粉末冶金材料的应用与发展

时间:2019-05-14 19:29:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《粉末冶金材料的应用与发展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《粉末冶金材料的应用与发展》。

第一篇:粉末冶金材料的应用与发展

粉末冶金材料的应用与发展

粉末冶金材料(powder metallurgy material)是指用粉末冶金工艺制得的多孔、半致密或全致密材料(包括制品)。粉末冶金材料具有传统熔铸工艺所无法获得的独特的化学组成和物理、力学性能,如材料的孔隙度可控,材料组织均匀、无宏观偏析(合金凝固后其截面上不同部位没有因液态合金宏观流动而造成的化学成分不均匀现象),可一次成型等。

通常,粉末冶金材料按用途可分为7类:

①粉末冶金减摩材料,又称烧结减摩材料。通过在材料孔隙中浸润滑油或在材料成分中加减摩剂或固体润滑剂制得。材料表面间的摩擦系数小,在有限润滑油条件下,使用寿命长、可靠性高;在干摩擦条件下,依靠自身或表层含有的润滑剂,即具有自润滑效果。广泛用于制造轴承、支承衬套或作端面密封等。

②粉末冶金多孔材料。又称多孔烧结材料。由球状或不规则形状的金属或合金粉末经成型、烧结制成。材料内部孔道纵横交错、互相贯通,一般有30%~60%的体积孔隙度,孔径1~100微米。透过性能和导热、导电性能好,耐高温、低温,抗热震,抗介质腐蚀。用于制造过滤器、多孔电极、灭火装置、防冻装置等。

③粉末冶金结构材料。又称烧结结构材料。能承受拉伸、压缩、扭曲等载荷,并能在摩擦磨损条件下工作。由于材料内部有残余孔隙存在,其延展性和冲击值比化学成分相同的铸锻件低,从而使其应用范围受限。

④粉末冶金摩擦材料。又称烧结摩擦材料。由基体金属(铜、铁或其他合金)、润滑组元(铅、石墨、二硫化钼等)、摩擦组元(二氧化硅、石棉等)3部分组成。其摩擦系数高,能很快吸收动能,制动、传动速度快、磨损小;强度高,耐高温,导热性好;抗咬合性好,耐腐蚀,受油脂、潮湿影响小。主要用于制造离合器和制动器。

⑤粉末冶金工模具材料。包括 硬质合金、粉末冶金高速钢等。后者组织均匀,晶粒细小,没有偏析,比熔铸高速钢韧性和耐磨性好,热处理变形小,使用寿命长。可用于制造切削刀具、模具和零件的坯件。

⑥粉末冶金电磁材料。包括电工材料和磁性材料。电工材料中,用作电能头材料的有金、银、铂等贵金属的粉末冶金材料和以银、铜为基体添加钨、镍、铁、碳化钨、石墨等制成的粉末冶金材料;用作电极的有钨铜、钨镍铜等粉末冶金材料;用作电刷的有金属-石墨粉末冶金材料;用作电热合金和热电偶的有钼、钽、钨等粉末冶金材料。磁性材料分为软磁材料和硬磁材料。软磁材料有磁性粉末、磁粉芯、软磁铁氧体、矩磁铁氧体、压磁铁氧体、微波铁氧体、正铁氧体和粉末硅钢等;硬磁材料有硬磁铁氧体、稀土钴硬磁、磁记录材料、微粉硬磁、磁性塑料等。用于制造各种转换、传递、储存能量和信息的磁性器件。

⑦粉末冶金高温材料。包括粉末冶金高温合金、难熔金属和合金、金属陶瓷、弥散强化和纤维强化材料等。用于制造高温下使用的涡轮盘、喷嘴、叶片及其他耐高温零部件。其中,典型的弥散强化材料有:(1)烧结铝粉(SAP):用表面氧化法制造。SAP有很高的高温强度和抗蠕变性能,使用温度达500℃,远优于一般铝合金。它主要用于:反应堆中的核燃料包套,飞机机翼和机身,压气机叶轮,高温活塞等。(2)弥散强化铜:弥散质点一般为Al2O3,常用内氧化法制造。经弥散强化后,铜的强度、硬度得到很大的提高,导电性降低不多。它常用作电阻焊的电极,白炽灯灯丝引线,电子管零件和电子工业中的其他材料。(3)弥散强化高温合金:最早的弥散强化镍基合金是ThO2(2%)强化镍(TD-Ni)。一般用共沉淀法制得。机械合金化法出现之后,又发展了一系列镍基、铁基和钴基合金。已经使用的有10多种。MA754的性质优于ThO2-Ni-Cr,已成功地用作喷气发动机叶片。MA956E是以Fe-Cr-Al为基的材料,有优越的抗氧化性和抗腐蚀性。

MA6000E合金,1000h的断裂应力在800OC以上远优于TD-Ni和IN792。1100℃时,TD-Ni和IN792的1000h断裂应力只有20~30MPa,而

MA6000E还有160MPa。因此MA6000E是一种好的叶片材料。(4)其他:弥散强化铅(DS-Pb),是惟一类似于SAP的例子,弥散相为PbO,主要用于声音衰减、化工器具、放射屏蔽和电池;含铝、锆的镁合金(铝和锆均溶于镁,但溶解后析出A1Zr4弥散相);金属间化合物FeAl3、FeNiAl9强化的Al-Fe合金等。

总的来说,飞机和发动机上的刹车片、离合器摩擦片、松孔过滤器、多孔发汗材料、含油轴承、磁铁芯、电触点、高比重合金、硬质合金和超硬耐磨零件等因含有大量非金属成分或含有连通孔隙,都不能用普通铸、锻工艺制造,只能以粉末为原料经冷压、烧结等粉末冶金工艺来制造。航空航天工业中使用的粉末冶金材料比较重要的有刹车片材料、松孔材料和高强度粉末合金三类。刹车片材料,刹车片是飞机机轮刹车装置的核心。绝大多数军用飞机和民用机都采用粉末冶金刹车片。因为每次刹车都会发生磨损,100~500次后就需要更换刹车片,所以它是飞机上用量最大的粉末冶金材料制件。松孔材料,即多孔渗透性粉末冶金材料。涡轮发动机润滑系统和飞行器液压操纵系统中使用的青铜或不锈钢过滤器,是防止微粒堵塞和卡滞的重要部件。金属纤维松孔材料的强度和塑性较好,可用于高温部位,如涡轮喷气发动机叶尖密封环用的高温合金毡带和火箭发动机喷注器面板、燃烧室内壁和喉部用的发汗冷却松孔材料。高强度粉末合金,是经粉末热成形的完全致密的高温合金、铝合金和钛合金。一些现代飞机的发动机已使用了锻造的粉末高温合金涡轮盘和压气机盘。粉末铝合金主要用作飞行器和发动机结构材料。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。加工作业要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。

另外,信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3美元。

粉末冶金既是制造高新材料的重要工艺,有时还是惟一的方法,同时也是多、快、好、省地制造形状复杂、高精度金属零件的先进金属成形技术。因此,粉末冶金产业相继开发了三大领域,一为难熔金属与硬质合金工具材料,二为永磁材料,特别是稀土永磁材料。这两大类材料基本上都只能用粉末冶金工艺生产。第三大领域是将材料制造与金属成形相结合,逐渐形成的特种金属成形技术。以满足装备制造业对高性能钢铁粉末冶金产品的需求为重点发展粉末冶金。

粉末冶金是一种先进的金属成型技术,是金属及其它粉末通过加工压制成型、烧结和必要的后续处理制成机械零部件和金属制品的高新技术。由于其具有节能、省材、高效、环保等诸多优点,已受到广泛采用,并具有很大的市场潜力和发展前景。近年来,粉末冶金行业发展很快,特别是汽车行业、机械制造、金属行业、航空航天、仪器仪表、五金工具、工程机械、电子家电及高科技产业等迅猛发展,为粉末冶金行业带来了不可多得的发展机遇和巨大的市场空间。同时对该行业的技术水平也提出了更高的要求。纵观国际新材料研究发展的现状,西方主要工业发达国家正集中人力、物力,寻求突破,美国、欧共体、日本和韩国等在他们的最新国家科技计划中,都把新材料及其制备技术列为国家关键技术之一加以重点支持。而随着中国的“入世”及经济全球一体化进程的不断加快,粉末冶金行业面临着新的挑战。我国粉末冶金行业必须加速发展,才能在激烈的市场竞争中立于不败之地。

粉末冶金材料和制品的今后发展方向主要有:有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。

谁掌握了新材料,谁就掌握了21世纪高新技术竞争的主动权!作为新材料的粉末冶金材料也将会发挥越来越显著的作用,影响社会发展的进程。

参考文献:

中国材料工程大典第14卷粉末冶金 材料工程韩凤麟、马福康、曹勇家 中国数控信息网采编部信息

我国热喷涂粉末材料的应用与发展现状(新闻)

2006第七届中国国际磁性材料及粉末冶金生产技术设备和应用展览会粉末合金材料技术粉末冶金世界粉末冶金的技术现状

上海勃曼工业控制技术有限公司公司新闻

兰州工业高等专科学校学报

百度词条

百度知道知识掌门人mfkdkthh2008

《粉末冶金技术特点及材料的发展方向》

第二篇:粉末冶金现状及发展

粉末冶金技术

摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。粉末冶金法与生产陶瓷有相似的地方,因此,一系列粉末冶金新技术也可用于陶瓷材料的制备。粉末冶金材料是指用几种金属粉末或金属与非金属粉末作原料,通过配料、压制成形、烧结等工艺过程而制成的材料。这种工艺过程成为粉末冶金法,是一种不同于熔炼和铸造的方法。其生产过程与陶瓷制品相类似,所以又称金属陶瓷法。粉末冶金法不仅是制取具有某些特殊性能材料的方法,也是一种无切削或少切削的加工方法。它具有生产率高、材料利用率高、节省机床和生产占地面积等优点。但金属粉末和模具费用高,制品大小和形状受到一定限制,制品的韧性较差。粉末冶金法常用于制作硬质合金、减摩材料、结构材料、摩擦材料、难熔金属材料、过滤材料、金属陶瓷、无偏析高速工具钢、磁性

材料、耐热材料等。

关键词:粉末冶金、基本工序、应用、发展方向、问题及机遇

Powder metallurgy technology Abstract: Powder metallurgy is used for preparing metal or metal powder(or metal powder and metal powder mixture)as raw material, after forming and sintering, manufacture of metal materials, composite and various types of products technology.Powder metallurgy method and the production of ceramic have similar place, therefore, a series of new powder metallurgy technologies can also be used for preparing ceramic material.Powder metallurgy materials refers to the use of several kinds of metal powder or metal and non metal powder as raw material, through mixing, pressing, sintering process and made of materials.The process to become powder metallurgy method, is different from the melting and casting method.Its production process and ceramic products are similar, so called ceramic metal.Powder metallurgy method not only has some special properties of material preparation method, is also a kind of without cutting or less cutting processing method.It has high productivity, high material utilization rate, saving machine tools and production area etc..But the metal powder and high mold cost, product size and shape are subject to certain restrictions, flexibility is poor.Powder metallurgy method often used for the production of hard alloy, antifriction material, structural material, friction material, refractory metal materials, filter materials, metal ceramic, no segregation in high speed tool steel, magnetic materials, heat resistant materials.Key words: powder metallurgy, basic process, application, development trend, problems and opportunities

一、世界粉末冶金工业概况

2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。

粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是采用先进发动机系统和轻量化。

欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其中特别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的CVDTiCN/Al2O3/TiN到CVDPCBN(聚晶立方BN)以及PVDTiAIN,Al2O3,cBN(立方BN)和SiMAlON等,满足加工场合的需要。

信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3亿美元,其中热沉材料占23%,发光与点极材料占30%。前者主 要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。

二、粉末冶金技术简介

粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。

粉末冶金工艺的基本工序是:

1、原料粉末的制备。现有的制粉方法大体可分为两类:机械法和物理化学法。而机械法可分为:机械粉碎及雾化法;物理化学法又分为:电化腐蚀法、还原法、化合法、还原-化合法、气相沉积法、液相沉积法以及电解法。其中应用最为广泛的是还原法、雾化法和电解法。

2、粉末成型为所需形状的坯块。成型的目的是制得一定形状和尺寸的压坯,并使其具有一定的密度和强度。成型的方法基本上分为加压成型和无压成型。加压成型中应用最多的是模压成型。

3、坯块的烧结。烧结是粉末冶金工艺中的关键性工序。成型后的压坯通过烧结使其得到所要求的最终物理机械性能。烧结又分为单元系烧结和多元系烧结。对于单元系和多元系的固相烧结,烧结温度比所用的金属及合金的熔点低;对于多元系的液相烧结,烧结温度一般比其中难熔成分的熔点低,而高于易熔成分的熔点。除普通烧结外,还有松装烧结、熔浸法、热压法等特殊的烧结工艺。

4、产品的后序处理。烧结后的处理,可以根据产品要求的不同,采取多种方式。如精整、浸油、机加工、热处理及电镀。此外,近年来一些新工艺如轧制、锻造也应用于粉末冶金材料烧结后的加工,取得较理想的效果。粉末冶金材料和工艺与传统材料工艺相比较:

1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品,比如金属与非金属组成的摩擦材料等,控制制品的孔隙率和孔隙大小,可生产各种多孔性才材料和多孔含油轴承。

2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细 4 小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。粉末冶金工艺的优点:

1、绝大多数难熔金属及其化合物、假合金、多孔材料只能用粉末冶金方法来制造。

2、由于粉末冶金方法能压制成最终尺寸的压坯,而不需要或很少需要随后的机械加工,故能大大节约金属,降低产品成本。用粉末冶金方法制造产品时,金属的损耗只有1-5%,而用一般熔铸方法生产时,金属的损耗可能会达到80%。

3、由于粉末冶金工艺在材料生产过程中并不熔化材料,也就不怕混入由坩埚和脱氧剂等带来的杂质,而烧结一般在真空和还原气氛中进行,不怕氧化,也不会给材料任何污染,故有可能制取高纯度的材料。

4、粉末冶金法能保证材料成分配比的正确性和均匀性。

5、粉末冶金适宜于生产同一形状而数量多的产品,特别是齿轮等加工费用高的产品,用粉末冶金法制造能大大降低生产成本。粉末冶金工艺的缺点:

1、在没有批量的情况下要考虑 零件的大小.2、模具费用相对来说要高出铸造模具.三、粉末冶金技术的应用与发展

1、用用于机械零件的制造

现代粉末冶金技术在机械制造中的应用范围正沿两个方向扩展:一是制取承受高负荷的零件;二是制取几何尺寸复杂、尺寸精度高的零件,并使最终机械加工量减至最小限度。

在承受高负荷零件的制造中,后致密化技术中的锻造(以下简称粉末锻造)和热等静压起到了非常重要的作用。

粉末锻造又称预型坯热端,是粉末冶金预热段组成的复合工艺。用这种方法制成的零件,其密度可达理论密度的99.4%。它主要用于铁基零件,用用的材料主要是碳钢和低合金钢,也用也高温合金。用这种方法制造的锦基高温合金零件的强度—温度性能已经超过了传统方法制造的同一合金零件。

热等静压是在高温高压下同时实现粉末的成型和烧结,一次制成成品零件。用热等静压制得的零件晶粒细小均匀,密度接近理论密度,并且分布均匀,且具有优异的机械性能和物理性能。

制造形状复杂、尺寸精度高的零件所辖用的工艺方法主要有粉末锻造、注射成型、热等静压和粉末冶金的组合工艺。

用于这一用途的粉末锻造有两种:一种是采用松装烧结制成接近最终制品的压坯,再放入模内进行锻压的方法。这种方法制成的铁基零件密度虽较低(约为7.2g/ cm3), 但粉末分布均匀(密度差不超过0.05g/cm3), 适用于制造汽车发动机水泵叶轮, 四磁芯电磁仪表零件及多管接头零件。另一种是前述的预型坯热锻法。它特别适用于制造环形零件, 如齿轮、离合器毂、凸轮和轴承座等。

用注射成型法可使所制零件密度达到理论密度的96%。以波音707 和波音727 飞机机翼传动机构的螺纹部分用镍圈为例, 这种圈结构复杂且有内螺纹, 过去用锻坯需经14 道工序加工而成, 采用注射成型, 可以制造几乎无余量的零件, 只需少量的磨削和校准, 并且该零件具有高的抗腐蚀性和好的机械性能。

热等静压工艺拟用于用高温合金制造的滚刀、涡轮发动机轴承和轮, 及用钛合金制造的飞机涡轮发动机和机身零件, 可减少机加工作量, 提高材料利用率。

粉末冶金组合工艺可用于制造形状复杂、用常规方法不能制造的零件或大型粉末冶金零件;可用于制造不同部位具有不同化学成分、密度及物理—力学性能的零件;还可与不同材料(如钢或铝等)组合烧结成适用于某种专门用途的零件。2、应用于合金性能的改进

随着对材料要求的不断提高, 传统的铸锭冶金(IM)方法对合金的性能改进已趋于顶峰, 粉末冶金(PM)技术成为改进和研制合金的一种手段。2.1 铝合金

到目前为止, 用PM 方法改进或研制的铝合金按性能可分为4 类: 高强度, 高弹性模量, 低密度, 热强和功能铝合金。

7090, 7091, MR61, MR64, CW67, IN9021 和IN9052 属PM 高强度铝合金。前5 种是RSP(快冷合金粉末)合金, 是在7

系合金的基础上添加少量的Co, Zr 或Cr 作为附加剂和稳定剂而制得的;后两种是用机械合金化方法制得的, 它们在抗拉强度、抗蚀性、断裂韧性等方面具有良好的综合性能。

PM 高弹性模量、低密度铝合金大多数是在IN2024 合金的基础上(也有降低Cu, Mg 含量及用Zr取代Cr 的)添加1% ~ 3% Li 的铝锂合金。Al-Cu-Li-Zr, Al-Li-Zr 及Al-Cu-Mg-Li-Zr 是发展高弹性模量、低密度铝合金的主要方向。对于要求更高模密比的合金, 可考虑用Be 或Mn 来取代或部分取代Cu, Mg, 或研制Al-Li-Be 合金。另外, PM 方法解决了IM 方法生产铝锂合金的困难, 还可细化晶粒和第二相粒子, 消除偏析, 提高合金的塑性和韧性。

在热强铝合金方面, 研究较多的是Al-Fe 系合金。已商品化的CV78 比现有的IN2219 的使用温度提高50~ 90 , 用它代替钛合金制造喷气式发动机涡轮, 成本可降低65%, 重量减轻15%。正在研究并已开始使用的有8009 和FVS1212。8009 高温强度高,断裂韧性好, 已用于锻造各种航宇零件和汽车部件, 以及薄、厚板和挤压型材;FVS1212 具有高的刚性和优异的高温性能。

功能铝合金分为两组: 一组为耐磨和尺寸稳定铝合金。它广泛用于光学机械仪表和其他仪表。另一组是低膨胀系数铝合金。这类合金一般为Al-Si 合金,含Si 量为10%~ 30% , 另外再加石墨强化, 还有增加N i, Mg, Fe, Zr 等, 以改善其抗热性。它们具有低的膨胀系数和高的弹性模量, 可用于仪表、发动机等行业。2.2 高合金材料

高合金材料如高速钢采用PM 方法生产, 可得到碳化分布均匀的细晶粒组织, 具有较高的抗弯强度和冲击强度, 韧性可提高50% , 热处理变形约为IM 高速钢的1/ 10。还大大提高了耐磨削性能, 用它制造的刀具寿命可提高3~ 5 倍。此外, 粉末冶金制品的工序较少, 材料利用率可由50%~ 60% 提高到95%。2.3 高温合金

采用先进的粉末冶金技术可以制得纯净的合金粉末, 并且合金组织均匀, 无偏析。采用PM 技术, 可使现有的高温合金的工作温度提高100 , 疲劳寿命提高100 倍, 蠕变强度大约提高20%。2.4 磁性材料

与熔铸方法相比, PM 磁性材料有如下优点: 可以生产出具有特殊性能的磁性材料, 如铁氧体、磁介质等;能用单畴粉末制造出优质永磁材料;材料晶粒细、强度大、无缩孔及偏析等弊病。用PM 方法制造体积小、形状复杂的小型磁体具有极大的竞争力。采用PM 方法生产材料最显著的一个特点是材料设计的自由度高, 通过改变材料的 成分或工艺方法以改变材料的晶体结构, 可获得不同功能的材料。3、应用于新型材料的研制 3.1 金属基复合材料

用于制造金属基复合材料的工艺方法有: PM 法、压铸法和搅拌铸造法。与搅拌铸造法相比, PM 法制取复合材料的温度低, 减轻了基体与增强体之间的界面反应, 减少了界面上硬质化合物的生成, 从而得到较好力学性能的材料;PM 法可以制造用搅拌铸造法不能制取的材料, 如用搅拌铸造法制造碳化硅钛基复合材料时, 碳化硅晶须溶于钛合金基体, 采用PM 法可避免这一现象发生。与压铸法相比, PM 法增强体的体积分数可以任意调节, 成分比较准确, 制取的材料力学性能好, 用PM 法生产的材料无比重偏析。因此, PM法已成为开发金属基复合材料的主要工艺方法之一。3.2 弥散强化高温材料

弥散强化类高温材料最早用于铁基材料的研究,近年来扩展到铝基材料。ODM751 是新近研究的氧化物弥散强化的铁基材料, 这种材料有优良的抗蠕变和抗腐蚀综合性能, 耐温可达1350 , 它主要用于温度高于900 , 要求高强度、高腐蚀性的场合, 如热交换器、蓄热器、热电偶外壳等。已生产的弥散强化铝基材料有原苏联的 我国的LT71,LT72 和西方国家的SAP930, SAP895, SAP865 等。这类材料靠Al2O3 弥散强化。它的热强性在200~ 500

范围内比任何铝合金都高, 500 的高温瞬时强度可达80~ 90 MPa, 热稳定性好, 长时间加热后力学性能损失小, 在500

及其以下任何温度长时间加热, 对其室温性能无明显影响, 抗蚀性与纯铝相近。它可用于飞机的防火板、航空及化学工业用的热交换器及制造原子堆汽轮导管支持元件。

另外,近年来弥散强化铝合金研究的有: Al-C,Al-TiC,Al-ZrC, Al-NbC, Al-Cr2O3, Al-MoC, Al-WC 等, 其中Al-C 材料已用于内燃机活塞, 它的强化相是Al4C。金属间化合物的研究主要采用机械合金化方法, 已有初步成果的有NiAl, TiAl 和MoSi2。这类材料的单体和复合材料具有密度低, 模量、高温强度及高温蠕变强度高的特点。高压涡轮叶片用NiAl 高的导热系数使制成的部件温度均匀, 且其热点温度至少可降低50 , 另外, 它的抗高温氧化性也好。MoSi2 的熔点高, 抗氧化性好, 但要在实际中应用, 其室温塑性和韧性还有待进一步提高。3.4 梯度功能材料

目前, 梯度功能材料的开发仅有热功能梯度材料。它是基于航宇结构、核聚变反应堆和未来高速飞行的需要而研制的。它的一面是高强度的金属材料, 另一面为耐高温粉末材料(如高温结构陶瓷、金属间化合物), 中间层为高强度的纤维(如氧化锆、碳化硅纤维等)和微粒(如陶瓷或金属间化合物粉末, 碳粒或玻璃微粒等)。这种结构既保证了高强度和高耐热性, 又保证了材料的组织与工作的温度梯度相适应, 减小了在高温下受热表面和金属材料层间的热膨胀失配而引起的应力。4、其他方法的应用 4.1 超塑性材料

采用PM 法可获得极细的晶粒, 合金界面上的氧化物质点和析出相均能起钉扎晶界的作用, 使材料具有高的组织稳定性。另外, PM 法制备的超塑性材料还可实现高应变速率的超塑性, 高的应变速率能提高超塑性成形效率。因此, 在材料的超塑性研究中, PM技术受到了极大的关注并取得了可喜的成果。4.2 高抗蚀性材料

高的抗腐蚀和抗应力腐蚀能力是粉末冶金的主要特性, 洛克希德-乔治亚公司已用PM 铝合金设计和制造了3 个试验性飞机零件, 其中两个是挤压梁, 一个是锻造襟翼滑轨加强缘条。这些零件安装在3 架洛克希德C-141 运输机上进行试验。它的寿命比用IM法加工的零件长得多, 使更换费用大大减少。

四、粉末冶金技术国内与国外差距

1、产品水平低

在产品精度方面,少数企业尺寸精度可达IS07—8级,形位公差可达8—9级,与国外水平相比低1—2级,但一般企业约相差2—3级。产品质量不够稳定,产品内在重量和外观质量均有较大的差距

2、工艺装备落后

多数企业仍采用性能较差的设备、能耗大、效率低、炉温均匀性差,质量不稳定;国内还没有形成一个专业生产粉末冶金模具、模架的企业

五、粉末冶金材料和制品的今后发展方向:

粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。粉末冶金材料和制品的今后发展方向:

1、有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展。

2、制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金。

3、用增强致密化过程来制造一般含有混合相组成的特殊合金。

4、制造非均匀材料、非晶态、微晶或者亚稳合金。

5、加工独特的和非一般形态或成分的复合零部件。

六、国内粉末冶金技术面临的问题及机遇

随着我国汽车工业快速发展,高附加值的零部件需求将加速增长。与此同时,汽车产业链全球化的采购系已经形成,带给国内零部件企业商机显而易见。然而,我们是否能够握当前机遇,不仅是我国汽车零部行业突破当前困局的机遇,更是产业升级的契机。因此,充分利用自身势,扬长补短是产业突破困局的必手段。

虽然,当前我国的粉末冶金技术水平相对国外发达国家依然有着不小的距离。但由于我国拥有原料供给的区域优势,作为产业竞争力提升的基础,依然有较强的竞争力。

与此同时,自上世纪90年代开始,我国粉末冶金制品行业也呈加速发展(主要集中在东部及沿海地区),东部和沿海地区的年产量增长幅度均在10%以上。以山东为例,该省的生产企业由于引进了国外先进设备技术,生产高强度、高精度粉末冶金零件,把粉末冶金制品的质量、技术提高到一个新的水平;粉末注射成型、粉末锻造、纳米技术、精细陶瓷等新技术的开发应用提高了行业整体技术水平,构成了一个完整的行业体系。据不完全统计,目前全省已有各类粉末冶金企业40多家,产品应用各个领域。

最后在拥有区域优势的同时,建立产业基地,形成基地集群效应,从而实现市场和效益最大化、成本最小化。同时,在行业内部合理分工,逐步形成分工明确的纵向多层次有机整体,依托国内市场发展制造能力,再通过国际合作迅速提升竞争力、获取竞争优势,并且通过国际合作所获得的企业在未来发展中的资本、技术、产品和管理的支撑,进入国际合作伙

伴的配套体系和融人全球采购体系,突破当前产业困局。

参考文献:

【1】粉末冶金新技术与新装备

刘文胜 马运柱...矿冶工程 2007 5 【2】现代粉末冶金材料和技术发展现状

(一)黄伯云 易健宏 上海金属 2007 3 【3】现代粉末冶金材料和技术发展现状

(二)黄伯云 易健宏 上海金属 2007 4 【4】钛及钛合金的粉末冶金新技术

周洪强 陈志强 材料导报:网络版 2006 1 【5】世界粉末冶金的发展现状

刘咏 黄伯云 中国有色金属2006 1 【6】粉末冶金多孔材料性能研究

孙纪国 王浩...导弹与航天运载技术 2006 4 【7】粉末冶金文摘

亓家钟(摘择)粉末冶金技术 2006 2 【8】German R M.Powder Inject ion Molding [ M].MPIF: Princeton,1990.61~ 95.【9】Capus J, Pickering S, Weaver A.Hoeganaes offers higher density atlower cost [ J].Metal Powder Report, 1994, 49(78): 22~ 24.【10】 Rutz H G, Hanejko F G.High density processing of high performance ferrous mat erials [ J ].The Internat ional of PowderMetallurgy, 1995, 31(1): 9~ 17.11

第三篇:现代粉末冶金材料与技术的发展

现代粉末冶金材料与技术的发展 概述

粉末冶金是研究金属、合金、非金属和化合物的粉末及其材料的性质和制造理论与工艺的技术科学,是现代材料科学与工程发展最为迅猛的领域之一。

近代以来, 粉末冶金有了突破性进展,在西方发达国家更呈现出了加速发展的势态, 一系列新技术、新工艺大量涌现,例如, 超微粉或纳米粉制备技术、快速冷 凝技术、机械合金化、粉末热等静压、温压、粉末热锻、粉末挤压、粉末注射形、粉末喷射成形、自蔓延高温合成、涂层技术、电火花烧结、反应烧结、超固相线烧结、瞬时液相烧结、激光烧结、微波烧结, 等等。

现代粉末冶金不但保持和发展了传统优点—实现少切削、无切削加工, 实现少偏析或无偏析, 低耗、节能、节材;易控制产品孔隙度;易实现金属一非金属复合、金属一高分子复合, 而且新技术赋予传统工艺步骤以新的内容和含义, 使粉末冶金成为制取各种高性能结构材料、特种功能材料和极限条件下工作材料的有效途径。因此, 整个粉末冶金领域大大拓宽, 并向着纵深方向发展, 粉末冶金已由二类传统工艺技术发展成为一门新兴的技术科学, 它处于冶金科学与材料科学的交汇区, 并且已深入地渗透到几乎所有的冶金和材料科学的分支科学中去了。

由于技术上和经济上具有巨大的优越性,粉末冶金技术产品在国民经济的各个部门和国防建设的各个领域都得到了广泛应用, 对机械、电子、化工、能源、航空、航天乃至农业、医药、食品等产业的发展以及科技的进步, 都起到了重要的推动作用, 创造了巨大的社会财富, 带来了巨大的经济效益和社会效益。现代粉末冶金发展的主要特点

(一)新技术、新工艺大量涌现

新技术新工艺的应用, 使得粉末的制备朝着超微、超细、速凝、高纯、均质、成分可调控、大规模、多品种方向发展, 粉末冶金材料的制造朝着复合、全致密、高性能、高精度、复杂形状、大批量系列化方向发展。

(二)新材料层出不穷

粉末冶金已发展成为制取各种高性能结构材料和特种功能材料以及极限条件使用材料的有效途径。这些新材料包括粉末低合金钢、粉末高温合金、粉末高速钢、粉末不锈钢、快速冷凝铝合金、快速冷凝钦合金、弥散强化合金、高温超导材料、钦铁硼永磁材料、特种陶瓷、金属基和陶瓷基复合材料、纳米材料、梯度功能材料、粉末摩擦材料、涂层硬质合金,等等。

(三)近净型成形技术的崛起加速了粉末冶金的迅速发展

粉末冶金作为一项典型的近净型成形制造技术, 以它独有的少切削、无切削及节材、节能的技术特点, 在与传统的熔铸、机加工竞争中不断发展。近几十年来,许多新的近型成形技术不断涌现, 如金属注射成形、粉末喷射成形、粉末热锻和粉末热等静压等使得粉末冶金产品更加接近最终产品形状, 并且拓宽了粉末冶金近型成形产品的范围。

(四)复合材料及其制造技术的发展为粉末冶金开拓了新的领域

目前, 复合材料的发展形成由宏观复合形式向微观复合形式发展、由结构复合材料为主向与功能复合材料并重的局面。粉末冶金以它独有的粉末混合、化学复合、机械合金化、涂层、骨架熔渗与浸溃、纤维网粉浆浇注、快速冷凝和原位复合等特长在复合材料制造中充分发挥自己的优势, 在金属基、陶瓷基复合材料和弥散强化、颗粒强化及纤维增强复合制造技术中显示鲜明的特色。粉末冶金材料

3.1 传统粉末冶金材料

(1)铁基粉末冶金材料:铁基粉末冶金材料是最重要的粉末冶金材料之一, 特别是汽车行业的快速发展对铁基粉末冶金行业起了很大的推动作用。

(2)铜基粉末冶金材料:烧结铜基零件具有较好的耐蚀性、表面光洁及无磁性等优点。铜基材料主要有烧结青铜(锡青铜和铝青铜)、烧结黄铜、烧结镍银和烧结铜镍合金, 此外还有弥散强化铜(如Cu2Al2O3)、烧结时效强化铜合金(Cu2Be、Cu2Be2Co和Cu2Cr合金)以及用于减震的烧结Cu2Mn合金。

(3)难熔金属与硬质合金:难熔金属(钨、钼、钽、铌等)及其合金、复合材料以其高熔点、高硬度、高强度等独特的物理与力学性能而广泛应用于国防军工、航空航天、电子信息、能源、防化、冶金和核工业等领域。硬质合金是指以一种或多种难熔金属的碳化物(如碳化钨、碳化钛等)作为硬质相, 用金属粘结剂作为粘结相, 经粉末冶金技术制造出来的材料。硬质合金广泛用作切削刀具、矿用刀片和异型件, 已成为现代工业部门和新技领域不可缺少的工具材料, 被誉为“现代工业的牙齿”。

(4)粉末冶金电工材料:在电器、仪表及电工技术中, 广泛应用于各种分断和接通电路的电接触元件、电阻焊用的电极以及电机上用于转换电流的电刷。在无线电技术中, 普遍使用各种难熔化合物制成的各种固定电阻器。在真空技术中使用各种电子管阴极制品、各种电加热元件和热电偶材料。以上这些材料常常采用粉末冶金技术制造, 统称为粉末冶金电工材料。

(5)烧结摩擦与减摩材料:摩擦材料以提高摩擦磨损性能为目的, 用于摩擦离合器与摩擦制动器的摩擦部分的材料称为摩擦材料。烧结减摩材料是用粉末冶金方法制造的、具有低摩擦系数和高耐磨性能的金属材料或金属和非金属的复合材料。

3.2 先进粉末冶金材料

(1)信息领域用粉末冶金材料:粉末冶金软磁材料按材质分类 可分为金属软磁材料和铁氧体软磁材料。铁氧体软磁材料出现较早, 是一种只能用粉末冶金烧结方法制造的软磁材料。人们期望烧结软磁材料具有高的磁导率和饱和磁化强度或剩磁以及低的矫顽力,压粉磁芯或磁粉芯属于这一类材料。金属软磁材料主要是铁及其合金, 其中有纯铁、磷铁、硅钢、铁镍金、铁钴合金、铁铝合金和铁铝硅合金等。铁氧体软磁主要有锰锌、镁锌、镍锌铁氧体软磁材料。

(2)能源领域用粉末冶金材料:能源材料是指那些正在发展的、可能支撑新能源体系的建立,满足各种新能源以及节能新技术所要求的一类材料。按使用目的可分为新能源材料、节能材料和储能材料。

(3)生物领域用粉末冶金材料:生物医用材料对于挽救生命、救治伤残、提高人类的生活质量具有重要的意义。生物材料中的一些医用金属和合金, 医用生物陶瓷就属于粉末冶金材料。

(4)军事领域用粉末冶金材料:粉末冶金材料对军事工业作出了巨大的贡献, 在国防建设中有着巨大的潜力和竞争力。粉末冶金材料广泛用于航空航天工业、核工业和兵器工业等军事领域。粉末冶金技术

4.1 粉末制备技术的发展

粉末冶金材料和制品不断增多, 质量不断提高, 要求提供的粉末的种类也越来越多。为了满足对粉末的各种要求, 出现了各种各样生产粉末的新方法。从过程的实质来看, 现有制粉方法大体上可归纳为两大类, 即机械法和物理化学法。从工业规模而言, 应用最广泛的是还原法、雾化法和电解法。但随着科技的发展, 越来越多的新技术在粉末的制备过程中正起着越来越重要的作用。

(1)机械合金化:机械合金化是由Benjamin 等提出的一种制备合金粉末的高能球磨技术。它是在高能球磨条件下, 利用金属粉末混合物的反复变形、断裂、焊合、原子间相互扩散或发生固态反应形成合金粉末。机械合金化是在固态下实现合金化, 不经过气相、液相,不受物质的蒸气压、熔点等物理特性因素的制约, 使过去用传统熔炼工艺难以实现的某些物质的合金化和远离热力学平衡的准稳态、非平衡态及新物质的合成成为可能, 因此机械合金化的理论和应用方面的研究均显示出十分诱人的前景。

(2)喷雾干燥:喷雾干燥是指用雾化器将一定浓度的原料液喷射成雾状液滴, 并用热空气(或其它气体)与雾滴直接接触的方式使之迅速干燥, 从而获得粉粒状产品的一种粉末制备过程。采用喷雾干燥可以制备出质量均

一、重复性良好的粉料, 并且缩短粉料的制备过程, 有利于自动化、连续化生产, 是大规模制备优良超微粉的有效方法。

4.1 粉末冶金成型技术的发展

目前, 粉末冶金技术正向着高致密化、高性能化、集成化和低成本等方向发展。近年来, 一系列粉末冶金新的成形技术层出不穷, 并呈现出加速发展态势, 粉末注射成形、温压成形、流动温压成形、喷射成形、高速压制成形等新技术不断涌现, 使得粉末高致密化成形技术得到了很大的发展。

(1)粉末注射成型:粉末注射成形是传统粉末冶金技术和先进塑料注射成形相结合而发展形成的一门新型粉末冶金近净成形技术。它的基本工艺过程是: 首先将金属或陶瓷粉末与有机粘结剂均匀混合, 用注射成形机成形, 然后将成形坯中的粘结剂脱离, 最后经烧结致密化得到最终产品。粉末注射成形的材料已经从早期的铁基、硬质合金、陶瓷等对杂质含量不敏感、性能要求不是非常苛刻的体系, 发展到了镍基高温合金、钛合金和铌材料。材料应用领域也从结构材料向功能材料发展, 如热沉材料、磁性材料和形状记忆合金。材料结构也从单一均匀结构向复合结构发展。

(2)温压成型:温压成形是从20 世纪90 年代新发展起来的一项新技术。它是采用特制的粉末加热、粉末输送和模具系统, 将加有特殊润滑剂的混合粉末和模具加热至130~150 ℃温度进行刚性模压, 最后采用传统的烧结工艺进行致密化的技术。利用该工艺可成形形状非常复杂的零件,如垂直于压制方向上的凹槽、孔以及螺纹孔等,而不需要后续二次机械加工。(3)喷射成型:喷射成形(Spray Forming)技术, 也称为喷射沉积(Spray Deposition)或喷射铸造(Spray Casting)技术, 这是20 世纪80 年代以来工业发达国家在传统快速凝固P粉末冶金(RSPPM)工艺基础上发展起来的一种全新的先进材料制备与成形技术。

(4)高速压制成型:高速压制技术是瑞典H¨ogan¨as AB 公司在2001 年推介的一种新技术。高速压制生产零件的过程和传统的压制过程工序相同;混合粉末加进送料斗中, 粉末通过送粉靴自动填充模腔压制成形之后, 零件被顶出并转入烧结工序。所不同的是高速压制的压制速度比传统压制高500~1000 倍, 压机锤头速度高达2~30mPs , 液压驱动的锤头质量达5~1200kg , 粉末在0.02s 之内通过高能量冲击进行压制, 压制时产生强烈的冲击波。通过附加间隔0.3s 的多重冲击能达到更高的密度。与传统压制相比, 高速压制的铁基零件密度可提高0.3gPcm3 左右, 因而抗拉强度和屈服强度能相应地提高20 %~25 %。高速压制压坯的径向弹性后效很小, 故脱模压力较小, 并且压坯密度均匀, 其偏差小于0.01gPcm3。该技术可以制得质量达5kg 以上的大型压坯以及高径比达到3 的压坯。同时, HVC 技术还具有高生产率和低成本等特点。

4.1 粉末冶金烧结技术的发展

粉末冶金烧结是指粉末或粉末压坯在适当的温度和气氛条件下加热所发生的现象或过程。烧结工艺是决定粉末冶金制品性能的重要环节, 一直是人们研究的重点;各种促进烧结的方法不断涌现, 如微波烧结、放电等离子烧结、自蔓延高温合成、烧结硬化等。

(1)微波烧结:微波烧结是一种利用微波加热来对材料进行烧结的方法, 它始于20 世纪70 年代。烧结中微波不仅仅只是作为一种加热能源, 其本身也是一种活化烧结过程。微波烧结技术是利用材料吸收微波能转化为内部分子的动能和热能, 使得材料整体均匀加热至一定温度而实现致密化烧结的一种方法, 是快速制备高质量的新材料和制备具有新的性能的传统材料的重要技术手段。

(2)放电等离子体烧结(SPS)也称作等离子体活化烧结(Plasma Activated Sintering , PAS)或脉冲电流热压烧结(Pulse Current Pressure Sintering), 是20 世纪90 年代以来国外开始广泛研究的一种快速烧结新工艺。它最早源于1930 年美国科学家提出的脉冲电流烧结原理,但直到日本于1988 年研制出第一台工业型SPS装置, 该技术才真正引起世人的关注。由于它融等离子体活化、热压、电阻加热为一体, 具有烧结时间短、温度控制准确、易自动化、烧结样品组织均匀、致密度高等优点, 仅在几分钟之内就使烧结产品的相对理论密度接近100 % , 而且能抑制样品颗粒的长大, 提高材料的各种性能。

(3)自蔓延高温合成:自蔓延高温合成(SHS), 也称燃烧合成(Combustion Synthesis , CS), 它是一种利用化学反应自身放热使反应持续进行, 最终合成所需材料或制品的新技术。自1967 年苏联科学家发现并提出自蔓延高温合成的概念以来, 自蔓延高温合成在世界范围内得到了广泛的研究和开发, 并在工业生产中得到应用。展望

粉末冶金是提高材料性能和发展新材料的重要手段, 已经成为当代材料科学发展的前沿领域。粉末冶金新材料、新技术、新工艺的不断出现, 必将促进高技术产业和国防工业的快速发展, 也必将带给材料工程和制造技术光明的前景。近年来, 我国粉末冶金行业得到了快速发展, 技术水平和工艺装备均比以前有了很大的提高, 但与国外先进技术水平相比仍存在较大差距。因此, 大力开展粉末冶金新材料、新技术新工艺的研究, 对提高我国粉末冶金产品的档次和技术水平, 缩短与国外先进水平的差距具有非常重要的意义。

参考文献

[1] 黄伯云,易健宏.现代粉末冶金材料和技术发展现状(一)[J].上海金属.200 7(03)[2] 黄伯云,易健宏.现代粉末冶金材料和技术发展现状(二)[J].上海金属.200 7(04)[3] 邹志强, 黄伯云, 杨兵.粉末冶金在国民经济和国防建设中的作用(Ⅱ)[J].粉末冶金材料科学与 工程, 1997 , 2(3): 184~187.[4] 李益民, 黄伯云, 曲选辉.金属注射成形技术进展[J ].稀有金属材料与工程, 1996 , 25(1): 1~4.

第四篇:粉末冶金基础知识

粉末冶金是制取金属粉末并通过成形和烧结等工艺将金属粉末或与非金属粉末的混合物制成制品的加工方法,既可制取用普通熔炼方法难以制取的特殊材料,又可制造各种精密的机械零件,省工省料。但其模具和金属粉末成本较高,批量小或制品尺寸过大时不宜采用。

粉末冶金材料和工艺与传统材料工艺相比,具有以下特点:

1.粉末冶金工艺是在低于基体金属的熔点下进行的,因此可以获得熔点、密度相差悬殊的多种金属、金属与陶瓷、金属与塑料等多相不均质的特殊功能复合材料和制品。

2.提高材料性能。用特殊方法制取的细小金属或合金粉末,凝固速度极快、晶粒细小均匀,保证了材料的组织均匀,性能稳定,以及良好的冷、热加工性能,且粉末颗粒不受合金元素和含量的限制,可提高强化相含量,从而发展新的材料体系。

3.利用各种成形工艺,可以将粉末原料直接成形为少余量、无余量的毛坯或净形零件,大量减少机加工量。提高材料利用率,降低成本。

粉末冶金的品种繁多,主要有:钨等难熔金属及合金制品;用Co、Ni等作粘结剂的碳化钨(WC)、碳化钛(TiC)、碳化钽(TaC)等硬质合金,用于制造切削刀具和耐磨刀具中的钻头、车刀、铣刀,还可制造模具等;Cu合金、不锈钢及Ni等多孔材料,用于制造烧结含油轴承、烧结金属过滤器及纺织环等。随着粉末冶金生产技术的发展,粉末冶金及其制品将在更加广泛的应用。粉末冶金是将金属粉末(或掺入部分非金属粉末)经过成形和烧结,制成金属材料或机械零件的一种加工工艺方法.它既可以直接制成符合装配要求的零件,也可以生产一般冶炼方法难以生产的金属材料和制品.粉末冶金广泛的应用于机械、冶金、化工、交通、运输、以及航空航天工业。

粉末冶金的生产工艺过程客分为以下五个阶段:

一)制粉

制粉是将原料制成粉末的过程。常用的制粉方法有机械法和氧化物还原法。1。机械法 是利用球磨或利用动力(如气流或液流)使金属物料碎块间产生碰撞、摩擦获得金属粉末的方法。

2。氧化物还原法 是用固体或液体还原剂还原金属氧化物制成粉末的方法。

二)混料

混料是将各种所需的粉末按一定的比例混合,并使其均匀化制成坯粉的过程。分干式、半干式和湿式三种,分别用于不同要求。

1。干式 用于各组元密度相近且混合均匀程度要求不高的情况。

2。半干式 用于各组元密度相差较大和要求均匀程度较高的情况。混料时加入少量的液体(如机油)。

3。湿式 混料时加入大量的易挥发液体(如酒精),并同时伴以球磨,提高混料均匀程度,增加各组元间的接触面积和改善烧结性能。为改善混料的成形性,在混料重要添加增塑剂。

三)成形

成形是将混合均匀的混料,装入压模重压制成具有一定形状、尺寸和密度的型坯的过程。压形常用的方法哟以下两种:

1。常温加压成形 在机械压力下使粉末颗粒间产生机械噬合力和原子间吸附力,从而形成冷焊结合,制成形坯。优点是对设备、模具材料无特殊要求,操作简便;缺点是粉末颗粒间结合力较弱,形坯容易损坏,形坯由于是在常温下成形,因此需要施加较大的压力克服由于粉末颗粒产生塑性变形而造成的加工硬化现象。另外,常温加压成形的形坯的密度较低,因此其孔隙度较大。

2。加热加压成形 高温下粉末颗粒变软,变形抗力减小,用较小的压力就可以获得致密的形坯。

四)烧结

烧结是通过焙烧,使形坯颗粒间发生扩散、熔焊、再结晶等过程,使粉末颗粒牢固地焊合在一起,使孔隙减小密度增大,最终得到“晶体结合体”。从而获得所需要的具有一定物理及力学性能的过程

五)后处理

粉末冶金制品经烧结后可以直接使用;但当制品的性能要求较高时,还常常需要进行后处理。

常用的后处理方法有以下几种:

1。整形 将烧结后的零件装入与压模结构相似的整形模内,在压力机上再进行一次压形,以提高零件的尺寸精度和减少零件的表面粗糙度,用于消除在烧结过程中造成的微量变形。

2。侵油 将零件放入100-200℃热油重或在真空下使油渗入粉末零件孔隙中的过程,经浸油后的零件可提高耐磨性,并能防止零件生锈。

3。蒸汽处理 铁基零件在500-600℃水蒸气中处理,使零件内外表面形成一层硬而致密的氧化膜,从而提高零件的耐磨性和防止零件生锈。

4。硫化处理 将零件放置在120℃的熔融硫槽内,经十几分钟后取出,并在氢气的保护下再加热到720℃,使零件表面孔隙形成硫化物。硫化处理能大大提高零件的减磨性和改善加工性能。

另外,粉末冶金制品还可以进行切削加工,压力加工,焊接,以及各种热处理和表面镀覆。

第五篇:粉末冶金复习资料

粉末冶金复习题

填空:

1.粉末冶金是用(金属粉末货金属粉末与非金属粉末的混合物)作为原料,经过(成形)和(烧结)制造金属材料、复合材料以及各种类型制品的工艺过程。

2.从制粉过程的实质来分,现有制粉方法可归纳为(物理化学法)和(机械法)。机械法是将原材料机械地粉碎,而(化学成分)基本上不发生变化的工艺过程;物理化学法是借助(化学的)或(物理)的作用,改变原材料的(化学成分)或(聚集状态)而获得粉末的工艺过程。

3.通常把固态物质按分散程度不同分成(致密体)、(粉末体)和(胶体)三类;〔1〕,即大小在1mm以上的称为(致密体),0.1μm以下的称为(胶体),而介于二者的称为(粉末体)。

4.粉末冶金工艺过程包括(制粉)工序,(成形)工序和(烧结)工序。

5.粉末冶金成形前的预处理包括(粉末退火)、(筛分)、(混合)、(制粒)、和(加润滑剂)等。6.粉末特殊成形方法有(等静压成形)、(连续成形)、(无压成形)、(注射成形)、(高能成形)等。

7.粉末的等温烧结过程,按时间大致可以划分为三个界限(1)(粘结阶段)(2)(烧结颈长大阶段)(3)(闭孔隙球化和缩小阶段)。8.通常按烧结过程有无明显的液相出现和烧结系统的组成进行分类分为(单元系烧结)、(多元系固相烧结)、(多元系液相烧结)。9.常用的粉末冶金锻造方法有(粉末热锻)和(粉末冷锻);而粉末热锻又分为(粉末锻造)、(烧结锻造)和(锻造烧结)三种。10.粉末冶金复合材料的强化手段包括(弥散强化)、(颗粒强化)和(纤维强化)。

11.粉末是颗粒与颗粒间的空隙所组成的分散体系,因此研究粉末体时,应分别研究属于(单颗粒)、(粉末体)及(粉末体的孔隙)等的性质。

12.粉末在压制过程中,粉末的变形包括(弹性变形)、(塑性变形)和(脆性变形)。13.通常等静压按其特性分成(冷等静压)和(热等静压)。

14.烧结过程有自动发生的趋势。从热力学的观点看,粉末烧结是(系统自由能减小)的过程,即烧结体相对于粉末体在一定条件下处于(能量较低)状态。

15.典型的烧结机构包括(粘性流动)、(蒸发与凝聚)、(体积扩散)、(表面扩散)、(晶界扩散)、(塑性流动)和(综合作用烧结理论)等。

16.多孔预成形坏的变形特性是研究粉末冶金锻造过程塑性理论的基础。锻造时,与致密金属坯的塑性变形相比,多孔预成形坯具有以下(质量不变条件)、(低屈服强度和低拉伸塑性)、(小的横向流动)、(变形和致密的不均匀性)变形特性。

17.一般粉末治金材料是金属和孔隙的复合体,其孔隙度范围很广,有低于l~2%残留孔隙度的(致密材料),有10%左右孔限度的(半致密材料),有>15%孔隙度的(多空材料),也有高达98%孔隙度的(泡沫材料)。

简答题:

一、还原法制取铁粉的过程机理是什么?影响铁粉还原过程的因素有哪些?发展复合型铁粉的意义有哪些? 答:铁氧化物的还原过程是分段进行的,即从高价氧化铁到低价氧化铁,最后转变成金属:Fe2O3→Fe3O4→Fe。固体碳还原金属氧化物的过程通常称为直接还原。当温度高于570°时,分三阶段还原:Fe2O3→Fe3O4→浮斯体(FeO·Fe3O4固溶体)→Fe 3Fe2O3+CO=2Fe3O4+CO2 Fe3O4+CO=3FeO+CO2 FeO+CO=Fe+CO2 当温度低于570°时,由于氧化亚铁不能稳定存在,因此,Fe3O4直接还原成金属铁 Fe3O4+4CO=3Fe+4CO2 影响因素:

(1)原料①原料中杂质的影响②原料粒度的影响

(2)固体碳还原剂①固体碳还原剂类型的影响②固体还原剂用量的影响

(3)还原工艺条件①还原温度和还原事件的影响②料层厚度的影响③还原罐密封程度的影响

(4)添加剂①加入一定的固体碳的影响②返回料的影响③引入气体还原剂的影响④碱金属盐的影响⑤海绵铁的处理 高密度、高强度、高精度粉末冶金铁基零件需要复合型铁粉。

二、电解法可生产哪些金属粉末?为什么?影响电解铜粉粒度的因素有哪些? 1、1)水溶液电解法:可生产铜、镍、铁、银、锡、铅,铬、锰等金属粉末,在一定条件下可使几种元素同时沉积而制得Fe-Ni、Fe-Cu等合金粉末。

2)熔盐电解法:可以制取Ti、Zr、Ta、Nb、Th、U、Be等纯金属粉末,也可以制取如Ta-Nb等合金粉末以及各种难熔化合物(如碳化物、硼化物和硅化物等)

2、(1)电解液的组成 1)金属离子浓度的影响。2)酸度(或H+浓度)的影响; 3)添加剂的影响(2)电解条件 1)电流密度的影响; 2)电解液温度的影响; 3)电解时搅拌的影响; 4)刷粉周期的影响;

5)关于放置不溶性阳极和采用水内冷阴极问题

三、粉末颗粒有哪几种聚集形式?它们之间的区别在哪里?

1、一次颗粒,二次颗粒(聚合体或聚集颗粒),团粒,絮凝体

2,通过聚集方式得到的二次颗粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华引力粘结而成的,其结合强度不大,用磨研、擦碎等方法或在液体介质中就容易被分散成更小的团粒或单颗粒;絮凝体是在粉末悬浮液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒

四、压制前粉末需要进行哪些预处理?其作用如何? 预处理包括:粉末退火、筛分、混合、制粒、加润滑剂 预先退火:使氧化物还原,降低碳和其他杂质的含量,提高粉末的纯度;消除粉末的加工硬化,稳定粉末的晶体结构 混合:将两种或两种以上不同成分的粉末混合均匀 筛分:把颗粒大小不同的原始粉末进行分级

制粒:将小颗粒的粉末制成大颗粒或团粒,改善粉末的流动性。在硬质合金生产中,为了便于自动成形,制粒使粉末能顺利充填模腔 加润滑剂:降低成形时粉末颗粒和模冲间摩擦,改善压坯的密度分布,有利于脱模

五、影响压制过程的因素有那些?

1、粉末性能对压制过程的影响 1)粉末物理性能的影响

(1)金属粉末本身的硬度和可塑性;(2)金属粉末的摩擦性能 2)粉末纯度(化学成分)的影响 3)粉末粒度及粒度组成的影响 4)粉末形状的影响 5)粉末松装密度的影响

2、润滑剂和成形剂对压制过程的影响

1)润滑剂和成形剂的种类 2)润滑剂和成形剂的用量 3)振动压制的影响 4)磁场压制的影响

六、粉末冶金技术中的特殊成型包括哪些?与一般压制法相比有什么特点?

1、等静压成型,粉末连续成型,粉浆浇注成型,粉末注射成形,爆炸成形

2、(1)等静压成型:

1)能够压制具有凹形、空心等复杂形状的杆件;

2)压制时,粉末体与弹性模具的相对移动很小,所以摩擦损耗也很小。单位压制压力较钢模制法低; 3)能够压制各种金属粉末及非金属粉末。压制坯件密度均匀,对难熔金属粉末及其化合物尤其有效; 4)压坯强度较高,便于加工和运输; 5)模具材料是橡胶和塑料,成本较低廉; 6)能在较低的温度下制得接近完全致密的材料(2)粉末连续成型:

1)能够生产一般轧制法难于或无法生产的板带材; 2)能够轧制出成分比较精确的带材; 3)粉末轧制的板带材料具有各向同性; 4)工艺过程短、解约能源;

5)粉末轧制法成材率比熔铸轧制法高; 6)不需大型设备,减少大量投资

(3)、粉浆浇注成型:制取某些新型特殊材料;生产羰基铁粉制品,适当烧结处理后,材料机械性能接近锻造材料;生产设备简单,生产费用低

(4)、粉末注射成形:制造形状复杂的坯块(5)、爆炸成形:能够压出相对密度极高的压坯

八、热等静压技术适宜加工什么样的材料?同热压法比较,它的特点是什么?

热等静压法制取的制品密度比热压法要高些,尤其在压制难熔金属时,差别更为明显。同一材料的热等静压制温度比热压法低。考虑到低的压制温度有利于获得细晶粒的合金材料,有利于制取一般方法难于制取的熔点相差悬殊的层叠复合材料,所以,热等静压材料性能普遍高于热压法制取的材料性能。

十、粉末等温烧结的三阶段是怎样划分的?实际烧结过程包括哪些现象? 答:粉末的等温烧结过程,按时间大致可划分为三个界限不十分明显的阶段:

(1)粘结阶段-烧结初期,颗粒间的原始接触点或面转变成晶体结合,即通过成核、结晶长大等原子过程形成烧结颈。(2)烧结颈长大阶段-原子向颗粒结合面的大量迁移使烧结颈扩大,颗粒间距离缩小,形成连续的孔隙网络。

(3)闭孔隙球化和缩小阶段-当烧结体密度达到90%以后,多数孔隙被完全分隔,闭孔隙数量大为增加,孔隙形状趋近球形并不断缩小。

实际烧结过程可能出现的现象例如粉末表面气体或水分的挥发、氧化物的还原和离解、颗粒内应力的消除、金属的回复和再结晶以及聚晶长大等。

十一、分析影响互溶多元系固相烧结的因素。答:影响因素:(1)烧结温度。

(2)烧结时间 在相同温度下,烧结时间越长,扩散越充分。(3)粉末粒度 合金化的速度随着粒度减小而增加。

(4)压坯密度 增大制压力,将使粉末颗粒间接触面积增大,扩散界面增大,加快合金化过程。

(5)粉末原料 采用一定数量的预合金粉或复合粉同完全使用混合粉比较,达到相同的均匀化程度所需的时间将缩短,因为这时扩散路程缩短,并可减少要迁移的原子数量。(6)杂质 有些杂质会存在于粉末表面或在烧结过程的杂质阻碍颗粒间的扩散进行。

十七、说明烧结的概念及烧结过程。

答:烧结是粉末或粉末压坯,在适当的温度和气氛条件下加热所发生的现象或过程。烧结的结果是颗粒之间发生粘结,烧结体的强度增加,而且多数情况下,密度也提高。

烧结过程:粉末烧结后,烧结体的强度增加,首先是颗粒间的联结强度增大,即联结面上原子间的引力增大。在粉末或粉末压坯内,颗粒间接触面上能达到的原子引力作用范围的原子数目有限。但是在高温下,由于原子振动的振幅加大,发生扩散,接触面上才有更多的原子进入原子作用力的范围,形成粘结面,并且随着粘结面的扩大,烧结体的强度也增加。烧结面扩大进而形成烧结颈,使原来的颗粒界面形成晶粒界面,而且随着烧结的继续进行,晶界可以向颗粒内部移动,导致晶粒长大。名词解释

松装密度:粉末试样自然的充满规定容器时,单位容积的粉末质量。松装密度可以用漏斗法、斯科特容量计法来测量。

氢损:把金属粉末的试样在纯氢气气流中煅烧足够长的时间,粉末中的氧被还原生成水蒸气,某些元素与氢气生成挥发性化合物,与挥发性元素一同排出,测得试样粉末的质量损失称为氢损。

熔浸:将粉末压坏与液体金属接触或埋在液体金属内,让压坏的空隙被金属液体填充,冷却下来就得到致密材料或零件,这种工艺称为熔浸。

熔浸必须具备的基本条件:

(1)骨架材料与熔浸材料的熔点相差较大,不致造成零件变形。(2)

熔浸金属应能很好溶湿骨架材料,即润湿角小于90度。

(3)骨架与熔浸金属之间不发生互溶或溶解度不大,以避免在熔浸过程中产生新相而致使液相消失。(4)

熔浸金属的量应以填满压坏中的空隙为限度,过多或过少均为不利。

活化烧结:采用化学或物理的措施,使烧结温度降低,烧结过程加快,或使烧结体密度和其他性能得到提高的方法称为活化烧结。活化烧结从方法上可以分为两种类型:(1)依靠外界因素活化烧结过程。如加活性剂等。(2)提高粉末活性。活化烧结与预氧化烧结,添加少量合金元素,在气氛或填料中添加活化剂。

电火花烧结:利用粉末间火花放电所产生的高温,并且同时受外应力作用的一种特殊烧结法。压缩性:是金属粉末在规定的压制条件下被压紧的能力。成形性:指粉末压制后,压坏保持既定形状的能力。

强化机理:使金属基体中含有高度分散的第二相质点而达到提高

致密化过程:

1快速致密化阶段——即在热压初期发生相对滑动,破碎和塑形变形,类似成形时的颗粒重排

2致密化减速阶段——以塑形流动为主要机构,类似于烧结后期的闭孔收缩阶段 3趋近终极密度阶段——受扩散控制的蠕变为主要机构,此时的晶粒长大使致密化速度大大降低,达到终极密度后,致密化过程完全停止

制取铁粉的主要还原方法有那些?比较其优缺点 碳还原:可以还原很多金属氧化物,但容易被碳污染

气体还原:可以制取合金粉,制取的铁粉比碳还原制取的纯,生产成本低 金属热还原:可以制取生产无碳金属,用于稀有金属 模压成型工艺的特点是什么?

(1)模压成型工艺的优点。模压成型工艺有以下几方面优点 ①与挤出和注射等成型工艺相比,模压成型工艺所需设备结构简单、制造精度不髙、制造费用低,所以投资少、见效快,为发展多品种、小批量的生产提供了有利条件,这也是模压成型工艺目前还在大量运用的原因之一。

②在模压成型过程中,由于塑料的流动距离很短,受填料的定向影响小,所以塑件的尺寸变动小,不易变形,尺寸稳定性好,机械性 能稳定。

③相同吨位的压机可以成型较大平面的制品。④模压成型工艺成熟,生产过程易于控制。

⑤模压成型中没有浇注系统,原材料浪费相对较少。对于不能重复利用的热固性材料来讲,节约原料尤为重要。

⑥模压成型基本上适合于加工各种塑料。尤其像氨基树脂、环氧树脂和聚酰亚胺等材料,用注射成型既困难又会影响制品外观质量;对于用石棉或玻璃纤维等增强的塑料,在注射和挤出成型中,纤维易在浇口部分断裂,使制品的机械强度特别是冲击强度降低,失去增强的意义;聚酯团状和片状模塑料若采用注射成型,则需特殊的强迫加料装置,导致设备费用昂贵。模压成型是制造高强度塑件最有效的方法。

(2)模压成型工艺的缺点。模压成型的缺点表现在以下三方面。①生产周期长,生产效率低。

②较难实现生产自动化,因而劳动强度大。

③因为飞边厚,塑件厚度方向的尺寸难以控制,所以模压成型不能模压尺寸精度要求较的制品。

1.什么是弹性后效其主要影响因素有哪些

答 当压力去除之后和将压坯脱拱之后由于内应力作用压坯产生的膨胀现象称为弹性后效。弹性后效的大小取决于残留应力的高低 主要影响因素 a.压制压力压制压力高弹性内应力高

b.粉末颗粒的弹性模量弹性模量越高弹性后效越大

c.粉末粒度组成越合理产生的弹性应力越小粒度小弹性后效大 d.颗粒形状形状复杂弹性应力大弹性后效大 f.粉末混合物的成份

烧结气氛的两个作用是什么

答 1保护功能控制烧结体与环境之间的化学反应如氧化和脱碳 2净化功能及时带走烧结坯体中润滑剂和成形剂的分解产物

致密化:压力作用下松散状态→拱桥效应的破坏(位移→颗粒重排)+颗粒塑性变形→孔隙体积收缩→致密化 等静压成型

定义:粉末装于弹性(柔性)模具(包套)中,以流体为传压介质,各向均匀受压。分类:

冷等静压(CIP):常温下进行的等静压 常温下,粉末装于弹性模具中,以液体为传压介质,粉末体各向均匀受压而密实成压坯 热等静压(HIP):高温下进行的等静压 高温下,粉末或压坯装于包套中,在高压容器内,以气体为传压介质,使粉末同时承受高温和等静压力作用而获得致密材料或制品.等静压的一般特点:压坯形状、尺寸范围大,尤大尺寸、形状复杂压坯或制品;

压坯密度高且均匀 形粉末广,尤难熔金属化合物、陶瓷、高合金钢等 工艺简单,可不加润滑剂 设备:冷等静压机分类:螺 纹式、拉杆式、框架式

热等静压机分类:螺纹式、框架式 HIP特点:

① 压制、烧结同时进行,能消除粉末坯体中的所有孔隙,相对密度可达0.9999 ② 压力作用,使HIP的烧结温度低于通常的烧结温度 ③ HIP所需压制压力比CIP低

④ 晶粒细小、组织均匀,无成分偏析 ⑤ 材料综合性能好,是PM高新技术之一 ⑥ 设备投资大,成本 粉末冶金定义

制取金属及化合物粉末,采用成形和烧结工艺制 成金属材料、复合材料、陶瓷材料及其它们的制品 的技术科学。

粉末压制成形-致密化现象

Ø 致密化:压力作用下松散状态→拱桥效应的 破坏(位移→颗粒重排)+颗粒塑性变形→ 孔隙体积收缩→致密化;

Ø 拱桥效应:颗粒间由于摩擦力的作用而相互 搭架形成拱桥孔洞的现象;

Ø 影响因素:与粉末松装密度、流动性存在一 定联系。脱模压力

脱模压力指把坯块从模具内取出所需的压力。什么是弹性后效?它对压坯有何影响? 加载(或卸载)后经过一段时间应变才增加(或减小)到一定数值的现象。压制过程中,当卸掉压制力并把坯块从模具内取出后,由于弹性内应力的作用,坯块发生弹性膨胀,这种现象称为弹性后效 弹性后效:在去除P压后,压坯所产生的胀大现象。

弹性后效危害:压坯及压模的弹性应变是产生压坯裂纹的主要原因之一,由于压坯内部弹性后效不均匀,脱模时在薄弱部位或应力集中部位就会出现裂纹。影响压坯密度分布的因素(P182)实验证明,增加压坯的高度会使压坯各部分的密度差增大,而 加大直径则会使密度的分布更加均匀。压坯中密度分布的不均匀 性,在很大程度上可以用双向压制来改善。在双向压制时,与上、下模冲接触的两端密度较高

粒度: 颗粒在空间范围所占大小的线性尺度.粒度组成(粒度分布): 不同粒径的颗粒占全部粉末的百分含量.平均粒度: 粉末颗粒粒径的统计平均值.什么是松装密度和振实密度?松装密度的控制有何重要意义? 松装密度:自然充填容器时,单位体积的质量

振实密度:粉末在振动容器中, 在规定条件下经过振动后测得的粉末密度

意义:压制过程中, 采用容量装粉法, 即用充满形腔的粉末体积来控制压坯的密度和单重.用松装密度和振实密度来描述粉体的这种容积性质.如何提高粉末的ρ松和流动性?

松装密度高的粉末流动性也好,方法:粒度粗、形状规则、粒度组成用粗+细适当比例、表面状态光滑、无孔或少孔隙 压坯中密度分布不均匀的状况及其产生的原因是什么?如何改善密度分布? 密度分布不均匀的状况:一般,高度方向和横断面上都不均匀.①平均密度从高而低降低.② 靠近上模冲的边缘部分压坯密度最大;靠近模底的边缘部分压坯密度最小.③ 当H/D(高径比)较大时,则上端中心的密度反而可能小于下端中心的密度.产生的原因:压力损失 改善压坯密度不均匀的措施: ① 在不影响压坯性能前提下, 充分润滑;② 采用双向压制;③ 采用带摩擦芯杆的压模;④ 采用浮动模;⑤ 对于复杂形状采用组合模冲, 并且使各个模冲的压缩比相等;⑥ 改善粉末压制性(压缩性、成形性)— 还原退火;⑦ 改进模具构造或适当变更压坯形状.⑧ 提高模具型腔表面硬度和光洁度.HRC58~63,粗糙度9级以上.什么是等静压成形?它有什么优缺点?其基本原理是什么?

等静压成形是指,借助于高压流体的静压力作用,使弹性模套内的粉末在同一时间内各个方向上均衡地受压而获得密度分布均匀和强度较高的压坯的成形方法。优点:① 能成形凹形、空心等复杂形状.② 粉末与弹性模具间相对移动很小、摩擦损耗小,压制压强较钢模低.③ 能压制各种金属粉末及非金属粉末;压坯密度分布均匀.④ 压坯强度较高.⑤ CIP模具材料是橡胶、塑料, 成本低廉.⑥ 能在较低温度下制得接近完全致密的材料.—HIP 缺点:

① 压坯尺寸精度和表面光洁度都比钢模压制低;② 生产效率低于自动钢模压制;③ CIP中使用的橡胶或塑料包套寿命比金属压模要短得多;④ HIP中使用的包套都为一次性、消耗大,且包套材料种类受到限制.基本原理(帕斯卡原理)流体在密闭容器内任何一点所受的压应力,将无保留地传递到流体(或容器)的各处.① 流体内任意处的静压应力相等,称为准静力等静压,否则为非准静力等静压.②流体通过液-固(气-固)界面对固体施加压力.② ③HIP在加压同时还要加热,使成形和烧结过程同时完成

简述热等静压的过程和特点。

过程:将装于包套内的粉体置于充满气体介质的高温压力容器内,使粉体在压缩的同时经历高温烧结, 成为致密制品.特点:粉末体(粉末压坯或包套内的粉末)在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,降低了制品的烧结温度,改善了制品的晶粒结构,消除了材料内部颗粒间的缺陷和孔隙,提高了材料的致密度和强度。

烧结

1.什么是烧结?如何分类? 一定气氛下, 粉末或压坯, 在低于主要组分熔点温度下的加热处理过程.分类:1)按有无液相分和烧结系统的组成分:单元系烧结、多元系固相烧结和多元系液相烧结。

烧结推动力

粉体颗粒尺寸很小,比表面积大,具有较高的表面能,即使在加压成型体中,颗粒间接触面积也很小,总表面很大而处于较高能量状态。根据能量最低原理,它将自发地向最低能量状态变化,并伴随使系统的表面能减少。可见,烧结是一个自发的不可逆过程,系统表面能降低是推动烧结进行的基本动力。

粉状物料的表面能大于多晶烧结体的晶界能,这是烧结过程的推动力,粉体经烧结后,晶界能取代了表面能,这是烧结后多晶材料稳定存在的原因。

什么是液相烧结?有哪些液相烧结技术?各有什么应用? 烧结温度下,低熔点组元熔化或形成低熔共晶、产生可流动液相的烧结.在近现代, 液相烧结的应用领域迅速扩大, 涉及电触头、工具钢、超合金、硬质合金、高密度合金、金刚石-金属复合材料、绝缘材料、难熔材料、磁性材料、汽车结构零件和高强度陶瓷等.液相烧结的优点和缺点各有哪些? 优点:① 由液相引起的物质迁移要比固相扩散快;② 液相产生的毛细力促使液相流动和颗粒发生适位的位移(重排),提高烧结速度;③ 最终,液相将填满烧结体内的孔隙,可以获得密度高、性能好的产品.局限性:① 尺寸控制较固相烧结难.因为液相烧结的材料尺寸变化大,有的线收缩可>20%;有些材料烧结过程会发生膨胀.② 可能出现变形、开裂和坍塌.液相烧结过程中压坯强度较低,同时,压坯的密度不均匀,在液相烧结过程中会造成收缩不均匀,可能引起较大的变形、甚至造成开裂.当液相量过多时,则可能出现坍塌.通常,大的压坯容易发生开裂, 压坯的悬臂部分容易发生坍塌.一般要求严格控制加热速度(保证刚度和均匀收缩).液相烧结的三个基本条件是什么? 良好的润湿性;固相在液相中有一定溶解度;适当的液相数量.液相烧结可以分为哪三个阶段?各阶段基本特点是什么?(1)液相流动与颗粒重排阶段:颗粒在液相内近似呈悬浮状态,受液相表面张力推动,颗粒可发生位移、相对滑动.烧结体密度迅速增大.(2)固相溶解-再析出阶段:该过程一般特征是显微组织粗化,固相在液相中的溶解度随温度和颗粒形状、大小而变化.小颗粒、颗粒表面凸起、棱角因具有较高饱和溶解度,将优先溶解,使小颗粒趋向减小、颗粒表面趋向平整光滑;同时,液相中一部分过饱和原子在大颗粒表面沉析,使大颗粒趋于长大.结果: 颗粒外形逐渐趋于球形、小颗粒逐渐缩小或消失,大颗粒更加长大, 从而使颗粒更加靠拢,烧结体发生收缩.这阶段致密化速度已显著减慢、气孔已基本消除.颗粒间距更加缩小,液相流进孔隙更加困难.3)固相烧结阶段 经前两阶段,颗粒间互相靠拢、接触、粘结并形成连续骨架,剩余液相充填于骨架间隙.刚性骨架阻碍颗粒更进一步重新排列,使该阶段致密化速率明显减慢.液相不完全润湿固相或液相数量较少时,该阶段将表现得更为突出.固相骨架形成后的烧结过程与固相烧结相似.扩散作用会导致固体颗粒间接触长大,故,大多数液相烧结材料性能将随该阶段时间延长而降低

下载粉末冶金材料的应用与发展word格式文档
下载粉末冶金材料的应用与发展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    粉末冶金概述

    粉末冶金产品与工艺流程概述 粉末冶金是用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。粉末冶金工......

    世界粉末冶金行业的发展现状分析

    世界粉末冶金行业的发展现状分析粉末冶金具有原材料利用率高(达95%)、制造成本低、材料综合性好、可近净成型、产品精度高且稳定等优点。此外,粉末冶金还可制造传统铸造方法和......

    铁基粉末冶金行业发展(推荐5篇)

    铁基粉末冶金行业发展(2010年)现在使用的合金化材料如:钼、镍和铜等的价格近年来曾大幅增长,迫使粉末冶金生产企业寻找其他可以替代的材料。钼、镍和铜与氧的亲和力较弱,添加钼对......

    粉末冶金技术简介

    姓名:张丹学号:11309010 指导老师:张自强 粉末冶金的技术简介 摘要:本文对近几十年以来发展的粉末冶金过程中应用到的各种技术,包括制粉技术、成形技术和烧结技术作了一个简单的......

    粉末冶金材料学

    1.粉末冶金技术的特点(优越性) 能制造熔铸法无法获得的材料和制品 1、难熔金属及其碳化物、硼化物和硅化物;2、孔隙可控的多孔材料3、假合金4、复合材料;5 微、细晶(准晶)和过饱和......

    粉末冶金技术简介

    Xx大学本科生专业选修课 粉末冶金技术 结课论文 论文名称: 学生: 院系名称: 授课教师: 专业班级: 学 号: 联系电话: 电子邮箱:粉末冶金技术简介 摘要:本文对近几十年以来发展的粉末......

    粉末冶金技术论文

    粉末冶金 作者姓名 班级: 学号: 摘要:粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合以及各种类型制品的工艺技术。......

    粉末冶金技术论文

    粉末冶金技术 刘工艺 200806102 摘要: 粉末冶金(P/M)技术是一门重要的材料制备与成形技术,被称为是解决高科技、新材料问题的钥匙。高性能、低成本、净近成形一直以来是粉末冶......