第一篇:济钢高炉热风炉应用高辐射覆层技术
2011年全国炼铁低碳技术研讨会论文集
高辐射覆层技术在济钢2#、3#1750m3高炉热风炉应用效果研究
高贤成1,李丙来1,王连杰1,周惠敏2, 田凤军2, 孙传胜2,翟延飞
2(1.山东钢铁济钢集团有限公司 山东济南 25010
12.山东慧敏科技开发有限公司 山东济南 250100)
摘要:济钢炼铁厂于2005年建造的2#、3#1750m3高炉热风炉上使用了山东慧敏科技开发有限公司自主研发的高辐射覆层技术。为研究高辐射覆层的长期应用效果,投产后,我们对热风炉的运行数据进行了跟踪。本文对4年来3#高炉3座热风炉(有覆层)与1#高炉3座热风炉(无覆层)的热风温度,和5年来2#高炉2#热风炉(有覆层)与2#高炉1#热风炉(无覆层)的过渡区格子砖温度进行了对比,对其效益进行了分析研究。
关键词:高炉热风炉,高辐射覆层技术,“杰能王”纳微米高辐射覆层
1.概述
由山东慧敏科技开发有限公司研究开发,并在济钢2#、3#1750m3高炉热风炉进行应用效果研究的纳微米高辐射覆层技术是通过界面处理和粉体超细化技术,将高发射率材料涂覆在物体表面,形成厚度约0.3mm的均匀覆层,使物体表面具有很强的热辐射吸收和辐射能力,辐射传热效率提高的新型节能技术。高辐射覆层通过强化辐射换热,提高物体表面温度,增加物体内外温度梯度,使物体升温期吸热速度和吸热量增加,降温期放热速度和放热量也增加。在蓄热体上应用高辐射覆层是一项高效蓄热技术,是在高炉热风炉格子砖表面涂覆 “杰能王”纳微米高温红外节能涂料,使格子砖表面具有更强的吸收和辐射热量的能力,大大提高格子砖的热交换效率,从而使热风炉的工作效率提高,达到提高风温的目的。
济钢集团公司炼铁厂于2005年建造的2#、3#1750m3高炉热风炉上采用了高辐射覆层技术。2#高炉2#热风炉蓄热室上部30层硅质格子砖及拱顶和3#高炉3座热风炉蓄热室上部30层硅质格子砖上使用“杰能王”纳微米高温红外节能涂料。为研究高辐射覆层的长期应用效果,我们对热风炉的运行数据进行了跟踪。2 高辐射覆层技术应用效果研究
2.1 2#1750m3高炉热风炉应用效果研究
比较格子砖表面温度是研究高辐射覆层技术应用效果的一种方式。通过对比位于1#和2#热风炉高度17.62米处同平面等弧3点测试的过渡区格子砖表面温度,比较有覆层格子砖与无覆层格子砖的表面蓄放热量情况。图
1、图2分别是1#、2#热风炉投产一个月时过渡区格子砖的温度曲线图。
无覆层的热风炉格子砖温度曲线起伏小,吞吐热量少
图12005年1#热风炉过渡区格子砖温度图
图1中1#热风炉过渡区格子砖(无覆层)的温度在加热阶段升温缓慢,曲线斜率小,升温幅度小。说明
吸热速度慢,蓄热量小。图2中2#热风炉过渡区格子砖的温度在加热阶段升温
快,曲线斜率大,升温幅度大。说明吸热速度快,蓄热量大。
有覆层的热风炉格子砖温度曲线起伏大,吞吐热量多
图22005年2#热风炉过渡区格子砖温度图
图
1、图2中2005年1#和2#热风炉格子砖的温度统计数据见表1。
1#热风炉过渡区格子砖(无覆层)燃烧期终点温度为947.33℃,2#热风炉过渡区格子砖(有覆层)燃烧期终点温度为998.87℃,采用高辐射覆层后,2#热风炉过渡区格子砖的终点温度提高了51.54℃。1#热风炉过渡区格子砖(无覆层)的温差平均值为137.08℃,2#热风炉过渡区格子砖(有覆层)的温差平均值为223.75℃,采用高辐射覆层后,2#热风炉过渡区格子砖(无覆层)温差增大了86.67℃。
表12005年1、2热风炉格子砖温度
#
#
够吸收更多的能量,从而达到较高的终点温度,送风期能够释放更多的能量,传递更多的能量给冷风。格子砖的温差增大也证明了格子砖吸收热量增多,释放的热量也增大,提高了热风炉的工作效率和热效率。
投产3年后(2008年),1#、2#热风炉的过渡区格子砖温度曲线见图
3、图4;投产4年后(2009年),1#、2#热风炉的过渡区格子砖温度曲线见图
5、图6;投产5年后(2010年),1#、2#热风炉的过渡区格子砖温度曲线见图
7、图8;投产6年后(2011年),1#、2#热风炉的过渡区格子砖温度曲线见图
9、图10。
图32008年9月20日1#热风炉图42008年9月20日2#热风炉
图52009年4月26日1#热风炉图62009年4月26日年2#热风炉
图72010年2月21日1#热风炉图82010年2月21日2#热风炉
图92011年1月17日1#热风炉图102011年1月17日2#热风炉
从图中可以看出,2#热风炉格子砖(有覆层)温度比1#热风炉格子砖(无覆层)温度高,并且在燃烧期,升温快,顶点温度高,蓄热量高;送风期,降温快,放热量高。
图
3、图4中2008年1#和2#热风炉格子砖的温度统计数据见表2。
由图5、6可以看出,在燃烧期,2#热风炉升温速度快,平均温度(895.64℃)比1#热风炉的平均温度(821.29℃)高74.35℃。在统计周期内,2#热风炉烧炉终点温度平均值与送风结束时的最低温度平均值的温差值远高于1#热风炉,可达147.7℃。2#热风炉送风结束时的温度低,燃烧终点温度高,温度振幅大的特征,说明覆层使格子砖热量交换效率大幅提高。由于相同的时间内吞吐的热量大,可使送风温度高,而且平稳。这对高炉生产是非常有利的。
图
7、图8中2010年1#和2#热风炉格子砖温度统计数据见表4。
由图9、10可以看出,2#热风炉应用高辐射覆层技术6年后,比未使用此
技术的1#热风炉的温度曲线起伏大,吞吐的热量多,高辐射覆层具有长期有效性。
2#1750m3高炉在应用5年后(2010年),燃烧期过渡区格子砖终点温度与2005年的温度数值比较如表5所示。
表2投产3年后(2008年)1#、2#热风炉格子砖温度
图
5、图6中2009年1和2热风炉格子砖的温度统计数据见表3。
表3投产4年后(2009年)1#、2#热风炉格子砖温度
高辐射覆层技术的1#热风炉;1#热风炉格子砖的烧炉终点温度降低了97.20℃,2#热风炉格子砖的烧炉终点温度仅降低了36.51℃,温差逐步增大。这证明HM-HRC高辐射覆层具有长效性,并且对格子砖具有良好的保护作用,延长格子砖的使用寿命。
表45年后(2010年)
1、2热风炉格子砖温度
#
#
表52010年1、2热风炉格子砖烧炉终点温度与2005年对比
送风期,格子砖温度比1年前的温度数值略有降低。但相比较2#1750m3高炉1#热风炉的格子砖温度在燃烧期和送风期两个阶段数值进一步接近,说明1#热风炉蓄放热量的能力降低,而2#热风炉的蓄放热量的能力要好于1#热风炉。2#1750m3高炉在应用6年后(2011年),2#热风炉的蓄放热量的能力要好于1#热风炉。2.2 3#1750m3高炉热风炉应用效果研究
3#1750m3高炉3座热风炉与同一设计未使用覆层技术的1#1750m3高炉3座热风炉
平均风温比较。
使用1年后,比较3#高炉3座热风炉与同一设计的1#高炉3座热风炉平均风温。1#高炉热风炉混风前
送风温度平均值是1192.2℃,3#高炉热风炉混风前送风温度平均值是1221.3℃。3#高炉热风炉比1#高炉热风炉混前风温平均提高29.1℃。
使用2年后,1#高炉热风炉平均混前送风温度为1190℃;3#高炉热风炉平均混前送风温度为1215.3℃。3#高炉热风炉混前送风温度提高了25.3℃。
使用3年后,1#高炉热风炉混前送风温度平均为1200.7℃,3#高炉热风炉混前送风温度平均是1221.4℃,3#高炉热风炉比1#高炉热风炉混前风温平均提高20.7℃。
使用4年后,1#高炉热风炉混前送风温度平均是1201.5℃,3#高炉热风炉混前送风温度是1220.7℃。3#高炉热风炉比1#高炉热风炉混前送风温度平均高19.2℃。运行4年后,效果明显,炉体未发现不良影响。高炉热风炉应用高辐射覆层技术经济效益分析
3.1 3#高炉增产节焦效益
炼铁生产是一个复杂的系统工程,在同样的工况情况下,提高热风炉的热风温度可以提高炼铁产量降低焦比,也是增加喷煤的必要条件。热风炉风温每提高100℃,可节约焦炭20kg/吨铁,增产3%,增加喷煤量40kg/吨铁,减少1吨焦炭可减少排放2.4吨CO2。
济钢3#高炉和1#高炉在基本相同的工况下,3#高炉的热风炉上部30层格子砖和拱顶刷涂了“杰能王”涂料。4年后,3#高炉混前风温比1#高炉平均每年提高23.6℃。3#高炉的利用系数平均2.5,按年360生产日,年产157.5万吨铁,计算如下:提高风温23.6℃——可节约焦炭4.72kg/吨铁,增产0.708%,增加喷煤9.44kg/吨铁。(山东冶金焦炭:约为1600元/吨,喷吹煤:900~950元/吨,按每增产1吨铁利润200元计算,没有管理成本)3.1.1 年节约焦炭
每年减少焦炭消耗:4.72kg/吨铁×157.5万吨/年=7434吨/年 每年可节省资金:1600元/吨×7434吨=1189.44万元 3.1.2 年增产效益
每年增加产量:157.5万吨×0.708%=11151吨 每年可增产效益:200元/吨×11151吨=223.02万元 3.1.3 年喷煤效益
每年增加喷煤用量:9.44kg/吨铁×157.5万吨/年 =14868吨/年 增加喷煤代替焦炭的节省效益:(1600×0.8-925)元/吨×14868=527.81万元 3.1.4 年节能增产效益
三项效益合计:(1189.44万元+223.02万元+527.81万元)= 1940.27万元 3.2 3#高炉减少CO2排放量效益
减少1吨焦炭消耗可减少排放2.4吨CO2。每年减少CO2排放量:年节焦量×2.4=7434吨/年×2.4 =1.78万吨结论
(1)投产5年后,2#1750m3高炉2#热风炉(有覆层)比1#热风炉(无覆层)燃烧期过渡区格子砖终点温度提高112.23℃,格子砖温差增大了139.99℃,高辐射覆层有效提高了2#热风炉的工作效率和热效率,并有效保护了格子砖,延长了格子砖的使用寿命,证明了高辐射覆层技术的长期有效性。
(2)投产5年后,3#1750m3高炉热风炉效果稳定,混风前风温比1#1750m3仍提高19.2℃,同时生产中未见覆层对热风炉有不利影响,设备运行良好。
(3)3#1750m3高炉比1#1750m3综合年节焦增产经济效益1940.27万元,年节省焦炭7434吨/年,年CO2排放量减少1.78万吨。
综上所述,高辐射覆层技术降低了济钢高炉热风炉的煤气消耗,减少了CO
2的排放,致密的膜层可以提高基体的物理力学性能,对高炉热风炉无不利影响,是一种投资少、回收期短、无运行成本的可提高热风炉的热转换效率、又可延长蓄热体生命周期的新型原创性技术,效果长期有效,为济钢的节能降耗工作起到积极显著作用。
第二篇:我国高炉热风炉新技术应用及展望
我国高炉热风炉新技术应用的回顾与展望
近20年以来,随着我国经济的高速发展,高炉炼铁技术进步非常之快,高炉热风炉大型化、多样化、高效化,大大缩小了我们与世界先进水平的差距,一大批炼铁及相关科技工作者开发出了一系列世界水平的具有自主知识产权的领先技术,填补国内外热风炉技术的空白,引起世人关注。主要表现在:霍戈文高风温热风炉的引进、大型外燃式热风炉或大型外燃式热风炉加辅助小热风炉的组合、顶燃式热风炉(俄卡鲁金顶燃式的引进、球式顶燃式、逆旋流顶燃式的开发)、大型外燃式热风炉自身预热式在大型高炉上的成功应用、高炉热风炉烟气余热预热助燃空气和煤气技术及其附加加热换热技术组合等等。所有这些,都取得了高风温的实效。热风炉设计的系统优化,自主设计、制造不同类型的高炉热风炉,各交叉口采用的组合砖都能自主设计、制造和砌筑。高炉热风炉烘炉技术、凉炉与保温技术,耐火材料和耐火涂料的研发大大推动了热风炉的技术成熟与发展。
在高炉热风炉的理论研究方面也取得了骄人的业绩。例如,计算机技术的应用,数值模拟仿真技术开发,高效燃烧器及冷态、热态实验,冷风与烟气分配技术也有我国自己的专利,高炉热风炉燃烧、流动与传热三大理论与实验研究。实现高风温的主要技术路线有:利用低热值煤气获得高风温的工艺方法;热工设备的组合;工艺技术材料优化与创新;国内也有人提出了1400℃超高风温的设想。
2005年我国重点大中型钢铁企业高炉平均风温1084℃,虽有较大提高,但比国际先进水平低100~150℃。同时,高炉煤气放散率仍有9.51%。这不仅浪费了大量的二次能源,而且严重污染了大气环境。随着炼铁燃料消耗所占炼铁制造成本翻番地增长,高风温对于富氧喷煤强化炼铁,推动炼铁技术进步、降低成本和增加经济效益显得越来越重要。
高温空气燃烧技术的应用
利用低热值煤气获得高风温的工艺方法主要有:(1)高炉煤气富化法;(2)金属换热器法;(3)自身预热法;(4)富氧助燃法;(5)掺入热风法;(6)辅助热风炉法等等。其中最具典型意义的两种:金属换热器法和热风炉自身预热法基本上代表了当今高温空气燃烧技术在利用低热值煤气获得高风温方面的发展新趋势。高温空气燃烧技术在国内的兴起
高温空气燃烧技术(High Temperature Air Combustion-HTAC)是20世纪90年代开发成功的一项燃料燃烧领域中的新技术。HTAC包括两项基本技术手段:一是燃烧产物显热最大限度回收(或称极限回收);二是燃料在低氧气氛下燃烧。燃料在高温下和低氧空气中燃烧,燃烧和体系内的热工条件与传统的(空气为常温或低于600℃以下,含氧不小于21%)燃烧过程有明显区别。这项技术将对世界各国以燃烧为基础的能源转换技术带来变革性的发展。
1999年10月在北京中国科技会堂召开的高温空气燃烧技术(HTAC)技术研讨会上开始了第一次与世界各地开展此项技术的交流。很快诸如北京神雾、北京北岛能源技术开发公司、北科大赛能杰、山东博大等推出一系列蓄热式热回收技术,应用于工业化生产。就高炉热风炉而言,热风炉自身预热法和热风炉附加加热换热系统都属于高温空气燃烧技术在高炉热风炉上的应用。
附加加热换热系统—金属换热器法应用良好
德国迪林根(Dilingen)罗尔5号高炉(2220m3)采用附加加热换热系统(Additional Preheating Heat-exchange System)。
在罗尔5号高炉采用的附加加热换热系统中,建有两台金属换热器、1座燃烧炉,利用循环的废气可将助燃空气预热到500℃,同时把煤气预热到250℃,用单一的低热值(3000kJ/m3)高炉煤气可把风温提高到1285℃。
这种金属换热器法是一种热工设备的组合,具有较高的灵活性,独立于热风炉而存在,可以根据高炉状态的变化灵活地调节空气和煤气的预热温度,从而提高或降低热风温度,减少或增加预热空气和煤气量。实用新型专利“带有附加燃烧炉的热风炉预热装置”(专利号ZL96225818.0)在鞍钢11号高炉(2580m3),邯钢1#、3#、6#,山西临汾、太钢3#、4#,山东淄博、青钢3#、4#、临沂,宝钢梅山2#(1280m3),辽宁北台等厂的高炉都先后应用此工艺技术,效果显著。
高炉热风炉自身预热法发展成熟
高炉热风炉自身预热法(self-preheatingprocess)是我国首创。到目前为止,还没有检索到国外的有关文献。该工艺方法于1966年7月在我国山东济南铁厂3号高炉(100m3)由吕鲁平首先采用,并获得国家发明专利。发明至今,已走过整整40年不平凡的历程。大体上可划分为三个阶段:(1)发明、原始创新阶段;(2)理论探索、改进阶段;(3)工艺改进、大高炉应用阶段。这期间不少炼铁、热工科技人员进行了大量研究。
鞍钢先后在3座2580m3高炉上,10号(1994年)、7号(2002年)和将来的新4号(2006年)都应用这种具有自主知识产权的热风炉自身预热工艺技术。随着这一技术的发展与应用,相应的理论探索也取得了重要进展。通过计算机数值模拟,验证了这一技术独特的优越性和耐火材料的合理性。
辅助热风炉法发展方兴未艾
用两座辅助小型热风炉,燃烧过剩的高炉煤气,交替预热大热风炉的助燃空气,经调温后供大热风炉燃烧用。大幅度提高助燃空气物理热,实现1200℃以上高风温。此工艺技术可节省大量的高热值煤气,多利用高炉煤气,经济效益显著。鞍钢新建的两座3200m3高炉采用这种辅助热风炉法。德国和日本某些高炉也曾用蓄热式热风炉来预热助燃空气。
这几种工艺技术在理论上具有如下特点:
(1)破除了低温余热回收传统观念,大幅度地提高燃烧介质预热温度。虽然在系统中增加了一定的能量和投资,但综合分析总能耗和效益的关系,产出远远大于投入。
(2)以利用劣质燃料为基本点,经工艺转化后以低价值的高炉煤气获取高价值的高温热量。节省昂贵的高热值煤气供给更急需的部门,达到能源合理配置,创造更大的经济效益和社会效益,是真正的“资源节约型”工艺技术。
(3)燃烧介质预热后带入的物理热比同样数量的化学热更有用。这是因为燃烧介质预热后烟气温度下降,热效率提高,或者烟气带走的热量与不预热时相同,回收的热量更有价值。
热风炉的大型化、多样化、高效化
顶燃式热风炉的跨越式发展
近10年来,顶燃式热风炉在我国的广泛应用突飞猛进,一方面,在总结过去经验的基础上,自主研制开发出了多种多样的结构形式,大胆应用;另一方面,引进国外先进技术,都取得了可喜的结果。顶燃式热风炉具有诸多优点被人认同。
80年代初,我国首钢新2#高炉(1327m3)4座顶燃式热风炉的工业应用,在国内引起不小的震动。邯钢、石家庄高炉十几座顶燃式热风炉,湖南冷水江3号高炉有1座新型顶燃式热风炉。个别小厂也有采用顶燃式热风炉。后来的球式热风炉把顶燃式推进了一大步,国内一些钢铁厂看准了它的潜质,纷纷采用并自主研究开发。目前球式热风炉已成功地应用在1327m3级的高炉上。现在,多种多样的顶燃式热风炉在我国得到了广泛采用。
1)卡鲁金顶燃式热风炉迅猛发展这种结构的热风炉已在俄罗斯和乌克兰冶金工厂的1386~3200m3的高炉上建造使用。俄罗斯卡鲁金(Kalugin)顶燃式热风炉在我国迅速得以应用。例如,莱钢750m3、1880m3,济钢3座1750m3,淮钢两座450m3,青钢两座500m3,迁安连城两座480m3,国丰两座1800m3,首秦1160m3、2200m3,天钢3200m3,湘钢2200m3,安钢2800m3,唐钢3200m3和重钢高炉热风炉都采用此结构形式的热风炉。鞍钢2580m3和首钢曹妃甸5500m3高炉热风炉拟采用俄罗斯卡鲁金顶燃式热风炉。
2)球式热风炉的普遍应用球式热风炉也可划为顶燃式热风炉的一种,球式热风炉的体积小,结构简单,材料用量大大少于内燃式热风炉,从而大大节省了投资。在河北新丰、广西柳钢、江苏兴澄和四川威远等许许多多中小高炉得到很好的应用。目前球炉已成功地应用在1327m3级的高炉上。
3)其他顶燃式热风炉的崛起在国内,武汉宏图、承德鸿博、中冶全泰、新兴铸管等也开发出了具有自主知识产权的旋流、旋切流顶燃式热风炉,得到了很好的应用。
达涅利霍戈文高风温长寿热风炉的应用
达涅利霍戈文(Hoogovens)热风炉集多项科学技术研究成果与一身,自1969年问世以来,迄今为止已在十几个国家的几十座高炉推广应用。该热风炉具有结构合理、投资省、占地少、热效率高、风温高、寿命长等优点。
国内20世纪70年代开始研究开发,称之为高温改造内燃式。限于当时的技术水平和耐火材料的成本,没有很好地解决燃烧器、隔墙和送风系统等问题而“搁浅”。当时进行的1300℃高风温试验也是短期的,付出的代价是昂贵的。刮了一阵“高温改造内燃式”风之后,不得不重新考虑引进真正的“霍戈文高温长寿热风炉”。
武钢4号2200m3(2001年)、5号3200m3(1991年)、6号3200m3、7号3200m3,鞍钢11号2580m3(2001年)、鞍钢新1号3200m3(2001年)、唐钢2560m3(1998年)、2000m3、首钢1726m3、太钢1200m3、攀钢1260m3(1996年)和上钢一厂2500m3(1999年)、邯钢新建两座3200m3(2006年)等高炉均采用此种结构形式热风炉。平均风温达到1150~1200℃。
大型外燃式热风炉稳定运行
外燃式热风炉是内燃式热风炉的进化与发展。本钢5号高炉热风炉为地得式。鞍钢6号高炉热风炉(AW-Ⅰ),实际为通常所说的马琴——派根司特(MartinandPagenstecher)外燃式,鞍钢7号(AW-Ⅱ)、10号高炉、宝钢所有热风炉都是新日铁式(NSC:NipponSteelCorporation)外燃式。
值得一提的是,鞍钢6号高炉(1050m3)热风炉(AW-Ⅰ)1976年投产,是我国第一座外燃式热风炉,虽然经过几次凉炉、再生产和更换燃烧器、格子砖,但确切地讲,双拱顶及连接管,大墙与炉壳,至今已工作整整30年,可谓是我国的长寿热风炉。后来不久,鞍钢自主研究开发的7号高炉(2580m3)热风炉(AW-Ⅱ)参照新日铁外燃式也的确早于宝钢,也一直沿用至今。20世纪80年代初,宝钢引进了真正的新日铁外燃式。虽然应用了大量的高热值煤气等不利因素,但确实长时间地实现了1200℃以上的高风温和长寿,已引起国人的关注。鞍钢10号高炉(2580m3)、太钢4350m3、马钢两座3600m3等大型高炉热风炉都仍然采用新日铁式外燃热风炉。鞍钢鲅鱼圈新建4038m3高炉拟采用PW公司大型地得外燃式热风炉。
热风炉的烘炉、保温与凉炉技术
高炉和热风炉的烘炉技术
鞍钢6号高炉硅砖热风炉是我国第一座硅砖热风炉,当时采取的烘炉方式是成功的。后来国内陆续采用的硅砖热风炉的烘炉都取得了成功,探索出非常宝贵的操作和维护经验。由天津长冶热能设备有限公司研制开发成功的内燃式烘炉器是近10年来广泛采用的一种烘炉专用设备。用于高炉、热风炉、加热炉和其它工业炉窑的烘烤。该烘炉器使用油或燃气,烘炉时火焰不直接接触耐火砌体。经配风,调节温度后喷入炉窑,确保烘炉曲线的完整性。结合用户的需要,采用烘炉器烘炉已经取得了较好的经济效益和社会效益。通过与启动高炉鼓风机烘炉比较,该方法是既节约大量电费又获得高质量的好方法,近10年来,采用该方法为国内外各大钢铁公司烘烤(128~2500m3)高炉及热风炉已达百余座。
目前,各种不同类型的炉子,各种不同种类的耐火材料,各种不同类型的燃烧介质都能够很好地解决烘炉问题。硅砖热风炉的长周期保温技术
热风炉的保温,重点是硅砖热风炉的保温,是在高炉停炉或热风炉需要检修时。如何保持硅砖砌体温度不低于600℃,而废气温度又不高于400℃。根据停炉时间的长短与检修的部位和设备,可采用不同的保温方法。鞍钢首先采用的这种燃烧加保持炉顶温度、送风冷却、控制废气温度的作法称之为“燃烧加热、送风冷却”保温法。这种保温方法是硅砖热风炉保温的一项有效措施。不管高炉停炉时间多长,这种方法都是适用的。
鞍钢10号高炉(1994年)新旧高炉转换,停炉期间,对硅砖热风炉采用“燃烧加热/送风冷却”方法,保温138天,效果非常好。宝钢1号高炉热风炉也成功地进行了硅砖热风炉的长周期保温。
硅砖热风炉凉炉再生产技术
硅砖热风炉的凉炉:硅砖具有良好的高温性能和低温(600℃以下)的不稳定性。过去,硅砖热风炉一旦投入生产,就不能再降温到600℃以下,否则会因突然收缩,造成硅砖砌体的溃破和倒塌。经国内外大量的试验研究,硅砖热风炉的凉炉,大体上有两种方法:自然缓慢凉炉和快速凉炉。
砖热风炉用自然缓冷凉炉是成功的,但由于工期的关系,自然缓冷来不及,还要做快速凉炉的尝试。鞍钢1985年在6号高炉硅砖热风炉上进行了快速凉炉的试验,用14天将炉子成功地凉下来。并成功地反复再生产。快速凉炉是非常成功的,打破了“硅砖热风炉一命货”的论点,说明硅砖热风炉快速凉炉是可行的,预示了“硅砖热风炉跨代使用”的可能性和必然性。
关行业的进步起到了助推作用
冶金设备制造技术的进步
冶金设备制造技术的进步为热风炉技术的发展起到了关键性的助推作用。高温热风阀的引进、研发和推广应用解决了高风温热风炉阀门的寿命问题。各种不同类型的波纹膨胀器的应用,解决了热风管道膨胀问题。抗晶间应力腐蚀钢板的研制成功为高风温创造了有利条件。
耐火材料的大幅度进步
具有自主知识产权的各种不同类型、不同材质的耐火材料给热风炉按不同温度区间选择不同材质的耐火材料提供了广泛的选择空间和可靠保证。
各种不同类型结构形式的热风炉高温区采用的硅砖和低蠕变高铝砖,重要部位所需的堇青石、莫来石砖,各交叉口采用的组合砖都能自主设计、制造和砌筑,并达到一个相当高的水平。
耐火砌体涂覆高辐射材料
最近,济南慧敏科技开发的新型高辐射材料——微纳米高温远红外节能涂料在各种工业炉窑上广泛应。该高辐射新材料工作温度:300~1810℃;适合燃气、煤、油、电等各种燃料种类,可缩短升温时间;降低排烟温度;提高炉温及炉温均匀度,燃料燃烧充分;提高热效率,提高工效5%~15%;保护炉衬,延长炉窑使用寿命;节能5%~20%。可用于锅炉、工业电炉、均热炉、陶瓷窑炉、石油化工行业的加热炉、裂解炉、冶金热风炉、球团竖炉、轧钢加热炉等各种工业炉窑的节能。
这种远红外涂料具有节能作用自20世纪50年代就被专家确定;70年代国外有产品面世;80年代国内有产品面世;半个世纪没有得到全面推广,其原因是施工工艺没有得到良好解决。该材料发射率0.91~0.93;耐火度大于1800℃;附着力2级以上;抗热振性1200℃;室温10次以上无脱落;粒度25~780nm。该项新材料自发明问世以来,迅速在各种炉窑上应用,如济钢、莱钢、邯钢、青钢、长治、鞍钢。经检验部门检测及用户使用,该产品粘接力强,高温使用不易开裂、脱落,使用寿命长,主要技术指标达到了国际先进水平。
基础理论与应用研究起到了支撑作用
2005年9月“高风温长寿热风炉研讨会”在秦皇岛召开,知名教授、博士以及从事热风炉研究和操作的专家学者聚集一堂,一致认为,提高我国风温水平是使我国由炼铁大国向强国转变的重要标志之一。并提出热风炉的设计和操作应首先把1250℃的风温作为近期目标,把1400℃的风温作为我们进入强国的研究目标。目前,一大批科研人员长期不懈的努力,解决了众多不同层面的技术关键和研究开发出了具有国际先进水平和实用价值的新工艺、新技术、新材料,都取得了显著的经济效益。
热风炉传热过程数学模型的发展
在我国,对热风炉蓄热室传热模型的研究与应用方兴未艾。一些文献从不同侧面对热风炉操作与控制进行了积极探索,其中,有些模型已应用于实践。张宗诚、苏辉煌应用热风炉不稳定态传热的数学模型较准确地计算出了热风炉内格子砖和气体沿着高度方向随时间变化的温度分布。从而为预测热风温度、废气温度、送风时间和热效率,以及分析各种不同操作制度下的热工特征和选择最佳的设计与操作制度提供了可靠的手段。张建来根据热平衡方程及若干经验公式建立了热风炉热量控制燃烧数学模型,其要点是以热量控制热风炉的燃烧,根据下一周期的加热风量、风温来确定所需要的煤气化学热,以达到最佳燃烧。数学模型的建立为计算机有效控制燃烧提供了基础模型。根据不同的送风模型进行送风调节,获得了满意的结果。此外,热风炉换炉的自动控制系统、自寻最优化控制都是建立在不同的数学模型基础上的。宝钢高炉热风炉数学模型应用20年的实践证明,用数学模型控制热风炉燃烧及有关操作制度,选择合理的热工参数,及时调整控制变量,可以达到节约能源、提高风温的效果。由此可见,可靠的数学模型对于热风炉的自动化操作和节能增效是十分有益的。燃烧器冷态、热态模型实验研究
热风炉由于空气预热温度较高,使陶瓷燃烧器工作条件恶化,且易产生脉动燃烧。为解决这个问题鞍山钢铁学院的教授们与现场结合专门进行了陶瓷燃烧器的冷态、热态试验。在热态模型上测量了不同燃烧能力、不同空气预热温度时燃烧室内温度分布、废气成分、火焰长度及燃烧稳定性等。为开发能适应热风炉不同工况下陶瓷燃烧器提供了依据并找到了解决燃烧振动的方法。并利用这一热态模型为上钢一厂、昆钢等做了专项试验研究,取得成功。
烟气和冷风均配技术
气流在热风炉内的行为,早已引起人们的注意。20世纪70年代初,前苏联与前联邦德国分别对此做了模拟试验研究。近年来,我国也做了大量工作,并已着手采取措施改善气流在蓄热室内的分布。20世纪80年代,武汉冶金建筑研究所研制成功“热风炉冷风均匀配气装置”。它是由气流整流器和数个阻流导向板组成。气流整流器安装在冷风入口的内侧,其作用是整流和均匀分流,阻流导向板安装在蓖子下空间,通过阻挡和导向破坏涡流,均匀分布气流。这一技术已成功地应用于攀钢3号高炉和鞍钢9号高炉,收到了良好效果。
北京科技大学、包头钢铁学院的许多研究人员采用计算机模拟的方法也成功地解析了热风炉气流分布不均的实际状况,并提出了解决问题的方法,得以应用。生态热风炉与绿色热风炉的建设
在利用冶金工厂产生的二次能源,大力推动循环经济的同时,努力建设“资源节约型、环境友好型”社会。在控制温室气体排放方面,热风炉还有大量工作要做[7。生态热风炉与绿色热风炉的主要特征为:(1)使用低热值煤气作为主要燃料,经工艺转化后以低价值的高炉煤气获取高价值的高温热量。减少煤气的放散量,节省昂贵的高热值煤气供给更急需的部门,达到能源合理配置,创造更大的经济效益和社会效益,真正做到“资源节约型”工序;(2)实现系统优化、合理燃烧;(3)烟气余热尽最大努力回收利用,如首先采用金属换热器预热煤气和助燃空气;其次,还是这部分烟气供煤粉车间作为干燥、惰化气;再次,供解冻库作为热气源用等;(4)开发减排温室气体总量的有效措施和相关技术。
结语
随着高炉炼铁技术的快速发展,高炉热风炉的选择范围越来越大。大型化、多样化、高效化,大大缩小了我们与世界先进水平的差距。一大批炼铁及相关专业科技工作者开发出了一系列世界水平的具有自主知识产权的领先技术,填补了国内外热风炉技术的空白,引起世人关注。1200℃高风温热风炉技术的进步与发展,是20多年来广大高炉热风炉工作者不懈努力的结果。霍戈文高风温热风炉的引进、大型外燃式热风炉(地得式、新日铁式)或大型外燃式热风炉加辅助小热风炉的组合、顶燃式热风炉(俄卡鲁金顶燃式的引进、球式顶燃式、旋流、旋切顶燃式的开发)、大型外燃式热风炉自身预热式在大型高炉上的成功应用、高炉热风炉烟气余热预热助燃空气和煤气技术及其附加加热换热技术组合等都取得了高风温的实效。
第三篇:热风炉和高炉技术个人工作总结
一、加强学习,不断提高自身业务水平
现代社会知识日新月异,高新技术层出不穷,作为电气行业,随着半导体和微电子技术的发展,电气设备的自动化程度越来越高,因此对电气工作人员的要求也越来越高。因此我报名参加了“莱钢冶金自动化控制新技术充电班”培训学习,学习了交、直流传动、wincc、网络通信等电气专业新技术,极大地提高了自身的业务水平。
二、积极进行各种技术改造与创新
针对实际工作中遇到的各种问题,我积极思考解决的办法,发现设备上存在的隐患及缺陷,我积极思考,提出对设备进行改造,通过一系列的改造措施,极大地降低了设备的故障率,保证了设备的正常稳定运行。其中几个主要的改造措施如下:
1、热风炉操作系统改造
热风炉操作系统原设计包括三种控制方式:半自动方式、操作台方式、机旁操作方式。其中操作台方式在日常中作中反映出了一些问题,主要包括以下几个方面:操作不方便,故障率高,维修人员维修量大,和半自动方式相比,操作台方式不直观、不方便。鉴于以上问题,同时通过与岗位人员协商讨论,决定去掉操作台操作方式,将操作台拆除,保留半自动方式和机旁方式,而像倒流休风阀等没有半自动方式的阀门重新设计,增加半自动操作方式。利用6#炉大修期间,将逐步完成此次改造,改造方案如下:与自动化部联系,增加一个新的plc柜,将倒流休风阀等阀门的半自动操作放在此新的plc柜内,同时自动化部要编制新的程序,制作新的监控画面;
冷风放风阀的电源改为eps电源,电源由eps柜内引入,这样即使在市电停电时,岗位人员仍能操作冷风放风阀,减少了停电对高炉造成的损失。将预热器系统的电动蝶阀的控制移到plc柜内,增加控制程序和监控画面,将开关控制信号和到位信号都通过继电器引入到plc内。将热风炉各阀门的操作台控制方式取消,配合自动化部将原操作台的选择开关移到plc中,有电脑进行操作,包括选择半自动、机旁操作方式开关、解除煤气阀连锁开关等,同时对原线路对照图纸进行修改。
2、1080m3高炉重要电气设备加避雷器
炼铁厂银前两座1080高炉位于山区环绕之中,受气候影响,夏季雷雨较多,因其地势较高,易引起雷击,将直接影响电气设备的运行。选用新型soule系列pu40400型避雷器,该避雷器具有元件少、效果可靠、便于安装等优点。当发生雷击过电压和雷电侵入波时,在电气线路及控制开关点上产生一个很强烈的电压,此时接在线路避雷器上的电压达到一定数值时,避雷器的阀片被击穿而放电,此时避雷器的电阻值变得很小,使雷电流对地放电,将雷电流泄放掉,当雷电压消失后,在灭弧电压下,其阻值又增大,恢复到平时运行状态。
通过安装避雷器,在生产中取得良好效果,今年春夏季节雷雨较往年增多,但未发生过一起因雷击损害电气设备的事故,有效地保护了高炉的电气设备,保证了高炉的稳产顺行。
第四篇:2500立方米高炉效能优化综合技术应用
摘 要:介绍了宝钢股份不锈钢分公司2 500m3高炉所采用的多焦种配焦技术改进现场操作技术、应用低硅冶炼技术、实施低燃料比等效能优化综合技术,高炉各项技术指标取得了长足的进步;年利用系数达到2.385t/(m3〃d),燃料比达到485.83 kg/t,综合指标跃居国内同类型高炉前列;高炉的生产和管理实现了高产、优质、低耗。
关键词:炼铁;利用系数;燃料比;低硅冶炼;专家系统i
目前国内高炉和国际水平相比,除宝钢等少数厂家以外,高炉在利用系数(高效)、煤比(能耗)、铁水硅含量(质量)等方面都还存在较大差距,尤其是综合技术的研究和应用。因此,国内高炉炼铁技术还有潜力可挖。
现状分析
宝山钢铁股份有限公司不锈钢分公司炼铁厂(简称炼铁厂)现有750m3和2 500m3 2座高炉。不锈钢项目的投产,对高炉铁水的产量和质量均提出了更高要求,而技术进步和效能优化将是提高不锈钢分公司整体竞争力的主要手段。这就使高炉实现“高产、优质、低耗”综合技术研究的课题变得更加迫切和有现实意义。考虑到项目的复杂性,采用了分项研究、各个击破、综合集成的研究方法。从2003年开始,根据实际条件,2 5003高炉通过加强原料条件的研究和管理应用多焦种配焦技术、改进现场操作技术、应用低硅冶炼技术、实施低燃料比技术等,高炉的综合效能进一步优化,燃料消耗、铁水[si]逐步降低,高炉炉况稳定顺行且利用系数逐步提高。2 综合技术的应用
2.1 加强原料条件的研究和管理 2.1.1 混匀配料技术优化
为提高烧结矿质量,不锈钢分公司从源头抓起,通过自主研究开发和引进新技术,逐步提高混匀矿质量。一方面,加强混匀矿堆端部料管理、结合控制瞬时堆积流量来增加混匀矿的堆积量,均取得较好效果,混匀矿质量大大提高。另一方面,引进宝钢分公司的混匀矿智能堆积技术,使混匀矿的堆积质量得到进一步提高。该技术强调优化料罐CFW切出速度,并将一个大堆分成4个BLOCK实施堆积计划;在整个堆积过程中保证等硅切出,使CFW每一时刻切出物料之和的成分能等于或接近大堆成分,从而保证了混匀矿的质量稳定。混匀矿TFe偏差由0.7%下降至0.3%,SiO2标准偏差由0.25%下降至0.15%,达到国内领领先水平;烧结矿质量稳定率亦大幅提高,2005烧结矿TFe和碱度稳定率较2003年分别提高了5.46%和2.48%。2.1.2 配矿技术优化
不锈钢分公司混匀矿配矿结构的特点是:单矿品种不多,但变化大;配矿结构中控制在7~9种单矿品种,每种单矿的配入比例较高。主动适应矿石资源市 场波动,针对常用矿种资源逐步减少、枯竭的局面,大胆尝试新矿种的使用,为今后配矿方向开辟新径。率先使用高麦克矿、西安吉拉斯矿进行配矿并提高其用
量至12%,成功解决了褐铁矿比例提高对烧结生产的影响,达到综合效益最大化;同时成熟应用了高配比CVRD球团粉矿,配比达到了15%;南部粉的配矿比例目前达到9%,且己具备应用12%以上南部粉的技术。2.I.3 高铁低硅烧结集成技术
通过调整配矿结构中低硅粉矿的比例以及运用蛇纹石配料技术,烧结矿的硅含量逐步降低,烧结矿ω(SiO2)由5.2%下降至4.7%,ω(TFe)由56%提高至58.5%以上;入炉矿石品位由2003年的57.73%提高到2005年的59.59%,达到国内先进水平,为高炉高产、低耗、优质创造了良好的条件。2.1.4抑制台车“边缘效应”,改善烧结矿质量
台车边缘效应被公认为是烧结生产的“公害”,边缘效应使得烧结台车风量分布不均,进而使风量少处烧不透,风量多处过烧,造成烧结矿整体质量下降。通过减小台车两侧铺底料厚度,调整边车辊的压料方式,调整小矿槽出料口以控制出料量等措施抑制台车“边缘效应”,使烧结矿ω(Ti)提高0.2%左右,返矿循环量减少,烧结成品率增加,节约了能耗和加工成本。
通过采用以上技术措施,不仅提高了烧结矿质量和产量,而且工序能耗和固体燃耗也逐年降低。2.2优化炉料结构
为了得到高炉合理的原料结构,首先对高炉入炉原料进行综合性能测试研究,尤其高温冶金性能。在常规的还原性能、低温粉化性能测定基础上,委托本钢技术中心对不锈钢分公司所用烧结矿、球团矿,以及天然矿等进行了软熔滴落性能测定,为合理原料结构的方案制定提供了理论依据,从而逐步建立了原料性能评价体系的长效机制。在此理论指导下,高炉进行了合理炉料结构的工业试验,先后进行了多种球团矿、天然矿和不锈钢分公司烧结矿搭配使用的研究。研究期间,通过降低品位较低的海南矿配比、增加澳矿的入炉比例,优化了炉料的综合软熔特性,有利于软熔带位置的下降和宽度的降低,从而改善料层透气性,进而提高产量。品位提高以后,渣比进一步降低:为高炉指标的全面优化提供了物质基础。同时,考虑到矿石价格因素,为了降低铁水成本,适当减少球团矿的使用。2.3 多焦种配焦技术
公司所用焦炭全需外购,焦炭质量参差不齐,有效的长期检测机制仍需完善。2 500m3高炉现入炉焦种以吴泾焦为主,宝钢焦为辅,同时搭用不同比例的美锦焦、中冶焦、长治焦、赵城焦、无锡焦、镇江焦等数十种焦炭,焦炭种类及其质量的波动对高炉生产极为不利。为此,需要对高炉所用焦炭的性能进行研究。研究结果表明,宝钢焦在质量稳定的基础上,综合性能优于其它焦种,稳定该焦种的入炉比例对炉况稳定及生铁质量均有益。但宝钢焦供应不足,无法依靠稳定宝钢焦人炉比例来稳定入炉焦炭质量。通过长期生产经验,根据不同焦种的入炉比例,适当调整入炉矿石负荷并形成标准化作业,可以在一定程度上确保炉内气流的稳定和良好的料柱骨架。通过严格执行此标准化作业,在焦种及其质量波动较大的情况下,确保了高炉长期稳定顺行,并获得了较低的燃料消耗水平。2.4 现场操作技术进步
通过分析2 500m3高炉开炉以来的大量数据,结合高炉自身特性及高炉现有原燃料情况,逐步确立2 500m3高炉以发展中心气流为主,适当疏导边缘的指导思想。在此思想的指导下,在稳定风速260m/s左右的基础上逐步缩小进风面积并增用长风口,同时调整布料模式以疏导边缘,使炉内煤气流分布更加合理。2004~2006年高炉炉况稳定,成为不锈钢分公司炼铁史上的一大突破。
2002年底,不锈钢分公司炼铁厂与宝信合作,对2 500m3高炉智能专家系统进行开发研究。该专家系统在汲取国内外高炉专家系统成功经验的基础上,结合2 500m3高炉长期生产经验,形成适用于高炉自身的规则组与知识库。通过场使用后的不断修正与完善,专家系统能够与高炉达到有效结合。生产实践证明,该专家系统能够在滑料、渣皮脱落、铁水信息、冷却设备是否漏水、炉内气流分布、炉缸平衡、高炉消耗等多方面进行准确预报,对现场操作有较大的指导意义。而该系统所采用的开放式规则及知识库修改、炉内走料状态的判断、利用炉顶煤气成分对炉内走料及冷却系统是否漏水进行预报等多项技术达到国内领先水平。2.5 低硅冶炼技术研究
生铁硅含量的降低和稳定,是高炉冶炼条件和技术水平的标志性指标,也是提高产量、降低生铁成本的重要因素。对炼铁而言,生铁硅含量降低1%,产量提高5%~6%,焦比下降48~75kg/t。根据低硅冶炼机理的分析和实验研究结果,高炉铁水硅的来源主要是焦炭中的Si02在风口区以上部位与其充分接触的碳反应生成Si()气体,然后再还原成[si]的过程;在风口区域和铁水穿过渣层过程中,部分[si]被再次氧化。
首先,使用高铁低硅的烧结矿,减少炉料带入SiO2的量,以利于低硅冶炼。其次,降低理论燃烧温度。随着理论燃烧温度的下降,铁水硅含量随之下降。经过研究及实践,理论燃烧温度由原来的2 150℃左右下降到2 050℃左右,既保证炉缸具有充足的热量,又利于低硅冶炼。
通过上述调整,2005年铁水[Si]由2003年的0.46%降低至0.37%,实现预期低硅冶炼的目标。2.6 低燃料比技术研究 2.6.1 高煤气利用率
结合人炉原燃料情况,高炉调整上下部制度,对边缘气流进行适当疏导,同时风口面积由0.348m2逐步缩小至0.340m2并增用长风口以确保鼓风动能有效发展中心气流。上述措施并举,高炉煤气利用率由2003年的47.59%逐步提高至2005年的51.01%。2.6.2 高风温
500m3高炉有4座改进型内燃式热风炉,采用两烧两送制送风。通过降低拱顶温度与热风温度的差值、提高热风炉拱顶温度、预热助燃空气与煤气温度、提高废气温度、富氧烧炉、全关混风闸阀等多项技术的应用,在没有高热值煤气的条件下全用高炉煤气进行烧炉,热风温度逐步提高,达到1 150~l 160℃,处于国内领先水平。
在2005年炉况稳定的基础上,考虑炼钢厂铁水消化能力,适当控制高炉利用系数,大幅提高煤气利用率、风温,降低铁水[Si],焦比由2003年的388.75kg/t下降至367.40kg/t,燃料消耗由2003年的512.46kg/t降低至485.83kg/t,有效缓解了焦炭资源紧缺的局势。
结论
(1)多焦种混焦使用技术的应用,确保了高炉炉况的稳定,年平均利用系数达到2.385t/(m3·d),处于国内同型高炉领先水平。
(2)通过混匀配料技术的优化,烧结矿质量进一步提高。烧结矿先使用麦克矿、西安吉拉斯矿进行配矿并逐步提高其用量至12%,成功解决了褐铁矿比例提高对烧结生产的影响,达到综合效益最大化。
(3)通过提高煤气利用率、风温,优化炉料结构,低硅冶炼等多项措施,高炉综合效能进一步优化,燃料消耗为485.83kg/t,达到国内同型高炉的先进水平。(4)专家系统对高炉相关信息的准确预报,使高炉现场操作更加规范,进一步确保了炉况的稳定顺行
第五篇:顶板高抽钻孔抽采技术的应用
顶板高抽钻孔抽采技术的应用
【摘要】对青龙煤矿21604采空区及邻近煤层瓦斯进行抽采,进而解决上隅角及工作面回风瓦斯超限的问题。结合矿井具体情况,得出了合理的高抽钻孔布置参数,在此煤层开采过程中解决瓦斯超限问题积累了经验,同时也为矿井开采其它相邻煤层治理瓦斯提供参考依据。
【关键词】瓦斯抽采;上隅角瓦斯超限;抽采技术;高抽钻孔;
0 引言
随着煤矿开采深度增加,瓦斯涌出量不断增大,治理采空区及上隅角的瓦斯技术不断更新,高抽钻孔逐步成为治理采空区及上隅角瓦斯的首选途径,针对青龙煤矿21604综采工作面,在开采过程中常出现上隅角、回风瓦斯超限[1-2],为此采用顶板走向高抽钻孔抽采采空区裂隙带瓦斯的技术,从而解决上隅角和回风流瓦斯超限问题[3]。并对治理来自于采空区、上部围岩或下邻近层工作面的瓦斯效果显著[4]。矿井概况
青龙煤矿为煤与瓦斯出矿井,根据2014年矿井瓦斯及二氧化碳涌出量测定报告,矿井绝对瓦斯涌出量165.56m3/min,矿井相对瓦斯涌出量80.65m3/t,煤层均为可抽煤层。青龙煤矿于2011年开始推广应用钻孔抽采瓦斯技术抽采采空区裂隙带瓦斯解决工作面、上隅角及回风瓦斯超限问题。先后在11607、11611、11802综采工作面应用顶板仰角钻孔抽采瓦斯技术治理上隅角瓦斯,取得了一定的技术经济效果。但由于受仰角钻孔利用率低和塌孔等因素的影响,瓦斯治理问题没有从根本上得到解决。因此在开采21604采煤工作面时采用了钻孔利用率高、效果好的顶板岩石高抽钻场抽采技术。高抽钻孔设计方案
(1)高抽钻孔设计、施工
根据矿压理论及我矿原高抽钻场布置经验,16#煤层顶板裂隙带高度采高的8-24倍,瓦斯积聚在工作面上部24-72m范围内,综放采煤工作面覆岩采动裂隙带内聚积着来自邻近层及本煤层的瓦斯[5-6],钻孔布置应与此适应。设计采用高位钻场抽采瓦斯,钻场布置在回风巷侧,距煤层顶板垂高10m,共设计钻孔十二个,终孔布置为上下两排,分别考察不同钻孔终孔不同位置,不同高度的抽采效果,钻孔布置见图1。
图1 高抽钻孔设计布置图
A-平面图 B-断面图 C-剖面图
选用ZDYLF-4000S型钻机施工,钻孔最深可施工长度200m,孔长180m,钻孔孔径Φ113mm。
(2)封孔
钻孔施工完成后,必须及时进行封孔注浆,封孔时单个钻孔统一采用DN108PE管进行封孔,封孔长度不得小于10m,封孔完成后及时对钻孔进行注浆。如下图2所示。
图2 高抽钻孔封孔剖面图
待注浆凝固后,必须在8-16h内进行连抽,单个钻孔采用独立的DN108管路进行连抽,在DN108PE管低点设置放水三通,对水大的钻孔安装自动放水器,水量较小的钻孔安装手动放水器,从而解决管路内积水影响抽采效果。抽采效果分析
根据第十组高位钻孔施工情况,由于受到钻孔塌孔、孔内水大、封孔漏气、个别钻孔施工不到位及现场施工不定向因素影响,对以下7个抽采效果好的钻孔进行分析。如下表所示。
从以上表可以看出,对4#钻孔和9#10#钻孔抽采浓度、纯流量进行比较,在里程60m左右都是呈现增大的趋势,然后经过一个稳定期,在里程140m左右呈现下降趋势,4#钻孔浓度、纯流量均大于9#和10#钻孔浓度、纯流量之和。最佳终孔高度分析
通过选择抽采效果最好4#、5#、6#钻孔进行分析,对4#、5#、6#钻孔的回采里程和抽采浓度、纯流量的关系进行观察,从而确定最佳钻孔终孔高度,如4#、5#、6#钻孔参数图可以看出,回采里程在0m-60m时,钻孔抽放纯流量不断升高,到60m时达到最大值,回采里程在60m-140m抽放纯流量处于一个稳定阶段,回采里程在140m后逐渐下降,从而得出回采里程在60m-140m段钻孔抽采效果最佳,结合回采里程与终孔高度关系图分析,回采里程在60m时钻孔有效高度为48m,回采里程在140m时钻孔有效高度在24m,因此认定高抽钻孔的最佳终孔范围在24m-48m。结论
通过对21604工作面第十组高位钻场进行分析得出以下几条结论:
1.条件允许情况下,尽可能把高抽钻场的层位放高,钻孔倾角越小,钻孔施工变形越小,钻孔利用率高。
2.为了更好保证抽采效果,尽可能增大钻孔施工孔径,孔径在113mm以上,可以根据实际情况合理较少钻孔,钻孔个数控制在6-8个。
3.根据对21604工作面第十组高抽钻孔抽采效果分析,合理的钻孔终孔布置高度是保证抽采效果的必要条件,21604工作面高抽钻孔终孔布置最佳高度为24m-48m之间。
4.根据数据分析,靠近上隅角的钻孔抽采浓度、纯流量高,设计钻孔时靠近上隅角侧的钻孔终孔间距应合理减小,设计距离5-10m为益。
参考文献:
[1] 中国煤炭工业劳动保护科学技术学会.瓦斯灾害防治技术[M] 北京:煤炭工业出版社,2007
[2] 张铁岗.矿井瓦斯综合治理技术[M]北京:煤炭工业出版社,2001
[3] 董振军.顶板走向高位钻孔解决上隅角瓦斯超限技术研究[J]煤炭技术,2012(11):21-23
[4] 黄晓枫.走向高位钻孔瓦斯抽采技术研究[J].矿业安全与环保,2012(8):58-59