方向的传感器。其工作原理是依据发热体与放置发热体的流体介质的热导率λ与流体流速相关原理制成的。Q(T1T2)(ABvt)(T1T2),Q:流体介质从温度T1流向温度T2的热量;λ:热导率;vt:流体介质流速;B:常数,A为vt=0时的热导率,A与B均由由流体介质性质和发热体性质决定。
加速度传感器:常用的有压电式、应变式、磁致伸缩式等。
压电式加速度传感器包括:压缩型(为了区分异常振动与其它噪声振动,传感器的固有频率设计成与异常振动频率相同,从而提高了信噪比)、剪切型(可忽略横向加速度的影响,还能在高温环境中使用)、弯曲型(结构简单、体积小、重量轻、灵敏度高,但压电材料有阻抗高、脆性大、难于与金属粘结)。因为其本身内阻抗很高,输出微弱,则必须接高输入阻抗的前置放大器。这类放大器有电压放大器(第一级采用场效应管构成源极输出器,第二级晶体管构成对输入端的负反馈,以提高输入阻抗)和电荷放大器(输出电压u0Q/Cf,Q:传感器输出电荷,Cf:反馈电容,即输出电压与电缆分布、长短无关)。压电加速度传感器属发电型传感器,可把它看成电压源或电荷源,故灵敏度有电压灵敏度{输出电压(mV)与所承受加速度之比}、电荷灵敏度{输出电荷(Q)与所承受加速度之比)。对给定的压电材料,灵敏度随质量的增大或压电片的增多而增大。一般加速度传感器尺寸越大,其固有频率越低。因此在选用加速度传感器时应当权衡灵敏度和结构尺寸、附加质量影响和频率响应特性之间的利弊。
第五章 视觉、触觉传感器
视觉传感器:以光电变换为基础,由四个部分组成,照明部(钨丝灯、闪光灯等)、接收部(由透镜和滤光片组成,具有聚成光学图像或抽出有效信息的功能)、光电转换部(将光学图像信息转换成电信号)、扫描部(将二维图像的电信号转换成时间序列的一维信号)。在机电一体化系统中的作用有三:进行位置检测;进行图像识别;进行物体形状、尺寸缺陷的检测。
视觉传感器分为:光电式摄像机(即工业电视摄像机){其光导摄像管是一种兼有光电转换功能和扫描功能的真空管}、固体半导体摄像机{由许多光电二极管组成阵列代替光导摄像管。其摄像元件为CCD即电荷耦合器件,它是一种MOS型晶体管开关集成电路,它的构成主要有隔行传送方式、帧传送方式}、激光式视觉传感器{利用激光作为定向性高密度光源,由光电转换及放大元件、高速回转多面棱镜、激光器组成}、红外图像传感器{由红外敏感元件、电子扫描电路组成}。
人工视觉系统的硬件构成:图像输入、图像处理、图像存储、图像输出四个子系统组成。图像输出装置分为两类:一类是只要求瞬时知道处理结果,以及计算机用对话形式进行处理的显示终端,称为软拷贝;另一类可长时间保存结果,如宽行打印机、绘图机、X-Y绘图仪以及显示器图面照像装置等,称为硬拷贝。图像信息的处理技术中,区域法与微分法不同,它不直接检测灰度的变化点,而是以灰度大致相同的像素集合作为区域而汇集的方法。
触觉传感器:接触觉、压觉的阈值单位为104Pa,人的压觉阈值约为1.28×104Pa,人的手指接触觉阈值约为3×104Pa。接触觉传感器的代表是用硅橡胶制成的矩阵式触觉传感器。硅橡胶与金属电极对置、接触。由于硅橡胶受压其电阻值就改变,所以输出电压相应变化。滑动觉传感器:被用于工业机器人手指把持面与操作对象之间的相对运动,以实现实时控制指部的夹紧力。它是检测指部与操作物体在切向的相对位移。
第六章 温度传感器
热电偶式温度传感器:属于接触式热电动势型传感器,基于热电效应(当两种不同金属导体两端相互紧密地连接在一起组成一个闭合电路时,由于两个端点温度不同,回路中将产生热电动势,并有电流通过,即将热能转换成电能。)它由热电偶(闭合回路)、热电极(两导体)、热端、冷端组成。热电动势由接触电动势、温差电动势两部分组成。
热电偶的分类:普通热电偶(主要用于测量液体和气体的温度)、铠装热电偶(也称缆式热电偶,可分为有碰底型、不碰底型、露头型、帽型。特点是测量结热容量小、热惯性小、动态响应快、挠性好、强度高、抗震性好,适用于普通热电偶不能测量的空间温度)、薄膜热电偶(可分为片状、针状,主要用于测量固体表面小面积瞬时变化的温度。特点是热容量小、时间常数小、反应速度快)、并联热电偶(它是把几个同一型号的热电偶的同性电极参考端并联在一起,而各个热电偶的测量结处于不同温度下,其输出电动势为各热电偶热电动势的平均值,所以这种热电偶可用于测量平均温度)、串联热电偶(又称热电堆,它是把若干个同一型号的热电偶串联在一起,所有测量端处于同一温度T之下,所有连接点处于另一温度TO之下,则输出电动势是每个热电动势之和。为保证测量值的真实性,常用的方法有恒温法、温度修正法、电桥补偿法、冷端补偿法、电位补偿法。)
电阻式温度传感器:分为金属热电阻式、热敏电阻式两大类。金属热电阻式温度传感器:其基理是在金属导体两端加电压后,使其内部杂乱无章运动的自由电子形成有规律的定向运动,而使导体导电。对于大多数金属导体而言RtRo(11t2t2ntn);铂电阻物理化学性能稳定,搞氧化能力强,测温精度
23RtRo[11t2t3(t100C)t],在高,在(-200~0)℃范围内的阻温特性是:(0~850)℃内的阻温特性是:RtRo(11t2t),一般在RO=100Ω或RO=50Ω时,α1=3.96847×10-3/℃,α2=-5.847×10-7/℃2,α3=-4.22×10-12/℃4。铜价格低,在(-50~150)℃,23RtRo(11t2t3t)其电化学性和物理性能稳定,则有。为了避免通过交流电时产
2生感抗,或有交变磁场时产生感应电动势,在绕制时要采用双线无感绕制法。
热敏电阻式温度传感器:所用材料是陶瓷半导体,其导电性取决于电子-空穴的浓度。其阻温特性为RT=ROeB(1/T-1/TO);正温度系数热敏电阻,随温度增加而增加,高温不得超过140℃,临界温度系数热敏电阻,不适于较宽温度范围内的测量;负温度系数热敏电阻,其阻值随温度增加而下降,一般用于(-50~300)℃之间的温度测量。硅热敏电阻即可具有正温度系数也可具有负温度系数,采用线性化措施后,可在(-30~150)℃内实现近似线性化。锗热敏电阻广泛应用于低温测量;硼热敏电阻在工作中700℃高温时仍能满足要求。
非接触式温度传感器:可分为全辐射式温度传感器、亮度式温度传感器、比色式温度传感器。
全辐射式温度传感器:利用物体在全光谱范围内总辐射能量与温度的关系测量温度。
4全辐射式温度传感器测得的温度总是低于物体的真实温度。测量温度:TTr1/T ;Tr:辐射温度;εT:温度T时物体的全辐射发射系数。这种传感器适用于远距离、不能直接接触的高温物体,其测量范围为(100~2000)℃。
亮度式温度传感器:利用物体的单色辐射亮度随温度变化的原理。传感器测得的温度
11lnT值小于被测物体的真实温度T:TTLC2,ελT:单色辐射发射系数;C2:第二辐射常数,C2=0.014388(m·K);λ:波长(m)。
比色温度传感器:通常,将波长选在光谱的红色和蓝色区域内。真实温度T:11ln(1/2)TTPC2(11)12 ;其量程(800~2000)℃,测量精度为0.5%。如果两个波长的单色发射系数相等,则真实温度与比色温度相同。一般灰体的发射系数不随波长而变,故比色温度等于真实温度。通常λ1:对应蓝色,λ2:对应为红色。对于很多金属,由于单色发射系数随波长的增加而减小,故比色温度高于真实温度。半导体温度传感器:以半导体P-N结的温度特性为理论基础,利用晶体二极管与晶体三极管作为感温元件。采用晶体二极管,测温范围在(0~50)℃;采用晶体三极管,测温范围在(-50~150)℃。
第七章 气敏、温度、水份传感器 气敏传感器(N型半导体):是一种将检测到的气体成份和浓度转换为电信号的传感器。具有代表性的是SnO2系和ZnO系气敏元件。这些金属氧化物都是利用陶瓷工艺制成的具有半导体特性的材料,简称半导瓷。材料吸收吸附分子,为正离子吸附(O2和氮氧化合物,为氧化型气体);材料释放电子,为负离子吸附(H2、CO碳氢化合物和酒类倾向,为还原型气体)。SnO2气敏半导瓷掺加Pd、Mo、Ga等杂质,可供制造常温工作的烟雾报警器。
湿度传感器:分为绝对温度(一定大小空间中水蒸气的绝对含量,kg/m3,又称为水气浓度或水气密度。它可以用水的蒸气压表示,空气水气密度
vpvMRT,其中M:水气摩尔质量;R:摩尔气体常数;Pv:蒸气压力;T:热力学温度)、相对温度(为某一被测蒸气压与相同温度下饱和蒸气压比值的百分数,常用%RH表示。是无量纲值。表示为潮湿程度。)
湿敏元件有:氯化锂湿敏元件、半导体陶瓷湿敏元件、热敏电阻湿敏元件、高分子膜湿敏元件。
氯化锂湿敏元件:利用吸湿性盐类潮解,离子导电率发生变化而制成的测湿元件。是典型的离子晶体。
热敏电阻式湿敏元件:特点有灵敏度高且响应速度快;无滞后现象;不像干湿球温度计需要水和纱布及其它维修保养;可连续测量(不需要加热清洗);抗受风、油、尘埃能力强。可制造精密的恒湿槽,精度达±0.2g/m3。
高分子膜湿敏元件:它是以随高分子膜吸收或放出水份而引起电导率或电容变化测量环境相对湿度的装置。根据电容器的容量值
CSd,再测得相对温度。电子温度计由检测部分(有携带型、墙袋型、凸缘型)、数字显示器、变换器构成。常用于工业温度监视、记录和控制,尤可用于湿度小于20%RH的测量。在超过90%RH的高湿区域会出现结露。结露时湿度传感器在沾湿间歇不能测量,一旦沾湿消失,恢复原来特性。
水份传感器:水份是存在于物质中水的数量,以百分比表示。种类有:直流电阻型、高频电阻型、电容率型、气体介质型、近红外型、中子型、核磁共振型。
第八章 传感检测系统的构成
传感检测系统的组成:传感器(信息获取)、中间转换(信号调理)电路(信号转换调理)、微机接口电路(信息传输)、分析处理及控制显示电路(信息分析处理、显示记录)等部分组成。目前常用的有模拟显示(精度受标尺最小分度限制,易引入主观误差)、数字显示(有利于消除读数主观误差)、图像显示(常用的自动记录仪器有笔式记录仪、光线示波器、磁带记录仪)三种。
电桥:是把电阻、电感、电容等元件参数转换成电压或电流的一种测量电路。
直流电桥:在电桥的输入端加入直流电源ES。当输出端与高输入阻抗装置相接时,电桥相当于工作在输出端开路状态,其输出电压UoR1R3R1R4R2R3EsEsEsR1R2R3R4(R1R2)(R3R4)。当R2R3=R1R4时,输出电压UO为0,称这种状态为平衡状态。若将电桥输出端与内阻为Rg的检流计相连接,由戴维南定
Ro理知,AB端的等效电阻
R1R2R3R4R1R2R3R4,AB端的开路电压UocR1R4R2R3RgEsUoUoc(R1R2)(R3R4),则电桥输出端的电压为RoRg。如下图。
交流电桥:采用交流电源供电的电桥。如果交流电源是频率为f的正弦交流信号,则有Z1Z11,Z2Z22,Z3Z33,Z4Z44。当电桥输出端开路时,其输出
UsUsZ1Z4Z2Z3UoZ1Z3UsZ1Z2Z3Z4(Z1Z2)(Z3Z4)电压,当Z1Z4=Z2Z3,则有Z2Z3Z1Z4,2314。如下图
电桥的分类:按电桥采用电源的不同分为:直流电桥、交流电桥。按电桥的工作方式可分为:平衡电桥、不平衡电桥。按电桥被测电阻的接入方式:单臂电桥、差动电桥。
电桥的工作特性指标分别为:电桥的灵敏度、电桥的非线性误差。电桥的灵敏度是单
Kus位输入量时的输出变化量,对于不平衡电桥:
U/UoR/R。电桥的非线性误差:若线
f性化后的输出电压为UOS,则有
UosUoUo。
各类电桥的灵敏度与非线性误差:单臂电桥:当R2=R1、R3=R4时,R1/R1,Uo则有R1R41UsUsUosUs(R1R1R2)(R3R4)2(2),化简可得4,非线性误差fUosUo1Uo2。可见输入变化量越大,非线性误差越大,若要求电桥的误差小于3%,KusUos/Us14。差动电桥:
时允许ε的最大值为0.06。对于单臂电桥,其输出电压灵敏度当R2=R
1,R1/R1,R2R3=R1R4Uo(R1Rx)R4(R2Rx)R3Rx1UsUsUoUs(R1RxR2Rx)(R3R4)R1R2,化简得2,得差动电桥灵
11UsUs2f20Uo/Us11KusUs2,非线性误差2敏度。如下图。有源电桥:装有一个具有高输入阻抗和低输出阻抗及高增益等特点的运算放大器A,当△R=0时,电桥平衡,当
UsUsUsRUo(RR)Uo(1)I1I2Us/(2R)22R2RR变化到R+△R时,则有,(Us/Us)Uo/Us1UoUsKus22,则输出灵敏度及非线性误差分别为2,即
f0。如下图
电桥调零:测量前电桥的输出应调为零,通常采用的有串联调零法(多用于桥参数R值较大的场合,调零电位器的阻值RW « RO)和并联调零法(并联在电桥输出端,多用于桥参数R值较大的场合,调零电位器的阻值RW » RO)。
无源滤波器:特点是电路简单,但是带负载能力差。有源滤波器:由运算放大器和RC网络组成。特点是1)有源滤波器不用电感线圈,因而在体积、重量、价格、线性度等方面具有明显的优越性,便于集成化。2)由于运算放大器输入阻抗高,输出阻抗低,可以提供良好的隔离性能,并可提供所需增益。3)可以使低频截止频率达到很低的范围。
低通滤波器:具有低频信号容易通过并抑制高频信号的作用。高通滤波器:RC电路具有高频信号容易通过并抑制低频信号的作用。带通滤波器:RLC电路用于通过某一频段
Q的信号,而将此频段外的信号加以抑制或衰减。品质因素
fo1B3RFRfRf,带阻滤波器:用于抑制某一频段的信号,而让此频段外的信号通过。品质因素Qfo1B2(2RfRF)Rf。
一阶RC低通滤波器的幅频及相频特性如图。
一阶高通滤波器的幅频及相频特性如图所示:
数字滤波:利用程序来实现,因而不需增加硬件,而且可靠性高、稳定性好、灵活方便。常用的方法有:限定最大偏差法:当
YnYn1Y,则令YnYn1。如果YnYn1Y,则YnYn。算术平均值法:
YnYn1YnYnkkk,适用于压力测量、流
i量测量等。加权平均滤波法:
YnCiYn1i0n1,其中满足i0C1n1。
数/模转换:它是把数字量转变成模拟的器件,它由四个部分组成:电阻网络、运算放大器、基准电源、模拟开关。目前用得较多的是T型电阻网络数/模转换器(D/A)。D/A集成电路芯片分为八位、十位、十二位、十六位等。DAC0832是一个具有两个输入数据缓冲器的八位D/A芯片。其分辨率是指最小输出电压与最大输出电压之比。例如八位D/A的110.00398分辨率212561。其精度的误差由参考电压的波动、运算放大器的零点漂移、模拟开关的压降以及电阻阻值的偏差。通常用非线性误差的大小表示D/A的线性度。
多路模拟开关环节:采用分时法切换信号,完成多路切换的器件称为多路模拟开关。常用的模拟开关有晶体管开关、光耦合器开关、结型场效应管开关、CMOS场效应开关。其中应用最多的是CMOS场效应开关。多路模拟开关电路由地址译码器和多路双向模拟开关组成。
采样保持环节:其作用是在采样期间,其输出能跟随输入的变化而变化,而在保持状态能使其输出值保持不变。采样理论表明,连续模拟信号可以表示为一组等间隔离散化瞬时采样序列,反之也可由这组离散采样脉冲序列恢复为原连续信号。但其中必有采样频率fs2fH采样信号频谱中的最高频率分量,如不满足,将会出现信息丢失或信号失真。LF398采样保持器具有采样速度高、保持电压下降速率慢、精度高等特点。
传感检测信号的细分:为了提高检测系统的分辨力,需要对传感检测信号进行细分。如几何量测量中采用机械式细分(如游标卡尺)、光学式细分和电子式细分等。四倍细分原理:莫尔条纹的间距为BHW/[2sin(/2)]W/。
传感检测系统中的抗干扰问题:产生内部干扰的因素有:信号通过公共电源、地线和传输线的阻抗相互耦合形成的干扰;元件之间、导线之间通过寄生电容或互感耦合造成的干扰;大功率和高压元件产生的电场;电子开关元件的电压或电流急剧变化而产生的干扰源;工作电源,交叉走线等。外部干扰的因素有:外部高压电源因绝缘不良形成的漏电;广播电视、高频感应加热等;空间电磁波的辐射;周围机械振动和冲击的影响。信噪比是指信号通
SPS10lgPN。形成干扰路中,有用信号功率Ps与噪声功率PN之比,通常用S/N表示,N的三个条件有:干扰源、干扰的耦合通道[电容性耦合,互感性耦合,公共地线的耦合,漏电耦合,辐射电磁场耦合]、干扰的接收电路。
抑制干扰的方法:主要是采取单点接地、屏蔽隔离(静电屏蔽、低频磁感应屏蔽、高频磁感应屏蔽)、滤波(电源滤波、退耦滤波器、有源滤波、数字滤波)等。接地在测量系统中有四种接地系统:安全地(强电应用设备)、信号源地、数字信号地、模拟信号地(此三地是为了防止电路有公共阻抗而引起信号交叉耦合)。
典型噪声干扰的抑制:设备启、停时产生的电火花干扰:消除这种干扰的方法通常是RC吸收电路,即将电阻R和电容C串联后再并联到继电器触点或电源开关两端。共模噪声:抑制这种干扰可采用差分放大器,差分放大器的输入阻抗越高,抑制作用越强。串扰:克服串扰的有效方法是将不同信号线分开,并且留有最大可能的空间隔离。
ADC与CPU的时间协调:其控制方式有延时等待、中断式、查询式。
数据转换接口的典型结构有:高电平单路信号调理单ADC系统(性能一般,成本低,全部输入通道共用一路信号调理电路)、低电平多路信号调理单ADC系统(最常见的数据采集系统,性能较高,每个通道均有各自的信号调理电路)、多路信号调理多ADC系统(通过多路ADC转换的数字信号由一个多路数字开关送入微机,其成本虽高,但性能较高)。
A/D转换器与CPU的接口示例:8位8通道A/D转换电路:由模拟多路转换开关(LF13508)、采样/保持器(LF398)、A/D转换(ADC0804:逐次逼近式8位转换芯片,属于脉冲启动转换芯片)和并行接口PIO组成。ADC574是12位逐次比较式A/D转换芯片,很容易与8031单片机的接口相连。
传感器信号的温度补偿:在计算机能力允许时,可采用计算机软件(常用公式法、表格法)进行,也可采用硬件电路实现。温度补偿公式法的步骤:1。给定m+1个温度值,测出每一个温度下传感器静态特性曲线在y轴上的截距;2。将Y表示成以温度T为自变量的n次代数多项式Ya0a1Ta2TanT,用最小二乘曲线拟合法确定a0„,在测得
2nx每一个y值对应的T值,计算出Y,再求传感器的输入值
yYk。温度补偿表格法的步YYi(TTi)骤:Yi1YiTi1Ti,若T
线性化处理方法:可以用硬件实现,也可以用软件实现线性化处理。常用的方法有公式法、表格法。公式法也称曲线拟合法,(求完)
第九章 信号分析及其在测试中的应用
信号的分类:信号有静态信号、动态信号。按能否用明确的时间函数关系描述,可将信号分为确定性信号与非确定性信号。确定信号是指能用明确的数学解析关系式或图表描述的信号,如简谐波、方波、矩形波等信号。确定性信号又可分为周期信号和非周期信号。非确定性信号也称随机信号,是指时域波形不确定,无法用确切的数学关系式描述,也不能准确预测未来的结果。只能用概率统计方法描述它的规律。
模拟信号:在某一自变量连续变化的间隔内,信号的数值连续。离散信号:自变量在某些不连续数值时,输出信号才具有确定值。如果将其各离散点的幅值也作离散化,以二进制编码表示,则称为数字信号。
xlim信号的均值
1TTT0x(t)dt,它表示信号中常值分量或直流分量。信号的方差1limTT2xT0[x(t)x]2dt,它描述信号的波动范围,其正平方根为信号的标准差。信号的均方值x2lim1TTT0x2(t)dt,它描述信号的强度,表示信号的平均功率。则有2x2x2x。信号的概率密度函数
pxlimTxT0T0x,它描述了信号x(t)对指定幅值的取值机会。
信号的相关描述:它又称为信号的时差描述。信号的自相关函数Rx()lim1TTT0x(t)x(t)dt,其中η---时延量,自相关函数的性质:1)当时延0,1Rx(0)limTT信号的自相关函数就是信号的均方值
T0x2(t)dt2,2)当Rx(0)Rx()时,即在η=0处取峰值;3)Rx()Rx();4)周期信号的自相关函数必呈周期性,这是因为有x(t)x(tnT),故
Rx(nT)lim1Tx(tnT)x(tnT)dtRx()0TT。信号的Rxy()lim互相关函数
1TTT0x(t)y(t)dt,互相关函数的性质有:1)Rxy(η)通常不在η=0处取峰值,其峰值偏离原点的位置为ηd,图反映两信号相互有ηd时移时,相关程度
1Rxy()limTT最高;2)Rxy(η)与Ryx(η)是两个不同的函数。根据定义Ryx()lim1TTT0x(t)y(t)dt;T0y(t)x(t)dt,不难证明Rxy()Ryx();3)均值为零的两个统计独y(t),其中Rxy()0。信号的互相关系数立的随机信号x(t)和xy()Rxy()Rxy()Rx(0)Ry(0)xrmsyrms,由于Rxy()Rx(0)Ry(0),故xy()1,一般有:xy()1说明x(t)和y(t)完全相关;xy()0说明x(t)和y(t)完全不相关;0xy()0,x()说明x(t)和y(t)部分相关。自相关系数
Rx()Rx(0)。
周期信号与离散频谱:傅里叶级数
x(t)a0(ancosnw0tbnsinnw0t)n1,其中w02/T,a01TT0x(t)dt,an2T2Tx(t)cosnw0tdt,bnx(t)sinnw0tdt,T0T0如果周期信号x(t)为奇函数时,an0,a00,此时
x(t)bnsinnw0tn1;如果周期信号x(t)为偶函数时,bn0,此时x(t)a0ancosnw0tn1。周期信号频谱特点:离散性、收敛性、谐波性。瞬态信号的频谱连续。傅里叶变换的主要性质有:(如图所示
非确定性信号的功率谱密度函数:自功率谱密度函数:若自相关函数满足绝对可积条件,即Rx()d,则定义
Sx(f)Rx()ej2fd,为x(t)的自功率谱密度函数,称自谱或自功率谱。频域上Sx(f)曲线下的总面积代表信号x(t)的总功率。互功率谱密度函数:如果互相关函数Rxy(η)满足傅里叶变换的条件Rxy()d,则定义
称Sxy(f)为信号x(t)和y(t)的互谱密度函数,简称互谱。互相干函数:有一种方法能评价测试系统输入信号和输出信号之间的因果性,即输出信号的功率谱中有多少是所测输入信号引起的响应,这个指标常用相干函数γxy(f)表示,其定义为Sxy(f)Rxy()ej2fd2xy(f)Sxy(f)22(0xy1)Sx(f)Sy(f)。当
2xy(f)0,表示输出信号y(t)与输入信号x(t)不相干;当2xy(f)1,表示输出信号y(t)与输入信号x(t)完全相干,系统无干扰输入;若
2xy(f)在0~1之间,则表示下述可能性:测试中有外界噪声干扰输入;联系x(t)和y(t)的系统非线性;输出y(t)和x(t)和其它输入的综合。
第十章 传感器在机电一体化系统中的应用
零位和极限位置的检测:零位的检测精度直接影响工业机器人的重复定位精度和轨迹精度;极限位置的检测则起保护机器人和安全动作的作用。工业机器人常用的位置传感器有:接触式微动开关、精密电位计,非接触式光电开关、电涡流传感器。
位移量的检测:机器人上常用的位移传感器有:旋转变压器、差动变压器、感应同步器、电位计、光栅、磁栅、光电编码器等。例如关节型机器人大多采用光电编码器,由于刚性原因,位移传感器多与驱动元件同轴,以提高分辨力。直角坐标机器人中的直线关节或气动、液压驱动的某些关节采用线位移传感器。
速度、加速度的检测:速度传感器是为实现机器人各关节的速度闭环控制。加速度传感器被用于机器人中关节的加速度控制。
在大位移量中,常用位移传感器有感应同步器、光栅、磁尺、容栅等。传感器在位置反馈系统中,在传感器安装位置的不同有半闭环控制和全闭环控制;按反馈信号的检测和比较方式不同有脉冲比较伺服系统、相伴比较伺服系统、幅值比较伺服系统。光电编码器PE同时进行速度反馈和位置反馈的半闭环控制系统中,光电编码器将电动机转角变换成数字脉冲信号,反馈到CNC装置进行位置伺服控制。又由于电动机转速与编码器反馈的脉冲频率成比例,因此采用F/V(频率/电压)变换器将其变换为速度电压信号就可以进行速度反馈。
“测量中心”是指三坐标测量与机械加工中心相配合。测量系统按其性质可以分为机械式测量系统、光学式测量系统、电气式测量系统。三坐标测量机的测量头按测量方法分为接触式{ 应用广泛,它可分为硬测头[多为机械测头,使用较少]、软测头[可分为触发式测头、三维测微测头(可分为模拟测头、数字测头)},、非接触式{常用激光测头、光学测头、电视扫描测头等} 汽车机电一体化的中心内容是以微机为中心的自动控制系统取代原有纯机械式控制部件,从而改善汽车的性能,增加汽车的功能,实现汽车降低油耗,减少排气污染,提高汽车行驶的安全性、可靠性、操作方便和合适性。汽车行驶控制的重点是:1)汽车发动机的正时点火、燃油喷射、空燃比和废气再循环的控制,使燃烧充分、减少污染、节省能源;2)汽车行驶中的自动变速和排气净化控制,以使其行驶状态最佳化;3)汽车的防滑制动、防碰撞,以提高行驶的安全性;4)汽车的自动空调、自动调整车高控制,以提高舒适性。
公路交通用传感器:国外采用的传感器有电感式、橡皮管式、超声波式、雷达式及红外线式。
第五篇:传感器技术教学大纲
《传感器技术》课程教学大纲
一、课程名称:传感器技术
二、课程代码:812117
三、课程类别: 专业课
四、学时 32
五、先修课程:电路理论电子技术
六、适应专业:海洋技术
七、课程的性质和任务
《传感器与测试技术》是一门多学科交叉而成的专业课程,随着科学技术的飞速发展,人们对信息资源的需要日益增长,要及时获取各种信息,解决工程、生产及科研中遇到的检测问题,必须合理的选择和应用各种传感器。本课程在讲清基本概念、基本理论的基础上,强调工程应用。本课程主要为海洋技术专业的本科生重点介绍各种传感器的工作原理和特性,结合工程应用实际,了解传感器在各种电量和非电量检测系统中的应用,培养学生使用各类传感器的技巧和能力,掌握常用传感器的工程测量设计方法和实验研究方法,了解传感器技术的发展动向。
八、教学目的与要求
使学生初步掌握检测技术的基本知识。培养学生使用各类传感器的能力。使学生能够进一步应用传感器方面的知识解决工程检测中的具体问题。对学科发展有初步认识,掌握基本的共性技术。本课程学习基本要求为:
1、通过本课程的学习,学生应了解以下知识:
(1)传感器、检测系统组成、描述。
(2)传感器测量的共性技术,传感技术的新发展。
(3)传感器的一般工程参数测量方法。
2、通过本课程的学习,学生应熟悉以下知识:
(1)传感器分类方法
(2)传感器动、静态特性的定义、测量方法。
(3)不同传感器等效、测量电路。
(4)传感器的数学模型建立和分析方法。
(5)各种物理效应和功能传感器基本特性。
3、通过本课程的学习,学生应掌握以下知识:
(1)常用传感器静态性能检测及数据处理方法;
(2)电桥测量、线性化处理及检测技术一般共性技术;
(3)R、C、L传感器基本原理、测量方法;
(4)主要传感器工作原理、测量电路
要求理解不同原理传感器的物理概念,常用的电路搭配;能够对常用传感器的性能进行检测并正确处理检测数据;掌握正确使用传感器的方法。了解传感器技术发展前沿状况,培养学生科学素养,提高学生分析解决问题的能力。
九、教学内容及要求
第一章概论
1、了解信息测量的基本知识,掌握测量误差的基础知识。
2、掌握传感器的定义、传感器的一般特性、传感器的重要指标。
重点内容:
测量误差的概念、传感器的定义、传感器的一般特性
教学难点:
随机误差计算、二阶传感器的动态特性及其分析方法。
建议学时数:
4第二章电阻应变传感器
1、了解应变片的结构和材料、电阻应变片的工作特性及参数
2、掌握电阻应变传感器的工作原理、电阻应变传感器测量电桥的分析方法及应用电阻应变传感器的温度误差及线性补偿办法。
3、理解应变式力传感器、应变式压力传感器、应变式加速度传感器的应用 重点内容:
电阻应变传感器的工作原理、差动电桥的概念、测量电桥的分析方法。教学难点:
电阻应变传感器测量电桥的分析方法、电阻应变传感器的温度误差及补偿办法,应变测量电桥性能的提高。
建议学时数:
4第三章电感传感器
1、掌握电感型传感器的工作原理、结构及特点,掌握电感型传感器的工作特性分析方法,带相敏整流测量电桥的工作原理。
2、了解差动变压器零点残余电压消除方法、差动变压器外补偿电路、差动整流电路,电感型传感器的应用。
重点内容:
电感型传感器的工作原理、结构及特点,主要工作特性及测量电路分析方法,带相敏整流测量电桥的工作原理。
教学难点:
电感型传感器测量电路分析方法、带相敏整流测量电桥的工作原理。
建议学时数:
4第四章电容传感器
1、掌握电容传感器的工作原理、结构及特点,差动电容传感器的概念,掌握电容传感器主要工作特性及分析方法
2、了解差动脉冲调宽电路的工作原理,电容传感器的应用及在应用中正确处理所遇到的问题。
重点内容:
电容传感器的工作原理、特点、主要工作特性及配用的测量电路,如何在实际工程测量中正确合理的选择电容传感器。
教学难点:
电容传感器测量电路的分析及(变间隙式)差动电容传感器测量电桥输出电
压的计算、测量误差的分析及减小误差的方法。
建议学时数:
2第五章 热电传感器
1、掌握热电偶的工作原理、工作特性、冷端补偿及测温电路热,电感传感器的基本应用。
2、掌握金属热电阻、半导体热敏电阻工作原理及特性,温敏二级管、温敏晶体管的测温原理,掌握热电传感器的基本应用。
重点内容:
热电偶、半导体热敏电阻、工作特性、测量电路,温度传感器的典型工程应用。
教学难点:
热电传感器测量电路的分析方法及测量误差分析。
建议学时数:
4第六章 压电传感器
1、了解压电材料的压电效应,压电传感器的基本应用。
2、掌握压电传感器工作原理、压电传感器的组成及其测量电路。
重点内容:
压电传感器工作原理及测量电路。
教学难点:
压电传感器测量电路电荷放大器的运用及测量误差的分析。
建议学时数:
2第七章 磁电传感器
1、了解各种霍尔元件、磁敏元件的结构、特点及其基本应用,理解霍尔效应、磁阻效应的基本概念。
2、掌握霍尔传感器的工作原理、主要工作特性、误差及其补偿
重点内容:
霍尔传感器工作原理、主要工作特性、误差分析及其补偿,霍尔传感器的典型应用。
教学难点:
磁敏二极管、磁敏三极管的结构、工作原理,温度特性及补偿,测量误差的分析及计算。
建议学时数:
2第八章 光电传感器
1、理解常用光电器件的光电效应及其应用
2、掌握常用光电器件工作原理、工作特性及典型应用,光栅位移传感器的组成、工作原理、辩向原理及细分技术。
重点内容:
光电效应的基本概念,常用光电器件工作原理、工作特性及典型应用。教学难点:
莫尔条纹的概念,光栅位移传感器的工作原理、辩向原理及细分技术。建议学时数:
4第九章 光纤传感器
1、理解光纤的传光原理与特性,几种光纤传感器的典型应用。
2、掌握光纤作为光的传输媒质所具有的特点,它的结构、组成。光纤传感器的工作原理及特点。
重点内容:
光纤的基本概念,光纤传感器的工作原理及特点。光线能在光纤中传输的必要条件。
教学难点:
传输光的调制技术,偏振调制技术。
建议学时数:
2第十章 其它类型传感器简介
1、掌握气敏传感器、湿敏传感器的工作原理及应用。
2、掌握几种传感器稳压、恒流电源,典型实用信号放大电路。
重点内容:
半导体气敏传感器的基本概念,工作原理及特点,主要特性及其改善。教学难点:
气体分子对气敏材料的吸附、解吸原理,气敏传感器灵敏度的提高与稳定改善。
建议学时数:
4十、考核方式:
结束性闭卷考试80%+平时考核20%
十一、推荐教材和教学参考资源
(一)教材
郁有文.传感原理及工程应用 西安:西安电子科技大学出版社,第三版
(二)教学参考资源
何道清.传感与传感器技术.北京:科学出版社,2004..Ramon Pallas-Areny JohnG Webster传感器和信号调节 北京:清华大学出版社
制定人:常继生
审定人:黄晓红