二元一次方程组应用题练习的[五篇范例]

时间:2019-05-14 17:27:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《二元一次方程组应用题练习的》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《二元一次方程组应用题练习的》。

第一篇:二元一次方程组应用题练习的

二元一次方程组应用题练习

某校初一年级一班、二班共104人到博物馆参观,一班人数不足50人,二班人数超过50人,已知博物馆门票规定如下:1~50人购票,票价为每人13元;51~100人购票为每人11元,100人以上购票为每人9元

((1)若分班购票,则共应付1240元,求两班各有多少名学生?

(2)请您计算一下,若两班合起来购票,能节省多少元钱?

某中学组织初一学生春游,原计划租用45座汽车若干辆,但有15人没有座位:若租用同样数量的60座汽车,则多出一辆,且其余客车恰好坐满。已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元。

(1)初一年级人数是多少?原计划租用45座汽车多少辆?

(2)若租用同一种车,要使每个学生都有座位,怎样租用更合算?

某酒店的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天 35元,一个50人的旅游团到了该酒店住宿,租了若干间客房,且每间客房恰好住满,一天共花去1510元,求两种客房各租了多少间?

现有190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制成盒身,多少张铁皮制成盒底,可以正好制成一批完整的盒子?

第二篇:二元一次方程组练习

二元一次方程组练习

z55x2y32xz0xy1

1、下列方程组中是二元一次方程组的是()A、B、1C、 1D、xy3xyy37xy25x232、若x1y2是关于x、y的二元一次方程ax3y1的解,则a的值________

3、下列四组值中不是二元一次方程x2y..1解的是()A、x1 C、x1 x0B、1y1y0y2D、x1 y1

4、由方程组xm6,可得出x与y3my的关系式是_____________

5、方程2x-y=1和2x+y=7的公共解是________

6、已知不等式组2xa<1

x2b>3的解集是-1

xy的值。

7、解二元一次方程组: 4x-3y11x3y5(1)(2)2xy133y82x

①(3)x3y8(4)解方程组3x6y10,并求②5x3y46x3y8

3x-ym的解是x1

9、已知x2是二元一次方程组mxny8的解

10、已知-2xm-1y3与

8、关于x的方程组y1nxmy1xmyny112xnymn是同类项 +

则|m-n|的值是____ _则2m-n的算术平方根为________那么(n-m)=_______.

11、中宁中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元.购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?

(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个.要求购买足球和篮球的总费用不超过5 720元,这所中学最多可以购买多少个篮球?

2012

第三篇:第七章二元一次方程组教案及练习

第七章 二元一次方程组 一、二元一次方程组的有关概念

1.二元一次方程的定义:都含有两个未知数,并且含未知数项的次数都是1,像这样的整式方程,叫做二元一次方程。一般形式为:ax+by=c(a、b、c为常数,且a、b均不为0)例如:方程7y-3x=

4、-3a+3=4-7b、2m+3n=0、1-s+t=2s等都是二元一次方程。而6x2=-2y-

6、4x+8y=-6z、2=n等都不是二元一次方程。m2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

2x3y57a3b3mn2st2例如:、、、等都是二元xy8a2b1mn13st11一次方程组。

12x3y57a3a3n2而、、m等都不是二元一次方程组。

xz8a2a1mn1注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。如:2x5s

2、也是二元一次方程组。y8t113.二元一次方程和二元一次方程组的解

(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。

(2)二元一次方程组的解:使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。(即是两个方程的公共解)

注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“”

把方程中两个未知数的值连接起来写。

xa二元方程解的写法的标准形式是:,(其中a、b为常数)

yb二、二元一次方程组的解法

1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。

2.二元一次方程组的基本解法(1)代入消元法(代入法)

定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代入法。步骤:

①选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。

②把③代人另一个方程,得一元一次方程。③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。

练习:解下列方程:

1、x3y2xy54x3y17

2、

3、

x3y83x2y10y75x(2)加减消元法(加减法)

定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。

步骤:

①把两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同。

②把未知数的绝对值相同的两个方程相加或相减,得一元一次方程。③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数值,从而得到方程组的解。注意:正确选用两种基本解二元一次方程组

(1)若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”。

(2)用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。

练习:

1、4x3y55x2y72x4y6

2、

3、

4x6y143x2y13x2y17三、二元一次方程组的应用

(一)重点:找等量关系列方程组

难点:审题找准等量关系,巧妙设未知量

运用方程组解实际问题的一般过程:

(1)审题:分析题意,找出题中的数量及其关系;(2)设元:选择两个适当的未知数用字母表示;(3)列方程组:根据相等关系列出方程组;

(4)解方程:求出未知数的值;

(5)检验:检验求出的值是否满足所列方程组中的每一个方程,而

且要检验所得的解答是否符合实际问题的要求。

(二)列二元一次方程组解应用题的常见题型:

1、和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量

2、产品配套问题:加工总量成比例

3、市场经济问题

(1)商品利润=商品售价-商品成本价(2)商品利润率=

商品利润×100%

商品成本价(3)商品销售额=商品销售价×商品销售量

(4)商品的销售利润=(销售价-成本价)×销售量

(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.

4、行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间

(1)相遇问题:快行距+慢行距=原距

(2)追及问题:快行距-慢行距=原距

(3)航行问题:

顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度

抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.

5、工程问题:工作量=工作效率×工作时间

一般分为两种,一种是一般的工程问题;另一种是工作总量是单位一的工程问题

6、增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量

7、银行利率问题:

免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率

8、数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示。一般可设个位数字为a,十位数字为b,百位数字为c. 十位数可表示为10b+a,百位数可表示为100c+10b+a。然后抓住数字间或新数、原数之间的关系找等量关系列方程。

9、几何问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变。必须掌握几何图形的性质、周长、面积等计算公式。

10、年龄问题:抓住人与人的岁数是同时增长的。

11、溶液问题:酒精浓度=(纯酒精量÷酒精溶液质量)×100%

三、【范例讲解】

(和差倍问题)学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?

(配套问题)某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?

(行程问题)

1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。二人的平均速度各是多少?

(工程问题)

1、现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?

(增长率问题)某人用24000元买进甲,乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,试问某人买的甲,乙两股票各是多少元 ?

(利润问题)一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?

(数字问题)一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数?

(年龄问题)今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄

(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?

(分配调运问题)

1、某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?

2、一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司5辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?

(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多少?

(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间? 四、三元一次方程组及其解法

1.三元一次方程的定义:都含有三个未知数,并且含未知数项的次数都是1,像这样的整式方程,叫做三元一次方程。

2.三元一次方程组的定义:把三个三元一次方程合在一起,就组成

xyz6了一个三元一次方程组。例如:3xy2z12

xy3z4

3、三元一次方程组的解法:

对于三元一次方程组,同样可以先消去一个(或两个)未知数,转化为两元一次方程组(或一元一次方程组)求解。

xyz03xy6练习:(1)、2xy3z2(2)、x2yz5

x4y2z505x3y2y4(3)、某初级中学共有学生673人,已知八年级学生人数比其他两个年级人数的平均数多25人,九年级学生人数比七年级学生人数少8人,3个年级各有多少人?

五、小结

1.解一次方程组两种基本方法,是代入法和加减法,解题中常用加减法,在某个未知数的系数为一

1、l时,可用代入法。解一次方程组时,应根据情况灵活运用两种方法。

2.列一次方程组解应用题,关键是寻找相等关系,设几个未知数,就要找出几个相等关系,并把这些相等关系转化为方程组。

第四篇:二元一次方程组教案

二元一次方程组教案1

学习目标 :会运用代入消元法解二元一次方程组.

学习重难点:

1、会用代入法解二元一次方程组。

2、灵活运用代入法的技巧.

学习过程:

一、基本概念

1、二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程。我们可以先求出一个未知数,然后再求另一个未知数,。这种将未知数的个数由多化少、逐一解决的思想,叫做____________。

2、把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做________,简称_____。

3、代入消元法的步骤:

二、自学、合作、探究

1、将方程5x-6y=12变形:若用y的式子表示x,则x=______,当y=-2时,x=_______;若用含x的.式子表示y,则y=______,当x=0时,y=________ 。

2、在方程2x+6y-5=0中,当3y=-4时,2x= ____________。

3、若 的解,则a=______,b=_______。

4、若方程y=1-x的解也是方程3x+2y=5的解,则x=____,y=____。

5、用代人法解方程组 ①②,把____代人____,可以消去未知数______。

6、已知方程组 的解也是方程组 的解,则a=_______,b=________ ,3a+2b=___________。

7、已知x=1和x=2都满足关于x的方程x2+px+q=0,则p=_____,q=________ 。

8、当k=______时,方程组 的解中x与y的值相等。

9、用代入法解下列方程组:

⑴ ⑵ ⑶

二、训练

1、方程组 的解是( )

A. B. C. D.

2、已知二元一次方程3x+4y=6,当x、y互为相反数时,x=_____,y=______;当x、y相等时,x=______,y= _______ 。

3、若2ay+5b3x与-4a2xb2-4y是同类项,则a=______,b=_______。

4、对于关于x、y的方程y=kx+b,k比b大1,且当x= 时,y= ,则k、b的值分别是( )

A. B.2,1 C.-2,1 D.-1,0

5、用代入法解下列方程组

⑴ ⑵

6、如果(5a-7b+3)2+ =0,求a与b的值。

7、已知2x2m-3n-7-3ym+3n+6=8是关于x,y的二元一次方程,求n2m

8、若方程组 与 有公共的解,求a,b.

二元一次方程组教案2

教学目标

1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;

2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.

教学难点弄懂二元一次方程组解的含义。

知识重点二元一次方程、二元一次方程组及其解的含义。

教学过程(师生活动)

设计理念

创设情境

导入课题幻灯:古老的“鸡兔同笼问题”

“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”

师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?

学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.

方案一:算术方法

把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,

进而鸡有35-12=23只.

或类似的也可以先求鸡的数量.

35×4-94=46,46÷2=23

方案二:列一元一次方程解

设有x只鸡,则有(35-x)只兔.根据题意,得

2x十4(35-x)=94.

(解方程略)

教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情

能用方案本来解的学生算术功底比较好,应给予高度赞赏.

方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。

分析问题(一)讨论二元一次方程、二元一次方程组的概念

师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)

方案三:设有x只鸡,y只兔,依题意得

x+y=35,①

2x+4y=94.②

针对学生列出的这两个方程,提出如下问题:

(1)、你能给这两个方程起个名字吗?

(2)为什么叫二元一次方程呢?

(3)什么样的方程叫二元一次方程呢?

结合学生的`回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.

师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?

定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.

(二)讨论二元一次方程、二元一次方程组的解的概念

探究活动:满足x+y=35的值有哪些?请填入表中:

教师启发:

(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?

(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?

(3)它与一元一次方程的解有什么区别?

定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为

师:那么什么是二元一次方程组的解呢?

学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.

定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.

比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做

的解记为:

注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.

议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?

引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念

通过探究活动得出结论:

1、二元一次方程的解是成对出现的;2、二元一次方程的解有无

数多个.这与一元一次方程有显

著的区别.

通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.

巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是

ABCD

解法分析:

将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.

变式:其中是二元一次方程组解是()

解法分析:

在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.

例2(教材102页练习)

解答过程略

本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.

目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概

小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.

本节课学习了哪些内容?你有哪些收获?

(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。

布置作业1、必做题:教科书102页习题8.1第1、2题.

2、选做题:教科书102页习题8.1第3题.

3、备选题:

(1)根据下列语句,列出二元一次方程:

①甲数的一半与乙数的的和为11

②甲数和乙数的2倍的差为17

(2)方程x+2y=7在自然数范围内的解()

A有无数个B有一个C有两个D有三个

(3)若mx+y=1是关于x,y的二元一次方程,那么m

的值应是()

A.m≠OB.m=0C.m是正有理数D.m是负有理数

(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?

不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.

本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。

二元一次方程组教案3

教学目标

知识与技能

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

过程与方法

能根据方程组的特点选择合适的方法解方程组;并能把相应问题转化为解方程组

情感、态度与价值观

培养学生分析问题,解决问题的能力,体验学习数学的快乐。

重点:

掌握二元一次方程和二元一次方程组及它们的解的概念,会用消元法解方程组。

难点:

选择合适的方法解方程组;并能把相应问题转化为解方程组。

教学手段

多媒体,小组评比。

教学过程

一、知识梳理

以小组为单位讨论二元一次方程组已经学了哪些知识?

1、什么是二元一次方程?什么是二元一次方程的解?

2、什么是二元一次方程组?什么是二元一次方程组的`解?

3、解二元一次方程组的基本思想是什么?消元的方法有哪些?

设计意图:知识回顾,掌握知识要点,为顺利完成练习打下基础

二、基础训练

教学手段与方法:每小组必答题,答对为小组的一分,调动学习的积极性。

设计意图:

基础知识达标训练。

教学手段与方法:

毎小组选代表讲解为小组加分,充分调动学生的积极性。学生讲解不到位的老师补充。

设计意图:

对二元一次方程组解法的灵活应用。

二元一次方程组教案4

一 内容和内容解析

1.内容

二元一次方程, 二元一次方程组概念

2.内容解析

二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.

本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.

本节课的教学重点是:二元一次方程, 二元一次方程组的概念

二、目标和目标解析

1.教学目标

(1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.

(2)理解解二元一次方程, 二元一次方程组的解的概念.

2. 教学目标解析

(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.

(2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.

三、教学问题诊断分断

1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路

2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.

本节教学难点:

1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.

2.二元一次方程组的解的意义

四、教学过程设计

1.创设情境,提出问题

问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?

师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.

教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的`方程叫做二元一次方程。

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.

问题2:对比两个方程,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场

数,它们必须同时满足这两个方程,这样,连在一起写成

就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。

设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。

问题3 : 探究

满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中

x

(3) 当 =12时,x的值

师生活动:小组讨论,然后每组各派一名代表上黑板完成.

设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.

3加深认识,巩固提高

练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。

师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。

设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,

4归纳总结

师生活动:共同回顾本节课的学习过程,并回答以下问题

1.二元一次方程, 二元一次方程组的概念

2.二元一次方程, 二元一次方程组的解的概念.

3.在探究的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

5. 布置作业

教科书第90页第3,4题

五、目标检测设计

1.填表,使上下每对x,的值是方程3x+=5的解

x

2.选择题

二元一次方程组的解为( )

A. B. C. D.

设计意图:考查学生二元一次方程组的解的掌握情况.

二元一次方程组教案5

一、内容和内容解析

1.内容

代入消元法解二元一次方程组

2.内容解析

二元一次方程组是解决含有两个提供运算未知数 的问题的有力工具,也是解决后续一些数学问题的基础。其解法将为解决这些问题的工具。如用待定系数法求一次函数解析式,

在平面直角坐标系中求两直线交点坐标等.

解二元一次方程组就是要把二元化为一元。而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。化归思想在本节中有很好的体现。

本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.

二、目标和目标解析

1.教学目标

(1)会用代入消元法解一些简单的二元一次方程组

(2)理解解二元一次方程组的思路是消元,体会化归思想

2.教学目标解析

(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,

(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想

三、教学问题诊断分析

1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向 一元一次方程转化的思路

2.解二元一次方程组的'步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。

本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。

四、教学过程设计

1.创设情境,提出问题

问题1

篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?

师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16

x=6,则胜6场,负4场

教师追问:你能根据问题中的等量关系列出二元一次方程组吗?

师生活动:学生回答:能.设胜x场,负y场.根据题意,得

我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?

这节课我们就来探究如何解二元一次方程组.

设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.

问题2 对比方程和方程组,你能发现它们之间的关系吗?

师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。

师生活动:根据上面分析,你们会解这个方程组了吗?

学生回答:会.

由①,得y=10-x ③

把③代入②,得2x+(10-x)=16 x=6

设计意图:共同探究,体会消元的过程.

问题3 教师追问:你能把③代入①吗?试一试?

师生活动:学生回答:不能,通过尝试,x抵消了.

设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。让学生实际操作,得到体验,更好地认识这一点.

教师追问:你能求y的值吗?

师生活动:学生回答:把x=6代入③得y=4

教师追问:还能代入别的方程吗?

学生回答:能,但是没有代入③简便

教师追问:你能写出这个方程组的解,并给出问题的答案吗?

学生回答:x=6,y=4,这个队胜6场,负4场

设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。

师生活动:先让学生独立思考,再追问.在这种解法中,哪一步最关键?为什么?

学生回答:代入这一步

教师总结:这种方法叫代入消元法。

教师追问:你能先消x吗?

学生纷纷动手完成。

设计意图:让学生尝试不同的代入消元法,为后面学习选择简单的代入方法做铺垫.

2. 应用新知,拓展思维

例 用代入法解二元一次方程组

师生活动,把学生分两组,一组先消x, 一组先消y,然后每组各派一名代表上黑板完成。

设计意图:借助本题,充分发挥学生的合作探究精神,通过比较,让学生自主认识代入消元法,并学会优选解法.

3.加深认识,巩固提高

练习用代入法解二元一次方程组

设计意图:提醒并指导学生要先分析方程组的结构特征,学会优选解法。在练习的基础上熟练用代入消元法解二元一次方程组.

4.归纳总结,知识升华

师生活动,共同回顾本节课的学习过程,并回答以下问题

1. 代入消元法解二元一次方程组有哪些步骤?

2. 解二元一次方程组的基本思路是什么?

3.在探究解法的过程中用到了哪些思想方法?

4.你还有哪些收获?

设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.

5. 布置作业

教科书第93页第2题

五、目标检测设计

用代入法解下列二元一次方程组

设计意图:考查学生对代入法解二元一次方程组的掌握情况.

二元一次方程组教案6

知识要点

1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~

2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;

3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组

4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的`解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)

5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组

6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)

(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解

(2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)

一、例题精讲

分别用代入法和加减法解方程组

解:代入法:由方程②得:③

将方程③代入方程①得:

解得x=2

将x=2代入方程②得:4-3y=1

解得y=1

所以方程组的解为

加减法:

例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?

分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同的过程列两个方程,组成方程组

解:设平路长为x公里,坡路长为y公里

依题意列方程组得:

解这个方程组得:

经检验,符合题意

x+y=9

答:夏令营到学校有9公里二、课堂小结:

回顾本章内容,总结二元一次方程组的解法和应用。

三、作业布置:

P25A组习题

二元一次方程组教案7

教学目标

1.使学生会用加减法解二元一次方程组。

2.学生通过解决问题,了解代入法与加减法的共性及个性。

重点:探寻用加减法解二元一次的方程组的进程。

难点:消元转化的过程

教学方法:讲练结合、探索交流课型新授课教具投影仪

教师活动:学生活动

情景设置:

小明买了两份水果,一份是3kg苹果、2kg香蕉,共用去13.2元;另一份是2kg苹果、5kg香蕉,共用去19.8元。设苹果x元/kg,香蕉y元/kg.列出方程。

新课讲解:

列出方程组

1.解方程组

分析:关键的出方程〈1〉中的2y与方程〈2〉中的-2y互为相反数。想象出如果相加两个方程,会是什么结果?

板演:

解:〈1〉+〈2〉得:

4x=6

x=

把x= 代入〈1〉得

+2y=1

解出这个方程,得

y=

所以原方程组的解是

2.解方程组

通过议一议,让学生都有感觉消去含x或y的.项都可以,但哪个更简便?

解:〈1〉 3,得

15x-6y=12 〈3〉

〈2〉 2,得

4x-6y=-10 〈4〉

〈3〉-〈4〉,得

11x=22

x=2

将x=2代入〈1〉,得

5 2-2y=4

y=3

所以原方程组的解是

加减消元法:把方程组的两个防城(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程。

练一练:

解方程组

小结:

加减消元法关键是如何消元,化二元为一元。

先观察后确定消元。

教学素材:

A组题:解下列方程组:

(1)

(2)

(3)

(4)

(5)

B组题:运用转化的思想方法,你能解下面的三元一次方程组吗?

(1)

(2)

学生读题,议一议

学生想一想,如感到困难则看道简单题。

由学生观察,如何求出x,y的值,学生再讨论。

试一试。学生口述。

老师板演

得到一元一次方程

学生再观察,议一议

①消去哪个未知数

②怎样消去?

P112 1(1)(2)(3)(4)

作业习题11.3 P112 1(3)(4) 3 , 4

二元一次方程组教案8

教学目标:

1.会用加减消元法解二元一次方程组.

2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.

3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的'转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.

教学重点:

加减消元法的理解与掌握

教学难点:

加减消元法的灵活运用

教学方法:

引导探索法,学生讨论交流

教学过程:

一、情境创设

买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?

设苹果汁、橙汁单价为x元,y元.

我们可以列出方程3x+2y=23

5x+2y=33

问:如何解这个方程组?

二、探索活动

活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?

2、这些方法与代入消元法有何异同?

3、这个方程组有何特点?

解法一:3x+2y=23①

5x+2y=33②

由①式得③

把③式代入②式

33

解这个方程得:y=4

把y=4代入③式

所以原方程组的解是x=5

y=4

解法二:3x+2y=23①

5x+2y=33②

由①—②式:

3x+2y-(5x+2y)=23-33

3x-5x=-10

解这个方程得:x=5

把x=5代入①式,

3×5+2y=23

解这个方程得y=4

所以原方程组的解是x=5

y=4

把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法.

三、例题教学:

例1.解方程组x+2y=1①

3x-2y=5②

解:①+②得,4x=6

将代入①,得

解这个方程得:

所以原方程组的解是

巩固练习(一):练一练1.(1)

例2.解方程组5x-2y=4①

2x-3y=-5②

解:①×3,得

15x-6y=12③

②×3,得

4x-6y=-10④

③—④,得:

11x=22

解这个方程得x=2

将x=2代入①,得

5×2-2y=4

解这个方程得:y=3

所以原方程组的解是x=2

y=3

巩固练习(二):练一练1.(2)(3)(4)2.

四、思维拓展

解方程组:

五、小结:

1、掌握加减消元法解二元一次方程组

2、灵活选用代入消元法和加减消元法解二元一次方程组

六、作业

习题10.31.(3)(4)2.

二元一次方程组教案9

教学目标

1.使学生会用代入消元法解二元一次方程组;

2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

教学重点和难点

重点:用代入法解二元一次方程组.

难点:代入消元法的基本思想.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.谁能造一个二元一次方程组?为什么你造的方程组是二元一次方程组?

2.谁能知道上述方程组(指学生提出的方程组)的解是什么?什么叫二元一次方程组的解?

3.上节课我们提出了鸡兔同笼问题:(投影)一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?设农民有x只鸡,y只兔,则得到二元一次方程组

对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得2x+4(50-x)= 140从而可解得,x=30,50-x=20,使问题得解.

问题:从上面一元一次方程解法过程中,你能得出二元一次方程组串问题,进一步引导学生找出它的解法) (1)在一元一次方程解法中,列方程时所用的等量关系是什么?(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

(4)能否由方程组中的方程②求解该问题呢?

(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?(以上问题,要求学生独立思考,想出消元的方法)结合学生的回答,教师作出讲解.

由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

将x=30代入方程③,得y=20.

即鸡有30只,兔有20只.

本节课,我们来学习二元一次方程组的解法.

二、讲授新课例1解方程组

分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程②中的y就可用方程①中的表示y的代数式来代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的.每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:1.方程①代入哪一个方程?其目的是什么?2.为什么能代入?

3.只求出一个未知数的值,方程组解完了吗?

4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.例2解方程组

分析:例1是用y=1-x直接代入②的.例2的两个方程都不具备这样的条件(即用含有一个未知数的代数式表示另一个未知数),所以不能直接代入.为此,我们需要想办法创造条件,把一个方程变形为用含x的代数式表示y(或含y的代数式表示x).那么选用哪个方程变形较简便呢?通过观察,发现方程②中x的系数为1,因此,可先将方程②变形,用含有y的代数式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(问:能否代入②中?)

2(8-3y)+5y=-21,-y=-37,所以y=37.

(问:本题解完了吗?把y=37代入哪个方程求x较简单?)把y=37代入③,得x= 8-3×37,所以x=-103.

(本题可由一名学生口述,教师板书完成)

三、课堂练习(投影)用代入法解下列方程组:

四、师生共同小结

在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

五、作业

用代入法解下列方程组:

5.x+3y=3x+2y=7.

二元一次方程组教案10

教学目标知识技能

会根据行程问题、百分比问题情境及条件,列出方程组,解行程问题及百分比问题;2.使学生掌握运用方程组解决实际问题的一般步骤.

数学思考

让学生经历和体验列方程组解决实际问题的过程,进一步体会方程组是刻画现实世界的有效数学模型.

问题解决

通过列方程组解应用题,培养学生的数学应用能力,增强列方程解决实际问题的能力,进一步提高学生解二元一次方程组的技能.

情感态度

进一步丰富学生学习数学的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.

教学重点

列二元一次方程组解行程问题和百分比问题.

教学难点

根据题意找出等量关系,列出方程.

授课类型新授课课时

教具多媒体课件

(续表)

教学活动

教学步骤师生活动设计意图

回顾问题1:解二元一次方程组的基本思想是________,解法有________.问题2:七年级上册我们学习了列一元一次方程解应用题,那么你还记得它的一般步骤吗?通过复习旧知,为本节课的学习做好铺垫,扫除知识障碍.

活动一:创设情境导入新课

【课堂引入】图1-3-3《孙子算经》大约产生于一千五百年前,现在传本的《孙子算经》共三卷,其中卷下第31题,可谓是后世“鸡兔同笼”题的始祖,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问题1:“上有三十五头”的意思是什么?“下有九十四足”呢?问题2:你能解决这个有趣的.问题吗?以数学历史故事为背景,激发学生的爱国热情,感受数学在生活中的应用,吸引学生的注意力,激发学生的学习兴趣,同时为本课的学习做好铺垫.

活动二:实践探究交流新知

【探究1】鸡免同笼问题①一元一次方程解法(实物投影).解:设有鸡x只,则有兔(35-x)只.根据题意,得2x+4(35-x)=94.2x+140-4x=94.-2x=-46.x=23.35-x=12.答:有鸡23只,兔12只.②二元一次方程组解法(实物投影).解:设有鸡x只,兔y只.根据题意,得①×2,得2x+2y=70,③②-③,得2y=24,y=12.把y=12代入①,得x=23.答:有鸡23只,兔12只.你能比较两种解法的优劣吗?

【探究2】行程问题情境:小琴去县城要经过外祖母家,第一天下午她从家走到外祖母家,第二天上午,她从外祖母家出发,匀速前进,走了2小时和5小时后,离她自己家的距离分别为13千米、25千米.你能算出她的速度吗?能算出她家与外祖母家相距多远吗?问题1:你能画线段表示本题的数量关系吗?问题2:填空:(用含s,v的代数式表示)设小琴的速度是v千米/时,她家与外祖母家相距s千米,第二天她走2小时的路程是________千米,此时她离家距离是________千米;她走5小时的路程是________千米,此时她离家的距离是________千米.

【探究3】百分比问题情境:两块合金,一块含金95%,另一块含金80%,将它们与2克纯金熔合得到含金90.6%的新合金25克,计算原来两块合金的重量.问题1:设原来含金95%的合金为x克,含金80%的合金为y克.熔合后新合金中的含金量为25×90.6%,熔合前的总含金量为95%x+80%y+2,因此可以列出方程95%x+80%y+2=25×90.6%.问题2:两块合金的重量,加上2克纯金的重量等于新合金的重量,据此你能列出什么样的方程呢?引导学生体会两种解法的优点和不足,为学生建立方程组模型做铺垫.对于二元一次方程组的解法,如果学生学习存在困难,可以借助微视频讲解,或者教师设计表格,帮助学生分析等量关系.

活动三:开放训练体现应用

【应用举例】例1甲、乙两人都从A地到B地,甲步行,乙骑自行车,如果甲先走6千米乙再动身,则乙走0.75小时后恰好与甲同时到达B地;如果甲先走1小时,那么乙用0.5小时可追上甲,求两人的速度及AB两地的距离.变式训练1.两码头相距280千米,一船顺流航行需14小时,逆流航行需20小时,求船在静水中的速度和水流的速度.2.从小华家到姥姥家有一段上坡路和一段下坡路.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3 km,下坡每小时行5 km,她到姥姥家需要行66分钟,从姥姥家回来时需要行78分钟才能到家.那么,从小华家到姥姥家上坡路和下坡路各有多少千米,姥姥家离小华家有多远?例2革命老区百色某芒果种植基地,去年结余500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元.巩固用列二元一次方程组解应用题的思想,掌握列二元一次方程组解应用题的方法和步骤.

【拓展提升】例3某铁路桥长1000 m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1 min,整列火车完全在桥上的时间共40 s.求火车的速度和长度.例4从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米.那么从甲地到乙地需54分,从乙地到甲地需42分,从甲地到乙地全程是多少千米?通过练习,使学生熟练掌握解决问题的方法,提升解决问题的能力.

活动四:课堂总结反思

【当堂训练】1.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒钟,那么甲跑4秒钟就追上乙.若设甲、乙每秒钟分别跑x米,y米,则列出方程组应为( )A. B.C. D.2.一轮船顺流航行的速度为a千米/时,逆流航行的速度为b千米/时,那么船在静水中的速度为多少千米/时( )A.a+b B.(a-b) C.(a+b) D.a-b3.甲、乙两人从相距36千米的两地相向而行,如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇.设甲每小时走x千米,乙每小时走y千米,可列出方程组________________.通过设置当堂训练,进一步巩固所学新知,同时检测学习效果,做到堂堂清.框架图式总结,更容易形成知识网络.

【教学反思】①[授课流程反思]通过古代的“鸡兔同笼”问题,进行列二元一次方程组解决实际问题的训练,这样,一方面在列方程组的建模过程中,强化了方程思想,培养了学生列方程(组)解决实际问题的意识和应用能力.另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.

②[讲授效果反思]通过师生互动,让学生体会数学的实用性,掌握列方程组解应用题的思考方法及解题步骤.

③[师生互动反思]在建立方程思想的过程中采用了循序渐进的思路,由算术方法到一元一次方程再到二元一次方程组,遵循了学生的思维梯度,逐步建立起学生用二元一次方程组解应用题的思想,充分感受它的优点和思维的简化.

④[习题反思]好题题号__________________________________________错题题号__________________________________________ 反思,更进一步提升.

活动四:课堂总结反思

二元一次方程组教案11

知识与技能

(1) 初步理解二元一次方程和一次函数的关系;

(2) 掌握二元一 次方程组和对应的两条直线之间的 关系;

(3) 掌握二元一次方程组的图像解法.

过程与方法

(1) 教材以“问题串”的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;

(2) 通过“做一做”引入例1,进一步发展学生数形结合的意识和能力.

情感与态度

(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神.

(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力.

教学重点

(1)二元一次方程和一次函数的关系;

(2)二元一次方程组和对应的两条直线的关系.

教学难点

数形结合和数学转化的思想意识.

教学准备

教具:多媒体课件、三角板.

学具:铅笔、直尺、练习本、坐标纸.

教学过程

第一环节: 设置问题情境,启发引导(5分钟,学生回答问题回顾知识)

内容:

1.方程x+y=5的解有多少个? 是这个方程的解吗?

2.点(0,5),(5,0),(2,3)在一次函数y= 的'图像上吗?

3.在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?

4.以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?

由此得到本节课的第一个知识点:

二元一次方程和一次函数的图像有如下关系:

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上的点的坐标都适合相应的二元一次方程 .

第二环节 自主探索方程组的解与图像之间的关系(10分钟,教师引导学 生解决)

内容:

1.解方程组

2.上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数 的图像.

3.方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;

(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;

(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解.

(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种.

注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组.

第三环节 典型例题 (10分钟,学生独立解决)

探究方程与函数的相互转化

内容:

例1 用作图像的方法解方程组

例2 如图,直线 与 的交点坐标是 .

第四环节 反馈练习(10分钟,学生解决全班交流)

内容:

1.已知一次函数 与 的图像的交点为 ,则 .

2.已知一次函数 与 的图像都经过点A(—2, 0),且与 轴分别交于B,C两点,则 的面积为.

(A)4 (B)5 (C)6 (D)7

3.求两条直线 与 和 轴所围成的三角形面积.

4.如图,两条直线 与 的交点坐标可以看作哪个方程组的解?

第五环节 课堂小结(5分钟,师生共同总结)

内容:以“问题串”的形式,要求学生自主总结有关知识、方法:

1.二元一次方程和一 次函数的图像的关系;

(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;

(2) 一次函数图像上 的点的坐标都适合相应的二元一次方程.

2.方程组和对应的两条直线的关系:

(1) 方程组的解是对应的两条直线的交点坐标;

(2) 两条直线的交 点坐标是对应的方程组的解;

3.解二元一次 方程组的方法有3种:

(1)代入消元法;

(2)加减消元法;

(3)图像法. 要强调的是由于作图的不准确性,由图像法求得的解是近似解.

第六环节 作业布置

习题7.7A组(优等生)1、2、3 B组(中等生)1、2 C组1、2

二元一次方程组教案12

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的'速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2.填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米20xx年-20xx学年七年级数学下册全册教案(人教版)教案。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2.P38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

二元一次方程组教案13

教学目标:

1、会用代入法解二元一次方程组

2、会阐述用代入法解二元一次方程组的基本思路——通过“代入”达到“消元”的目的,从而把解二元一次方程组转化为解一元一次方程。

此外,在用代入法解二元一次方程组的知识发生过程中,让学生从中体会“化未知为已知”的重要的数学思想方法。

引导性材料:

本节课,我们以上节课讨论的求甲、乙骑自行车速度的问题为例,探求二元一次方程组的解法。前面我们根据问题“甲、乙骑自行车从相距60千米的两地相向而行,经过两小时相遇。已知乙的速度是甲的速度的2倍,求甲、乙两人的速度。”设甲的速度为X千米/小时,由题意可得一元一次方程2(X+2X)=60;设甲的速度为X千米/小时,乙的速度为Y千米/小时,由题意可得二元一次方程组 2(X+Y)=60

Y=2X 观察

2(X+2X)=60与 2(X+Y)=60 ①

Y=2X ② 有没有内在联系?有什么内在联系?

(通过较短时间的观察,学生通常都能说出上面的二元一次方程组与一元一次方程的内在联系——把方程①中的“Y”用“2X”去替换就可得到一元一次方程。)

知识产生和发展过程的教学设计

问题1:从上面的二元一次方程组与一元一次方程的内在联系的研究中,我们可以得到什么启发?把方程①中的“Y”用“2X”去替换,就是把方程②代入方程①,于是我们就把一个新问题(解二元一次方程组)转化为熟悉的.问题(解一元一次方程)。

解方程组 2(X+Y)=60 ①

Y=2X ②

解:把②代入①得:

2(X+2X)=60,

6X=60,

X=10

把X=10代入②,得

Y=20

因此: X=10

Y=20

问题2:你认为解方程组 2(X+Y)=60 ①

Y=2X ② 的关键是什么?那么解方程组

X=2Y+1

2X—3Y=4 的关键是什么?求出这个方程组的解。

上面两个二元一次方程组求解的基本思路是:通过“代入”,达到消去一个未知数(即消元)的目的,从而把解二元一次方程组转化为解一元一次方程,这种解二元一次方程组的方法叫“代入消元法”,简称“代入法”。

问题3:对于方程组 2X+5Y=-21 ①

X+3Y=8 ② 能否像上述两个二元一次方程组一样,把方程组中的一个方程直接代入另一个方程从而消去一个未知数呢?

(说明:从学生熟悉的列一元一次方程求解两个未知数的问题入手来研究二元一次方程组的解法,有利于学生建立新旧知识的联系和培养良好的学习习惯,使学生逐步学会把一个还不会解决的问题转化为一个已经会解决的问题的思想方法,对后续的解三无一次方程组、一元二次方程、分式方程等,学生就有了求解的策略。)

例题解析

例:用代入法将下列解二元一次方程组转化为解一元一次方程:

(1)X=1-Y ①

3X+2Y=5 ②

将①代入②(消去X)得:

3(1-Y)+2Y=5

(2)5X+2Y-25.2=0 ①

3X-5=Y ②

将②代入①(消去Y)得:

5X+2(3X-5)-25.2=0

(3)2X+Y=5 ①

3X+4Y=2 ②

由①得Y=5-2X,将Y=5-2X代入②消去Y得:

3X+4(5-2X)=2

(4)2S-T=3 ①

3S+2T=8 ②

由①得T=2S-3,将T=2S-3代入②消去T得:

3S+2(2S-3)=8

课内练习:

解下列方程组。

(1)2X+5Y=-21 (2)3X-Y=2

X+3Y=8 3X=11-2Y

小结:

1、用代入法解二元一次方程组的关键是“消元”,把新问题(解二元一次方程组)转化为旧知识(解一元一次方程)来解决。

2、用代入法解二元一次方程组,常常选用系数较简单的方程变形,这用利于正确、简捷的消元。

3、用代入法解二元一次方程组,实质是数学中常用的重要的“换元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替换,使方程②中只含有一个未知数Y。

课后作业:

教科书第14页练习题2(1)、(2)题,第15页习题5.2A组2(1)、(2)、(4)题。

二元一次方程组教案14

教学目标:

1. 认识二元一次方程和二元一次方程组.

2. 了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

教学重点:

理解二元一次方程组的解的意义.

教学难点:

求二元一次方程的正整数解.

教学过程:

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

思考:

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分.

这两个条件可以用方程

x+y=22

2x+y=40

表示.

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.

探究:

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.

x

y

上表中哪对x、y的值还满足方程②

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的.取值范围.

(2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值.

例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

例3 已知下列三对值:

x=-6 x=10 x=10

y=-9 y=-6 y=-1

(1) 哪几对数值使方程 x-y=6的左、右两边的值相等?

(2) 哪几对数值是方程组 的解?

例4 求二元一次方程3x+2y=19的正整数解.

课堂练习:

教科书第102页练习

习题8.1 1、2题

作业:

教科书第102页3、4、5题

二元一次方程组教案15

教学目标

1.会用加减法解一般地二元一次方程组。

2.进一步理解解方程组的消元思想,渗透转化思想。

3.增强克服困难的勇力,提高学习兴趣。

教学重点

把方程组变形后用加减法消元。

教学难点

根据方程组特点对方程组变形。

教学过程

一、复习引入

用加减消元法解方程组。

二、新课。

1.思考如何解方程组(用加减法)。

先观察方程组中每个方程x的系数,y的系数,是否有一个相等。或互为相反数?

能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。

学生解方程组。

2.例1.解方程组

思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?

学生讨论,小组合作解方程组。

提问:用加减消元法解方程组有哪些基本步骤?

三、练习。

1.P40练习题(3)、(5)、(6)。

2.分别用加减法,代入法解方程组。

四、小结。

解二元一次方程组的.加减法,代入法有何异同?

五、作业。

P33.习题2.2A组第2题(3)~(6)。

B组第1题。

选作:阅读信息时代小窗口,高斯消去法。

后记:

2.3二元一次方程组的应用(1)

第五篇:《二元一次方程组》说课稿

《二元一次方程组》说课稿1

一、内容分析

1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。

1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。

二、学习目标设计

知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解

能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。

情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。

重点 二元一次方程(组)及二元一次方程(组)的解的概念。

难点 理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。

三、课堂结构设计

动手实验,引导学生发现问题(课题)、尝试命名和定义

练习反馈

结合实验,引导学生设计问题并发现方程组

练习反馈

引导学生在小结巩固中更好的理解概念

分层练习,引导学生积极探索

回归实验,学生完善自己的设计

四、教学媒体设计

充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。

五、教学过程设计

5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。

实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)

相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。

(异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)

引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。

二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。

就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理

解虽有无数个解,但x和y是相互制约的,所以前面要加,x=1 这

y=19

一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。

这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。

最终用数学知识解释了实验的结论。

设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。

学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。

练习1:下列哪些是二元一次方程,哪些不是?

① ②

③ ④

学生回答,并紧扣定义说明理由。

设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。

请学生小结一元一次方程和二元一次方程的区别和联系。

练习2:写出二元一次方程 y-x=10 的一些解。

设计说明:在讲解解的问题中有三个关键点:1、二元一次方程的解有无数个;2、每一个解由x和y这一对相互制约的值组成;3、解的书写格式。并通过练习反馈掌握情况。

5.2结合实验,引导学生设计问题并发现方程组。

5.2.1二元一次方程组的定义

周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)

从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。

此时长y宽x需要同时满足x+y=20和y-x=10,如何在书写上体现“同时”呢?

x+y=20

前面加上,请学生给 y-x=10 命名。(二元一次方程组)并给出定义

像这样,把两个二元一次方程合在一起就组成了二元一次方程组。

设计说明:仍通过原来的实验,自然引出二元一次方程组。

练习3:下列方程组中是二元一次方程组的有

(1)(2)(3)(4)

学生分析前三个,对第(4)个展开讨论

把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一

定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)

练习4:判断下列方程组是否是二元一次方程组:

x=2 x+y=5

y=-1 2y-3z=1

设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。

5.2.2二元一次方程组的解

研究方程组 x+y=20 的解。

y-x=10

在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦,下课前告诉学生有快速求解的方法。

设计意图:激发学生的好奇心和探索欲望。

5.3学会小结,引导学生在小结巩固中更好的理解概念。

至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。

练习5:方程组 的解是()

(强调公共解)

练习6:写一个解为 的二元一次方程。

变: 写一个解为 的二元一次方程组。

练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。

设计说明:练习5 巩固二元一次方程组的解的定义;

练习6 锻炼学生逆向思维的能力;

练习7 由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。

5.4课后作业:

必做题:94页 练习、95页1、2。

选做题:95页 综合运用3、4;

探索解二元一次方程组的方法。

六、教学评价设计

考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。

《二元一次方程组》说课稿2

一、说教材

本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。

二、说教学目标

(知识与技能)

1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;

2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

(过程与方法)

学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答

(情感态度与价值观)

培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

三、说教学重、难点

(教学重点)以方程组为工具分析,解决含有多个未知数的实际问题

(教学难点)确定解题策略,比较估算与精确计算

四、说教法

教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。

教法设计意图

1.回顾练习

内容:

用适当的方法解方程组

(2)既是方程的解,又是方程的解是()

A.B.C.D.设计意图:巩固二元一次方程组的解法

2.自主探究

出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?

为了解决这个问题,请认真看P.105页的内容.

思考:判断李大叔的估计是否正确的方法有2种:

(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.

(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.

5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?

学生按照自学指导看书,教师巡视,确保人人学得紧张高效.

设计意图:引导学生独立思考,培养自主学习的能力

3.小组交流

组内成员讨论各自的探究成果,对不足和错误进行补充与更正

最终提炼出最佳方法.设计意图:培养合作学习的习惯

4.成果展示

各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.设计意图:培养分析与解决问题能力

5.疑难点拨

(1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组

(2)方法的多样——2种解法

设计意图:突破难点,打开思考路线,指导规范解题

6.课堂运用

实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.

捐款(元)

人数

设计意图:巩固解决实际问题的方法与步骤

7.小结发言

谈出本节课的收获与困惑

设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.五、说作业安排

作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)

设计意图:从不同层次有效的提高学生对知识的掌握程度

《二元一次方程组》说课稿3

一、教材分析

1.教材的地位与作用

二元一次方程组是新人教版七年级数学(下)第八章第一节的内容。在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用。本节内容主要学习和二元一次方程组有关的四个概念。本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的预备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用。

2.教学目标

[知识技能]

掌握二元一次方程、二元一次方程组及它们的解的概念,通过实例认识二元一次方程和二元一次方程组也是反映数量关系的重要数学模型。

[数学思考]

体会实际问题中二元一次方程组是反映现实世界多个量之间相等关系的一种有效的数学模型,能感受二元一次方程(组)的重要作用。

[解决问题]

通过对本节知识点的学习,提高分析问题、解决问题和逻辑思维能力。

[情感态度]

引导学生对情境问题的观察、思考,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

3.教学重点与难点

按照《课程标准》的要求,根据上述地位与作用的分析及教学目标,本节课中相关概念的掌握是教学重点。

通过学生亲身体验,理解二元一次方程(组)解的个数的确定。

二、学情分析

七年级学生思维活跃,好奇心强,希望平等交流研讨,厌烦空洞的说教。因此,在教学过程中,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,激发他们的兴趣。一方面通过学案与课件,使他们的注意力始终集中在课堂上;另一方面创造条件和机会,让学生自主练习,合作交流,培养学生学习的主动性、与人合作的精神,激发学生的兴趣和求知欲,感受成功的乐趣。

三、教法与学法

1.教法

数学课程标准明确指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。所以我在教学中不只传授知识,更要激发学生的创造思维,引导学生探究,发现结论的方法。正所谓“教是为了不教”。所以我采用引导发现法为主,情景问答法、讨论法、活动竞赛法、利用多媒体课件辅助教学等完成本节的教学,真正做到教师的主导地位。

2.学法

学生是学习的主体,所以本节教学中,引导学生自主探究、归纳总结,运用自主探索与合作交流开拓自己的创造思维。这样调动学生的积极性,激发学生兴趣,使学生由被动学习变为积极主动的探究,这也符合数学的直观性和形象性。

四、教学过程与课堂活动

为了达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为五个环节:

1。创设情境,引入概念

NBA篮球联赛情景再现,利用世界男篮亚裔球星林书豪激励学生相信自已能够创造奇迹的励志教育,感受数学来源于生活,调动学生顺利引入新课。

2。观察归纳,形成概念

概念的教学,不纠缠于其语言本身,而是通过类比整合形成新的概念。由于学生对一元一次方程概念已经很了解,我主要采用了类比的方法,弱化概念的教学,强化对概念的正确理解,通过学案与课件相结合的方式,以题组形式分层渐进式训练,让学生明晰概念,巩固概念,强化概念,提升能力。

3拓展延伸,深入概念

知识的掌握,能力的提升是一个不断循序上升的过程,而教学过程更是一个生动活沷,主动和富有个性的过程,让学生认真听讲、积极思考,动脑动口,自主探索,合作交流。

4.当堂检测,强化概念

通过课堂随机选题的形式答题,通过合作小组交流,全班展示交流,使学生互相学习、互相促进、互相竞争,将小组的认知成果转化为全班同学的共同认知成果,从而营造宽松、民主、竞争、快乐的学习氛围,让学生体验到学习的快乐,成功的喜悦,从而充分体现数学教学主要是学生数学活动教学的基本理念。

5.反思小结,回归概念

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,培养学生形成完整的知识体系,养成及时反思的习惯。

五、教后反思

美国国家研究委员会在《人人关心数学教育的未来》的报告中指出“没有一个人能教好数学,好的教师不是在教数学,而是在激发学生自已去学数学”。只有学生通过自已的思考建立对数学的理解力,才能真正的学好数学。本节课,我致力于让学生自已去发现数学,研究数学,加强数学思想、方法及科学研究方法的指导,引导学生不断从“学会数学”到“会学数学”,但教无止境,课堂仍然留有遗憾,在今后的教学中,我将从这样的三个方面加强对课堂的研究:

一是加强对学法研究、学情研究,让教学方式与内容更符合学生认知规律,更贴近学生实际;

二是重视学生课堂的学习感受,营造民主、开放、合作、竞争的学习氛围;;

三是提高教学机智、不断创新优化教学方法,科学、合理、灵活地处理课堂上生成的问题。

《二元一次方程组》说课稿4

各位评委、老师:大家好!

我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。

下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。

一、教材分析

教材的地位和作用

本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本思想----“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

2、教学目标

根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

(1)知识技能目标:1)会用代入法解二元一次方程组

2)初步体会解二元一次方程组的基本思想----消元

(2)能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

(3)情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

3、重点、难点

根据学生的认知特点,我确立了本节课的重难点。

重点:用代入消元法解二元一次方程组

难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

二、教学方法

我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

三、学法指导

我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

四、教学设计

1、根据以上分析,我设计了以下六个教学环节:

2、教学过程

下面我就每一个教学环节,具体介绍我对本节课的教学设想。

环节一:创设情境

活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分,负1场得1 分,我班篮球队为了取得好名次,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

学生活动:列方程或方程组解决问题

教师关注:学生是否能够多角度地考虑问题.设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

环节二、尝试发现

活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

活动三:小组展示

学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

活动四:再看转化、把握解题技巧

学生活动:观察转化过程中的技巧,并尝试总结。

设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

环节三、小组闯关

活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

学生活动:做练习题

教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误

设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

学生活动:独立完成本题。

设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

环节四、拓展升华

活动七:出示例题2.学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

环节五: 反思小结

活动八:我有哪些收获?

学生活动:学生归纳总结

教师关注:(1)学生是否养成归纳、整理、总结的好习惯;

(2)评价学生是否全面理解并掌握了本节课的知识。

环节六、布置作业

1、必做题:

P103 第2题 ⑵ ⑷, 第4题

2、选做题:

设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

最后我以著名数学家笛卡尔的一句话结束这节课。

五、板书设计

8.2二元一次方程组的解法

----代入消元法

1、二元一次方程组 一元一次方程

2、代入消元法的一般步骤:

3、思想方法:转化思想、消元思想、方程(组)思想.六、教学感想

在教学过程中,我始终:

坚持一个原则——教为主导,学为主体

坚守一个理念——先学后教,以学定教

贯穿一个思想——享受数学,快乐学习

以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!

我的说课到此结束,谢谢大家!

《二元一次方程组》说课稿5

各位老师:

下午好!今天我说课的内容是人教版初中数学七年级下册第八章第二节二元一次方程组的解法第二课时加减消元法。我主要从教材分析、学情分析、教法学法、教学环境及资源准备、教学过程、评价与反思六个方面向大家汇报我对这节课的认识和理解。

一、说教材分析

1、教材的地位和作用

二元一次方程组安排在学生已经学过整式和一元一次方程的知识之后,它是学习三元一次方程组的重要基础,同时也是以后学习函数、平面解析几何等知识以及物理、化学中的运算等不可缺少的工具。对于学生理解并掌握方程思想、转化思想、消元法等重要的数学思想方法有着重要的意义。本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。教材的编写目的是通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,体会代数的一些特点和优越性;理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础.2、教学目标

通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:

(一)知识与技能目标:

1、会用加减消元法解简单的二元一次方程组。

2、理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:

通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:

通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:

由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下

重点:用加减法解二元一次方程组。

难点: 灵活运用加减消元法的技巧,把二元转化为一元

二、学情分析

七年级学生在自学中,通常能掌握表面知识,如具体的一个问题的解题过程,但学生在数学解题能力,运算能力,思维能力等各方面参差不齐,这也导至在学习中,特别是在自学中有的动力不够,有的更是缺乏探索精神,而在总结归纳中又缺乏合作的学习态度。在自学中能说出是什么怎么样,但又还探索不出为什么有什么联系。

三、说教法与学法

教法:利用导学提纲自主互动学习,根据学情教师适时点拨、归纳、升华。

学法:本节课的教学我始终把学生作为学习的主人,不断激发他们的学习兴趣,引导学生在自主探究、合作交流、小组积分相结合的学习方式下获得成功的体验。

四、教学环境及资源准备

教学环境:多媒体教室

资源准备:导学提纲,多媒体课件制作。

《二元一次方程组》说课稿6

教学目标

知识与技能:

1培养学生利用二元一次方程组解决实际问题的能力

2培养 学生分析问题,归纳问题的能力

情感态度与价值 观

让学生体会到数学 在实际生活中的有用之处

让学生积极投入到数学学习中去。

重点:

1培养学生利用二元一次方程组解决实际问题的能力

2培养学生分析问题,归纳问题的能力

难点:

1培养学生利用二元一次方程 组解决实际问题的能力

2培养学生分析问题,归纳问题的能力

教学方法:讲练结合法

教具准备:幻灯片十张

预习提示

通过预习你能说出利用二元一次方程组解决实际问题的关键和基本步骤吗?

教学过程:试一试

探究一

养牛场原有30只大牛和15只小牛,一天约用饲料675千克,一月后又购进12只大牛和5只小牛,这时一天约用饲料940千克,饲养员李大叔估计每只大牛一天约需饲料18-20千克,每只小牛一天约需饲料7-8千克。你能通过计算检验他的估计?

分析:题中包含的基本等量关系式是 1——

2——

若设每只大牛每天约用饲料x千克,每只小牛每天约用饲料Y千克,根据等量关系可列方程组

解这个方程组可得

这就是说,每只大牛每天约用饲料——千克,每只小牛每天约用饲料——千克, 因此,饲养员李大叔对大牛的食量估计——

对小牛的食量估计——

检测题有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨.。求每辆大车与小车每次各运多少吨货物?买10支笔和15个笔记本需35元,买20支笔和40个笔记本需60元,问每只笔和每个笔记本各多少钱?

探究2

据统计资料,甲,乙两种 作物的单位面积产量之 比为1:1.5,现要把一块长200 米,宽100米的长方形土地分成两小块长方形土地分别种植这两种 作物,怎样划分这块土地,使甲,乙两种 作物的总产量之 比为3:4?﹙结果取整数﹚

分析:甲作物的总产量=甲作物的种植面积 单产量

乙作物的总产量=乙作物的种植面积 单产量

若设AE=x 米,BE= y米,则种植面积分别是——,——基本等 量关系——,——于是可得方程组{

解这个方程组可得{

过长方形土地长端约——米把这块土地分成两块,较大的一块种——,较小的一块种——

检测题用白铁皮作罐头 盒,每张铁皮可做盒身25个或盒底40个,一个盒身与两个盒底配成一套罐头 盒。现有36张铁皮怎样分配可使制成的盒身与盒底正好配套?

2现有10立方米木料 来制桌子,已知1立方米木料可制桌面15个或桌腿40个。一个桌面和4个桌腿配成一张桌子。怎样分配木料可使制 成的桌面与桌腿正好配套?

课堂小结

通过本节课的学习,我们学会了利用二元一次方程组解决实际问题,其关键是找准等量关系,列方程组。

作业

108页 4,9

《二元一次方程组》说课稿7

一、教学设计的理念

1.树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

2.通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

3.通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

二、教学内容的重组加工

1.学生分析

认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位,2.教材分析

本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

3.教学重点、难点分析

难点:已知一组解,如何构造二元一次方程组使解相同

重点:解二元一次方程组

4.教学目标

(1)知识与技能:进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组

(2)过程与方法:通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

(3)情感与态度:引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

5.教学方法分析

本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

三、教学过程及反思

我的教学过程可分为三个环节一、探索只用二元一次方程也能解决实际问题,但答案不唯一。二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的转化思想。第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的生成、发展与变化过程

我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

三解方程组 因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后

而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

大家都知道凯慕柏莉奥立佛近日当选为20xx-年美国教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师,以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

《二元一次方程组》说课稿8

各位评委老师们:

大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四个方面向大家汇报我对这节课的认识和理解。

一、说教材分析

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=22

2x+y=40

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.把两个方程合在一起,写成x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

x

y

上表中哪对x、y的值还满足方程②。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

例1(1)方程(a+2)x+(b-1)y=3是二元一次方程,试求a、b的取值范围。

(2)方程x∣a∣–1+(a-2)y=2是二元一次方程,试求a的值.例2若方程x2m–1+5y3n–2=7是二元一次方程.求m、n的值。

例3已知下列三对值:

x=-6x=10 x=10

y=-9y=-6y=-1

x-y=6

2x+31y=-11

(1)哪几对数值使方程x-y=6的左、右两边的值相等?

(2)哪几对数值是方程组的解?

例4求二元一次方程3x+2y=19的'正整数解。

设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

(5)强化训练,巩固双基

课堂练习:

教科书第102页练习

习题8.11、2题

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这么三个问题:

①通过本节课的学习,你学会了哪些知识;

②通过本节课的学习,你最大的体验是什么;

③通过本节课的学习,你掌握了哪些学习数学的方法?

(7)布置作业,提高升华

教科书第102页3、4、5题。

以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到最佳状态。

五、评价与反思

本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。

《二元一次方程组》说课稿9

一、关于教材地位和作用的分析

《 二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

二、关于教学目标的确定

(一)目标分析

知识和技能目标:

1、会根据具体问题中的数量关系列出二元一次方程组及求解

2、能检验结果是否符合实际意义

过程和方法目标

1、通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

2、在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

3、通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

情感与态度目标

1、学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

2、通过列方程组解应用题的学习,认识到数学的价值。

(二)重难点分析

教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

难点突破采取的措施:

1、可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

2、用填空和选择的多种题型来寻找题目中的等量关系

3、例题中两个问题将它们分列开,将难点分散

三、关于教学方法的说明

从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

1、遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

2、创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的作用。

(二)学法分析

这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

(三)教学手段

通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

四、关于教学过程的设计。

(一)导入设计

先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

(二)尝试练习

通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

尝试练习

1、方程探案记: 你知道盗贼如何分赃吗

一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

大家一起探讨

(三)范例设计

通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

问:1、该公司应安排几天粗加工,几天精加工,才能按期完成任务?

2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

(四)反馈练习

通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

(五)归纳小结

教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

《二元一次方程组》说课稿10

一、教材的地位与作用

在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础 的作用。

二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。

二、教学目标

1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。

2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。

3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)

4、情感体验:①在列方程组-表示和解决实际问题的过程中,体验到数学的实用性,提

高学习数学的兴趣。

②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与

他人交流。

三、教学重点、难点

重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次

方程(组)及它们解的含义。

难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探

求。

四、教法

(1)启发式教学

(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)

(2)学案式教学

(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)

五、学法

在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提

出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。

六、教学过程

(一)复述回顾:以二人小组完成学案上的3个问题;

(二)创设情境――引入课题

鸡兔同笼

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?

让学生用一元一次方程解决问题

设一个未知数列一元一次方程来解

就会出现方程: 2x+4(35-x)=94(设鸡x只)...........①

4x+2(35-x)=94(设兔x只)............②

让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正

题--二元一次方程组。

(三)设问导读与自我检测

同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小

组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导、生对新知识的探究。

1.对鸡兔同笼问题列方程,设鸡x只,兔y只,X+y=35........③

2x+4y=94......④

先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让

学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方

程,马上做自我检测第一题,发现问题解决问题。

2.前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让

学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。

【《二元一次方程组》说课稿】相关文章:

1.二元一次方程组说课稿

2.二元一次方程组的说课稿

3.二元一次方程组的解法说课稿

4.二元一次方程组及应用的说课稿

5.数学二元一次方程组的说课稿

6.二元一次方程组数学说课稿

7.二元一次方程组教学反思

8.应用二元一次方程组练习题

9.二元一次方程组试题

下载二元一次方程组应用题练习的[五篇范例]word格式文档
下载二元一次方程组应用题练习的[五篇范例].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二元一次方程组教案

    二元一次方程(组) 一.二元一次方程的概念 含有两个未知数,并且两个未知数项的次数都是1的方程叫做二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: 1.方程两边的代......

    二元一次方程组教案

    二元一次方程组教案 阜康市第四中学 方海艳 一、教学目标: 1.明确二元一次方程(组)的概念 2.正确掌握二元一次方程组的解法 3.运用二元一次方程组解决实际问题 4.进一步体会转......

    二元一次方程组讲课稿

    二元一次方程组说课稿 本节课是义务教育课程标准试验教科书人教版七年级下册第八章第一节的内容《二元一次方程组》,下面我将从以下几个环节对本节的教学设计进行说明,一、教......

    《二元一次方程组》说课稿

    《二元一次方程组》说课稿 各位评委老师们: 大家下午好!今天我说课的内容是人教版初中数学七年级下册第八章第一节二元一次方程组。我主要从教材分析、教法、学法、教学过程四......

    二元一次方程组教案范文大全

    二元一次方程组教学设计 石门寨学区初级中学 王利 教学目的: 1、使学生二元一次方程、的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。 2、使学生......

    二元一次方程组教案

    二元一次方程组教案 二元一次方程组教案1 教学建议一、重点、难点分析本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个......

    二元一次方程组心得体会范文大全

    初一第二学期《二元一次方程组》心得体会 今天所上的内容是《二元一次方程组》,本堂课主要两个内容:一个是二元一次方程组的概念并能在实际问题中找出相等关系列出方程组,另一......

    《二元一次方程组》说课稿

    《二元一次方程组》说课稿 《二元一次方程组》说课稿1 一、内容分析1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概......