第一篇:勾股定理五种证明方法
勾股定理五种证明方法
【证法1】
做8
个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等.即
11a2b24abc24ab22,整理得a2b2c2.【
证法2】(邹元治证明)
以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角
1ab2形的面积等于.把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上.∵ RtΔHAE ≌ RtΔEBF,∴ ∠AHE = ∠BEF.∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH是一个边长为c的正方形.它的面积等于c2.∵ RtΔGDH ≌ RtΔHAE,∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.2ab∴ ABCD是一个边长为a + b的正方形,它的面积等于.∴ ab214abc
22222.∴ abc.【证法3】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为
c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90º.∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º.即∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,ABC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则
11a2b2S2ab,c2S2ab22,222∴abc.【证法4】(1876年美国总统Garfield证明)
以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角1ab2形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵ RtΔEAD ≌ RtΔCBE,∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC是一个等腰直角三角形,12c2它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD∥BC.1ab
2∴ ABCD是一个直角梯形,它的面积等于2.1ab221ab1c2
22.∴ 2
222∴ abc.【证法5】(辛卜松证明)
DD
设直角三角形两直角边的长分别为a、b,斜边的长为c.作边长是a+b的正方形ABCD.把正方形ABCD划分成上方左图所示的几个部分,则正方形ABCD
222abab2ab;把正方形ABCD划分成上方右图所示的几个的面积为
部分,则正方形ABCD的面积为
222∴ab2ab2abc,222∴abc.ab214abc222 =2abc.初二(1)
第二篇:勾股定理证明方法
勾股定理证明方法
勾股定理的种证明方法(部分)
【证法1】(梅文鼎证明)
做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC的延长线交DF于点p.∵D、E、F在一条直线上,且RtΔGEF≌RtΔEBD,∴∠EGF=∠BED,∵∠EGF+∠GEF=90°,∴∠BED+∠GEF=90°,∴∠BEG=180º―90º=90º.又∵AB=BE=EG=GA=c,∴ABEG是一个边长为c的正方形.∴∠ABC+∠CBE=90º.∵RtΔABC≌RtΔEBD,∴∠ABC=∠EBD.∴∠EBD+∠CBE=90º.即∠CBD=90º.又∵∠BDE=90º,∠BCp=90º,BC=BD=a.∴BDpC是一个边长为a的正方形.同理,HpFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则,∴.【证法2】(项明达证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作Qp‖BC,交AC于点p.过点B作BM⊥pQ,垂足为M;再过点
F作FN⊥pQ,垂足为N.∵∠BCA=90º,Qp‖BC,∴∠MpC=90º,∵BM⊥pQ,∴∠BMp=90º,∴BCpM是一个矩形,即∠MBC=90º.∵∠QBM+∠MBA=∠QBA=90º,∠ABC+∠MBA=∠MBC=90º,∴∠QBM=∠ABC,又∵∠BMp=90º,∠BCA=90º,BQ=BA=c,∴RtΔBMQ≌RtΔBCA.同理可证RtΔQNF≌RtΔAEF.【证法3】(赵浩杰证明)
做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB=∠CFD=90º,∴RtΔCJB≌RtΔCFD,同理,RtΔABG≌RtΔADE,∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE
∴∠ABG=∠BCJ,∵∠BCJ+∠CBJ=90º,∴∠ABG+∠CBJ=90º,∵∠ABC=90º,∴G,B,I,J在同一直线上,【证法4】(欧几里得证明)
做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD.过C作CL⊥DE,交AB于点M,交DE于点
L.∵AF=AC,AB=AD,∠FAB=∠GAD,∴ΔFAB≌ΔGAD,∵ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴矩形ADLM的面积=.同理可证,矩形MLEB的面积=.∵正方形ADEB的面积
=矩形ADLM的面积+矩形MLEB的面积
∴,即.勾股定理的别名
勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。
在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。
证明
这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(ElishaScottLoomis)的pythagoreanproposition一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
第三篇:勾股定理证明方法(精选)
勾股定理证明方法
勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。
中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。
在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。
中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。
上中间的那个小正方形组成的。
每个直角三角形的面积为ab/2;
中间的小正方形边长为b-a,则面积为(b-a)2。
于是便可得如下的式子:
4×(ab/2)+(b-a)2=c
2化简后便可得: a2+b2=c2
在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加
刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法
古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。
第四篇:勾股定理的证明方法
这个直角梯形是由2个直角边分别为、,斜边为 的直角
三角形和1个直角边为的等腰直角三角形拼成的。因为3个直角三角形的面积之和等于梯形的面积,所以可以列出等式
化简得。
第五篇:勾股定理的证明方法
勾股定理的证明方法
绪论
勾股定理是世界上应用最广泛,历史最悠久,研究最深入的定理之一,是数学、几何中的重要且基本的工具。而数千年来,许多民族、许多个人对于这个定理之证明数不胜数,达三百余种。可见,勾股定理是人类利用代数思想、数学思想解决几何问题、生活实际问题的共同智慧之结晶,也是公理化证明体系的开端。
第一节 勾股定理的基本内容
文字表述:在任何一个的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。数学表达:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 事实上,它是余弦定理之一种特殊形式。
第二节勾股定理的证明
2.1欧洲
在欧洲,相传最早证明勾股定理的是毕达哥拉斯,故在欧洲该定理得名毕达哥拉斯定理;又因毕达哥拉斯在证毕此定理后宰杀一百头牛庆祝,故亦称百牛定理。
欧洲最早记载这一定理之书籍,属欧几里得《几何原本》。
毕达哥拉斯的证明方法(相传):
一说采用拼图法,一说采用定理法。
做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像左图那样拼成两个正方形。
从图上可以看到,这两个正方形的边长都是a + b,所以面积相等。
a2+b2+4×1/2ab = c2+4×1/2ab,整理即可得到。
定理法就是几何原本当中的证法:
设△ABC为一直角三角形,其中A为直角。从A点划一直线至对边,使其垂直于对边上的正方形。此线把对边上的正方形一分为二,其面积分别与其余两个正方形相等。
在正式的证明中,我们需要四个辅助定理如下:如果两个三角形有两组对应边和这两组边所夹的角相等,则两三角形全等。(SAS定理)三角形面积是任一同底同高之平行四边形面积的一半。任意一个正方形的面积等于其二边长的乘积。任意一个四方形的面积等于其二边长的乘积(据辅助定理3)。证明的概念为:把上方的两个正方形转换成两个同等面积的平行四边形,再旋转并转换成下方的两个同等面积的长方形。
2.2 中国
《周髀算经》、《九章算术》当中都有相关问题的记载。
周髀算经的证明方法:
“数之法出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五,两矩共长二十有五,是谓积矩。”——以矩的两条边画正方形(勾方、股方),根据矩的弦外面再画一个矩(曲尺,实际上用作直角三角),将“外半其一矩”得到的三角形剪下环绕复制形成一个大正方形,可看到其中有 边长三勾方、边长四股方、边长五弦方 三个正方形。验算勾方、股方的面积之和,与弦方的面积二十五相等——从图形上来看,大正方形减去四个三角形面积后为弦方,再是大正方形 减去 右上、左下两个长方形面积后为 勾方股方之和。因三角形为长方形面积的一半,可推出 四个三角形面积 等于 右上、左下两个长方形面积,所以 勾方+股方=弦方。赵爽弦图或许是中国人最著名的一种证法。
赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则
面积为(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2 = c2;
化简后便可得:
a2 + b2= c2
亦即:
c=√(a2 + b2)
可见,中国古人主要采取拼图法进行证明。后来美国总统加菲尔德也曾采用拼图法,利用面积巧妙的证明了勾股定理,他用了两个全等的直角三角形拼成一个梯形,利用面积法进行证明,非常巧妙。
2.3 其他方法
最快:射影定理法,利用相似形来证明。
面积思想:利用三角形五心的性质,利用面积来证明。
综上所述,勾股定理的证明是人类智慧的结晶。