第一篇:东南大学物理论文竞赛规程
东南大学本科物理论文及物理制作竞赛
一、竞赛目的鼓励学生运用物理思想和方法独立思考和解决有关的物理和工程问题,让学生在接受课堂教育的同时,积极参与学习实践和科学研究,从而培养基本科研素质、激发创新意识、增强创新能力。同时进一步提升我校大学物理精品课程的教学质量,促进教学模式和教学方法的改革,与时俱进,更好的服务于当前的教育和教学工作。
二、竞赛内容:
蕴含物理思想和物理概念的研究性论文、课程论文和物理科技制作。
1、研究性论文是指运用物理原理和物理方法对某一物理现象或工程问题提出具有科学意义的新观点、新构思或新设计方案。包括理论性和应用性研究论文,论文需具备一定的创新性。
2、课程论文是指对大学物理课程内容的独创性见解,如对教材的某个问题的看法或补充;学习某个物理原理的心得体会;分析生活和工程中的物理现象等;
3、物理科技制作包括能反映或解决某一具体物理和工程问题的作品,其中含实物(如教学演示仪器、实用电子器件和电路设计等)和软件(如物理原理、物理现象的可视化课件,仿真及数值计算程序等)。
三、参赛对象:参赛者为本校各年级本科生。
四、参赛作品提交时间:2011年11月22日前。
五、参赛作品提交形式:
论文按科技论文格式提交纸质稿和电子稿,硬件制作要提供制作实物,软件制作要提供程序和软件包。填写并提交竞赛申报书(含诚信申明,否则无效)交给大学物理任课的老师,并注明“东南大学物理论文及物理科技制作竞赛”。论文格式及竞赛申报书等相关文档从大学物理学习网站http://seuphy.8800.org/discuz(《大学物理》网络答疑)下载。论文内容涉及到数据处理和图表分析时,请注意严谨性、正确性。
大学物理教研室
2011.4.10.
第二篇:东南大学物理博士计划
正是源于对凝聚态物理领域的兴趣,以及对行业的前景非常认可,选择物理系攻读博士学位,并继续探索有关新材料的未知领域也是我对科学的崇尚,也希望能够在这一领域有所成就。贵校是一所综合性多科大学,学术和科研非常出色,有着浓厚的历史和文化底蕴。物理系不管是硬件还是软件都具有很强的实力。高质量教学和学术积淀的感染,使我对进一步攻读有更加坚定的信心。
在硕士期间,我已经修读课程包括固体物理、计算物理、高等量子力学、量子统计等专业课及包括综合英语、自然辩证法与科学社会主义等通识课,具有扎实的理论基础;熟练使用Linux系统和基于第一性原理的PWSCF软件包;具有基于FORTRAN的编程能力。硕士阶段主攻(Bi2Se3)m(Bi2)n)系列材料的几何结构及第一性原理研究。系列材料由三维拓扑体Bi2Se3和Bi(111)双原子层组成。Bi(111)薄膜在理论上被预言是二维拓扑绝缘体。实验上发现在高压情况下,Bi 和 Bi2Te3会呈现不同的晶体结构和超导状态。在相同的系统内,这个现象为在拓扑绝缘体和拓扑超导体之间人为的调控提供了依据。鉴于这类材料的重要性,我们进行了其几何结构、电子结构、声子结构和表面态的研究。所有的研究都是基于第一性原理的PWSCF软件包进行的。我还参与指导本科生完成毕业论文“Cu0.125Bi2Se3的几何结构和电子结构研究”和“FeBi2Se3的几何结构和电子结构研究”。以上这些工作为我以后在读博期间的学习打下了坚实的基础。在博士期间计划继续学习有关新材料的几何结构模拟、电子结构研究以及材料动力学研究,并希望在多铁性材料领域也有探索。近年来有一类材料由于呈现丰富的多彩的性质,蕴含奇异的物理内容和潜在的应用价值,这便是位于元素周期表d区的过渡金属和氧等形成的一系列过渡金属氧化物(TMO)。这类材料在有无外加磁场作用时,其电阻率会发生很大的变化,即巨磁电阻效应(CMR)。由于他们在电磁器件如磁头、磁记录、磁开关等方面有很大的应用,对这一类材料的研究近年来已经成为物理学和材料化学的一个新兴的前沿领域。在过渡金属氧化物中,有一类材料呈现两种或两种以上铁的基本性质(如铁电和铁磁),这便是多铁性材料。由于其在存储记忆领域有巨大应用前景,多铁性材料最近几年引起了研究者的广泛关注。多铁性材料有两大分类:一类是铁电极化强度大,但是磁电耦合不强,例如BiFeO3。另一类是磁电耦合很强,但是铁电极化强度不大,例如TbMnO3材料。在研究手段上,实验方法已经给出许多这类材料的晶格常数、熔点、磁性性能的基本数据;在理论进展上,密度泛函理论(DFT)的建立及局域密度近似(LDA)下导出著名的Kohn-Sham(KS)方程具有里程碑式的意义,为过渡金属氧化物的研究提供了理论方法。在校期间,我会在导师的指导下采用密度泛函理论,对多铁性材料展开几何结构模拟、电子结构研究、力学性质研究、动力学性质研究以及过渡金属氧化物缺陷问题研究。在具体实现上采用赝势型VASP、PWSCF软件包以及全电子势型WIEN2K软件包。对于磁性计算,WIEN2K是最好的选择,但是涉及很大体系时,赝势型软件包能够节约大量时间。电子结构的研究可以更清楚了解材料的磁性结构。关于力学性质的研究,主要关注压力对材料带来的压缩效应及引起的磁性变化,电子的自旋会从高自旋态转到低自旋态,并且高压下电子在空间的分布可能会导致绝缘-金属转变。通过动力学性质的研究,对强关联体系的电学性质、热学性质能有更深刻的认识。另外实际的晶体中总是存在各种各样的点缺陷如空位、反位,此时材料的结构就偏离了理想晶格的情况。有时材料中还会出现杂质原子。最近几十年来,随着固体科学的不断发展,研究者发现这些缺陷对晶体的各种性质往往有很大的影响。
我的总体学习目标是通过在读博的短期研修增强自己对过渡金属氧化物中多铁材料的认识、对新材料的研究进展与未来方向有更清晰的了解。博士入学后三周内,在导师指导下作好个人课程学习计划,并报院(系、所)研究生主管部门备案。查阅文献资料,深入调查研究,确定具体课题,并尽早完成开题报告。第一年以课程修读为主,开展一定的实验室研究,积极参加各种学术、文体活动,在课程修读结束时结合所掌握的经验和学习的知识择选出自己具体主攻的方向,按照学校要求开展博士期间的学习与研究。在读期间要在著名期刊上发表学术论文,达到导师制定的毕业要求,并顺利完成博士毕业论文。
第三篇:大学物理论文
大学物理论文
班级: 学号: 姓名:
摘要:日常生活中,大量的物理现象都存在我们的周围,我们也时时刻刻都在不自觉运用物理知识,所以说,物理学与我们的生活紧密联系。物理学已经成为自然科学中最基础的学科之一。在学习物理学后,可以给很多自然现象一个解释和总结。物理的学习和应用很是值得一谈。
关键词:物理学,联系,感悟 正文:
物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学。物理伴随我从初中到大学,使我对物理学的了解更加深入。物理学使我对大自然中很多现象有了新的认知,使我的视野扩大,思维提升。
一、大学物理和高中物理的区别和联系:
大学物理和高中物理之间区别明显易见。从内容上看,中学物理的内容虽然包括了力学,热学,电磁学,光学和波五大部分的基础知识,所用到数学工具也并不多,学习的难度较小。而大学物理的内容虽然也是这些内容,但知识在深度和广度上都有很大加深,同时,大学物理也引入里高等数学的知识,大量的使用微积分的数学工具。从研究的问题来看,例如,中学研究的力是恒力,运动是匀速等,而大学物理研究的是变力和变速等,这主要是由于数学知识的限制。另外,大学物理与某些专业的实际问题息息相关,更注重公式的推导和证明。尽管中学物理与大学物理的区别很多,但这两者也有着一定的联系,两者的联系之处就物理的思想。不管是中学物理还是大学物理,所学习得物理思想是一致,比如说,牛顿三定律,电磁理论,守恒定律与对称性,功能转化等这些思想是没有改变的。
总之,大学物理是中学物理的深入。
二、通过学习大学物理,有什么收获或启示: 大学物理的学习即将结束了,在这一年的学习中感触颇多。首先,大学物理使我对物理的认知提升了一个层次,大学物理帮我们解决中学物理很多不能解决的问题,这就是一个值得很欣慰的收获。其次,大学物理还融入高等数学的知识,因此,在学习物理知识的同时,也可以运用一下高等数学的知识,更是一件两全其美的事情。
通过对物理学的学习,能解释了自然界很多现象以及生活中很多物体的工作原理。因此,物理学与我们的生活是不可分割,物理知识是我们必须得掌握一项技能以及掌握物理的思考问题的方法。
三、哪些物理内容与以后的专业学习联系更紧密?
我学习的专业是机械设计制造及自动化,在这个专业的学习中力学是永远不可避免。再强调力学重要性也不为过,其中包括:质点运动学、牛顿定律、动量守恒定律和能量守恒定律、刚体的转动。我们学习的《理论力学》,《流体力学》,《热力学基础》和《气体动理论》等都离不开物理学中的力学。另外,物理学中机械波和振动与机械专业的学习也是紧密联系的。所以,物理学对我的专业尤其重要,要很好的掌握物理学的知识。要学会把物理学知识和专业知识融汇到一起。可见,物理是专业知识学习的一项必备工具,物理学对专业学习是不可缺少的。
四、你觉得大学物理应该学什么?怎样学?
学好大学物理首先必须要有良好的自主学习的态度,学会自己独立思考。大学物理会对每个定律、定理和重点公式进行详细推导,并且要求同学们能具体掌握其物理思想和解决问题的方法,那么,我们就要熟练掌握推导过程,更重要的是掌握推导过程中的思想。
另外,学好大学物理还要具备一项技能-----掌握基本的高等数学知识和理解重要的物理概念。大学物理的学习过程中,高等数学是一门必备的工具,所以,我们必须熟练掌握相关高数知识并且学会运用。
掌握物理学解决问题的基本思路和物理学的基本概念和规律。更重要的是学会把物理知识和规律运用到实际问题中来解决问题。因此,在求解问题之前必须对所研究的物理问题建立一个清晰的模型和了解问题的实质,分析出问题所涉及的物理知识,从而明确解题的思路和方法。只有这样,才能在解完题之后留下一些值得回味的东西,体会到物理问题所蕴含的奥妙和涵义,真正掌握物理学的思想方法。
物理学与我们的生活有着紧密的联系。我们这五彩缤纷世界是不可缺少物理知识,如果没有了物理知识,世界前进的步伐将会被大大停滞。物理学的基本理论和实验方法已经越来越广泛地应用于其他学科,极大地推动了科学技术的创新与革命,极大地促进了社会的发展和人类文明的进步。
参考文献:
1.《物理学》作者:马文蔚
高等教育出版社 2.《物理教学论》作者:袁海泉..高等理科教育出版社
第四篇:大学物理论文
共振的应用及危害
摘要:任何事物都有两面性,共振也是,它曾给人们造成巨大的伤害。这其中最为人们所知晓的便是桥梁垮塌。1940年,美国的全长860米的塔柯姆大桥因大风引起的共振而塌毁,尽管当时的风速还不到设计风速限值的1/3,可是因为这座大桥的实际的抗共振强度没有过关,所以导致事故的发生。以前听说这件事时,就令我对共振产生强烈的好奇心,共振竟能有如此的威力,如果善用共振,人类将受益匪浅。本文对共振进行讨论,重点是共振在社会上的应用及其带来的危害,并提出了一些解决方法。关键词:共振 应用 危害 消除
正文:
在18世纪中叶,一座桥因大队士兵齐步走产生的频率正好与大桥的固有频率一致,使桥的振动加强,最终断裂。每年肆虐于沿海各地的热带风暴,也是借助于共振为虎作伥,才会使得房屋和农作物饱受摧残。近几十年来,美国及欧洲等国家和地区还发生了许多起高楼因大风造成的共振而剧烈摇摆的事件。地震时,地壳会产生各种波长的横波或纵波,当波传到地面上,会与建筑物产生强烈的共振,这样就造成了屋毁人亡的惨剧。另外还有许多例子:持续发出的某种频率的声音会使玻璃杯破碎;机器可以因共振而损坏机座;高山上的一声大喊,可引起山顶的积雪的共振,顷刻之间造成一场大雪崩;行驶着的汽车,如果轮转周期正好与弹簧的固有节奏同步,所产生的共振就能导致汽车失去控制,从而造成车毁人亡„„
如果你对共振的威力还有怀疑,那就让我们一起来了解共振吧。共振创造了世界 共振是物理学上的一个运用频率非常高的专业术语。
一、什么是共振
任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫该物体的固有频率。当人们从外界再给这个物体加上一个振动(称为驱动)时,这时物体的振动频率等于驱动力的频率,而与物体的固有频率无关,这时称为强迫振动。但如果驱动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫共振。物体的振幅与驱动力的关系图如下:
二、共振的应用
共振现象也可以说是一种宇宙间最普遍和最频繁的自然现象之一,所以在某种程度上甚至可以这么说,是共振产生了宇宙和世间万物,没有共振就没有世界。从宇宙大爆炸到微观世界的“共振体”,从人类说话交谈到虫鸣鸟吟,都是共振的魔力。还有一些研究表明,宇宙中的紫外线射向地球时,是臭氧层的振动频率与紫外线产生共振,从而吸收了大部分的紫外线,保护了地球;叶绿素与某些可见光共振才能吸收阳光,产生光合作用;甚至连色彩的产生也是因为各色光线与物体的共振所赐。
在日常的生产生活中,共振也是我们的好帮手,人类利用共振现象的能量特征,发明了不少实用的东西。利用共振能给人类带来福祉。
实际上,中国人对于共振的运用,还可以追溯到很久远的年代。
早在战国初期,当时的人就发明了各种各样的共鸣器,用来侦探敌情。《墨子·备穴》记载了其中的几种:
在城墙根下每隔一定距离挖一深坑,坑里埋置一只容量有七八十升的陶瓮,瓮口蒙上皮革,这样,实际上就做成了一个共鸣器。让听觉聪敏的人伏在这个共鸣器上听动静,遇有敌人挖地道攻城的响声,不仅可以发觉,而且根据各瓮瓮声的响度差可以识别来敌的方向和远近。另一种方法是:在同一个深坑里埋设两只蒙上皮革的瓮,两瓮分开一定距离,根据这两瓮的响度差来判别敌人所在的方向。
随着近代科学的发展,供着应用于越来越多的领域。
“共振筛”是利用共振现象最典型的例子之一。它是把筛子用四个弹簧支撑起来,并在筛子上装上偏心轮,偏心轮在皮带的带动下转动,是筛子受到周期驱动力的作用,做受迫振动。调整偏心轮的转速,可使驱动力的频率接近筛子的固有频率,筛子发生共振,获得较大振幅,提高筛子的效率。
在建筑工地上,我们经常可以看到.建筑工人在浇灌混凝土的墙壁或地板时,为了提高质量,总是一边灌混凝土,一边用电振泵进行振动,使混凝土之间因振动的作用而变得更紧密、更结实。像粉碎机、测振仪、电振泵等,这些都是利用共振原理工作的。
在人们的日常生活中,共振也充当着重要的角色,如常用的微波炉。为什么微波炉在加热食品时食品内外能同时升温呢?原来微波炉中的磁控管产生915MHz或2450MHz的微波,即一种超高频率交变电磁场,它经波导传送出去,再经风扇搅拌器把它反射到炉腔各处,食物是吸收微波的一种介质,而且食物分子的振动频率跟微波的电磁场频率相同或相近,大量分子就在食物中原来位置的附近剧烈振动而摩擦出大量的热,使食物内外介质的温度同时升高,食物很快被烤熟。这是共振在家用电器中的应用。再比如说收音机,电台通过天线发射出短波/长波信号,收音机通过将天线频率调至和电台电波信号相同频率来引起共振,将电台信号放大,再经过过滤后传至喇叭发声。还有市面上极为少见的共振音箱,它是让音频经过转换后以机械振动介质 面(木质桌面,玻璃等),使介质整个物体产生共振,从而使物体播放出悠扬的乐曲。
共振在医学上也有应用。专家研究认为,音乐的频率,节奏和有规律的声波振动,是一种物理能量,而适度的物理能量会引起人体组织细胞发生和谐共振现象,这种声波引起的共振现象,会直接影响人们的脑电波,心率,呼吸节奏等,使细胞体产生轻度共振,使人有一种舒适、安逸感。人们还发现,当人处在优美悦耳的音乐环境中,可以改善精神系统,心血管系统,内分泌系统和消化系统的功能,促使人体分泌一种有利健康的活性物质,提高大脑皮层的兴奋性,振奋人 的精神,让人们的心灵得到了陶冶和升华。所以,人们已经开始运用音乐产生的共振,来缓解人们由于各种因素造成的紧张,焦虑,忧郁等不良心理状态,而且还能用于治疗人的一些心理和生理上的疾病。就医学影像学来说,核磁共振(MRI)是继 CT 后的又一重大进步。将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的 接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。
总之,共振技术普遍应用于机械、化学、力学、电磁学、光学及分子、原子物理学、工程技术等几乎所有的科技领域。
三、共振对我们生活的危害
从共振的特点来分析,它并不需要强大的破坏力,而是能自动进行能量的积累,如果不适当地利用它或者避免它,共振的危害也是很可怕的。开头曼彻斯特的惨剧就是一个鲜明的例子。在我们的日常生活中,无处不在的共振现象也经常带来烦恼。
人体是一个弹性体,各器官都有它的固有频率,当外来振动的频率与人体某器官的固有频率一致时,会引起共振,因而对那个器官的影响也最大。人体固有的振动频率经科学研究,人脑是8~12Hz,内脏器官为4~18Hz。在外来振动的不断激发下,人脑和内脏器官的振动频率与外来振动频率相近或相同,吸收外来振动的能量而共振,轻者能使人产生头晕、烦躁、耳鸣、恶心,如果强度大,就能使人的心脏及其内脏剧烈抖动、狂跳,以致血管破裂,使人死亡。
登山运动员登山时严禁大声喊叫。因为喊叫声中某一频率若正好与山上积雪的固有频率相吻合,就会因共振引起雪崩,其后果十分严重。
对人危害程度尤为厉害的是次声波所产生的共振。次声波是一种每秒钟振动很少、我们耳朵听不到的声波,自然界的很多现象都能产生次声波。目前已研制出次声波枪和次声波炸弹。它们利用频率为16赫兹左右的次声波,与人体内的某些器官发生共振,使受振者的器官发生变形、位移或出血。
千里之堤,溃于蚁穴”,最终的结果是可怕的。要避免共振的灾害作用,就必须尽量增大振动系统和可能的策动力频率之间的差距,使受迫振动被限制在极小振幅的范围内。比如,跟振动源十分接近的操作人员,如拖拉机驾驶员、电锯等操作工,在工作时应尽量避免这些振动源的频率与人体有关部位的固有频率产生共振。为了保障工人的安全与健康,有关部门已做出相应规定,要求用手工操作的各类振动机械的频率必须大于20Hz。
四、消除共振的危害
共振给人们带来意想不到的灾难,那么,人们能不能消除这些灾难呢?为此,人们经过实践,总结出许多消除共振的办法。据史籍记载,我国晋代就有人对共振现象作出了正确的解释,并已经能够完全认识到,防止共振的最好的方法是改变物体的固有频率,使之与外来作用力的频率相差越大越好。
到了今天,人类对付共振危害的方法更是多种多样和更加先进。例如:人们在电影院、播音室等对隔音要 求很高的地方,常常采用加装一些海绵、塑料泡沫或布帘的办法,使声音的频率在碰到这些柔软的物体时,不能与它们产生共振,而是被它们吸收掉。又如电动机要安装在水泥浇注的地基上,与大地牢牢相连,或要安装在很重的底盘上,为的是使基础部分的固有频率增加,以增大与电机的振动频率(驱动力频率)之差来防止基础的振动。
大街上的行人、车辆的喧闹声、机器的隆隆声——这些连绵不断的噪声不仅影响人们正常生活,还会损害 人的听力。于是人们发明了一种消声器,它是由开有许多小孔的孔板和空腔所构成,当传来的噪声频率与 消声器的固有频率相同时,就会跟小孔内空气柱产生剧烈共振。这样,相当一部分噪声能在共振时被”吞吃” 掉,而且还能够转变为热能来进行使用。
虽然人类现在并不能将共振所带来的危害全部消除,但我们可以努力将它降到最低,期待这一天早些到来。
【参考文献】
[1]梁绍荣,刘昌年,盛正华,《普通物理学》第一分册,力学,第三版,高等教育出版社,2005 [2]赵凯华,罗蔚茵,《新概念物理教程》第一分册,力学,第二版,高等教育出版社,2004 [3]马文蔚,《物理学》第四版,高等教育出版社,1998 [4] [美]W.T 汤姆逊著,《振动理论及其应用》,胡宗斌等译,煤炭工业出版社,2002
第五篇:大学物理论文
大学物理论文
摘要:物理不仅是一门学科,更重要的,它还是一门科学。物理学的每个知识点在我们生活中都有着广泛的应用。本文将对物理学中牛顿环现象的原理及应用进行概述,对通过对这一知识的学习过程,对大学物理学习进行概述。
关键词:牛顿环 原理 应用 物理学习
引言:牛顿环是一种非常有趣的物理现象,这种现象的原理是什么,有哪些应用呢?我们又该从牛顿环的学习过程中得到哪些启示呢? 一:牛顿环的原理
在光学上,牛顿环是一个薄膜干涉现象。用一个曲率半径很大的凸透镜的凸面和一平面玻璃接触,在日光下或用白光照射时,可以看到接触点为一暗点,其周围为一些明暗相间的彩色圆环;而用单色光照射时,则表现为一些明暗相间的单色圆圈。这些圆圈的距离不等,随离中心点的距离的增加而逐渐变窄。它们是由球面上和平面上反射的光线相互干涉而形成的干涉条纹。凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差相同,因此干涉图样呈圆环状。这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。
二:牛顿环现象在生活中的应用
经查阅资料了解到,牛顿环在判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率等方面有广泛应用。牛顿环可以用来测量透镜的曲率半径,我们已经做过试验,而在光学车间里,牛顿环可以用来监测光学元件的表面质量,其具体原理如下:常用的玻璃样板检验光学元件表面质量的方法,就是利用与牛顿环相类似的干涉条纹,这种条纹形成在样板表面和待检元件表面之间的空气层上,通常称为“光圈”。根据光圈的形状、数目以及用手加压后条纹的移动,就可检验出元件的偏差。用一样板覆盖在待测件上,如果两者完全密合,即达到标准值要求,不出现牛顿环。如果被测件曲率半径小于或大于标准值,则产生牛顿环。圆环条数越多,误差越大;若条纹不圆,则说明被测件曲率半径不均匀。此时,用手均匀轻压样板,牛顿环各处空气隙的厚度必然减小,相应的光程差也减少,条纹发生移动。若条纹向边缘扩散,说明零级条纹在中心,得知被测件曲率半径小于标准件;若条纹向中心收缩,说明零级条纹在边缘,得知被测件曲率半径大于标准件。这样,通过现场检测,及时判断,再对不合格元件进行相应精加工研磨,直到合乎标准为止。同时,可以借此来进行透镜表面凹
凸的判断例如用一平玻璃和一凸透镜或者一凹透镜贴在一起,所形成的干涉环都是圆环,从干涉环上无法判断两块透镜谁凸,谁凹。为此可用手在其边缘加压,若干涉圆环向边缘移动,则表示下面的玻璃是凸的。若干涉圆环向中心收缩,则表示下面的玻璃是凹的。这中间的道理只要看其间空气隙厚度的变化即可明了,若元件件中心比边缘高,则在边缘加压时,如图一所示。零件表面的形状就会从曲面AOB变成虚线A′O′B′,即空气膜由厚变薄。因此,相应各点光程差也变小,条纹的干涉级次亦随之降低。所以原来靠近中心的低级次圆环现在就要向外移动了。所以由于边缘加压,使空气隙厚度改变,条纹亦随之起变化,形成新的条纹分布,且空气隙厚度每改变2,就会移动一个条纹。总之,牛顿环在现实生活中应用广泛。三:对物理学习的思考
通过牛顿环这一知识点的学习,联系到本学期学到的大学物理课程内容,我收获到了具体的学习方法和解决问题的思路。我认为可以通过以下几个方式对提高我们的学习兴趣和效率十分有效:第一,老师可以采用启发式、讨论式和开放式等多种行之有效的教学方法,引导我们思考,强化思维训练。应多上些习题课和讨论课,因为习题课或讨论课可以启迪我们思维,培养我们提出、分析和解决问题的能力,而且习题课或讨论课在老师的引导下以我们的讨论和交流为主会锻炼我们的语言能力和思考能力,开展讲座、探索实验和小课题研究等第二课堂活动。第二,延续多媒体手段教学。在牛顿环等光学知识的学习中,因为日常生活中极少见到这些现象,所以理解起来有一定的困难,而当时课上物理老师运用多媒体进行演示,让我们有了直观的认识。由此可见,多媒体手段能为教学提供大量形象、生动的极具直观性、启发性的物理背景材料,对一些难以直接观察到的物理现象、物理过程,老师讲解起来比较抽象、空洞的物理规律、物理知识,能以多种形式进行动态模拟,充分展示物理现象发生、变化及结束的全过程,使我们建立起清晰的物理表象,提高物理形象思维能力,从而激发了我们的创新动机,培养我们的探究能力。第三,学校还应该创造条件建立开放性的演示实验室。通过后来在实验室做牛顿环的实验,我对这一现象有了更加深刻的理解。但是学校开设的物理实验在数量上有一定的局限性,如果开始更多开放性的实验室,同学们自己动手观察实验,思考问题,这样能把知识点记得更牢,也会更深刻的认识到这一现象是怎样产生的,又是怎样去研究的,最终又是怎样解释的。物理实验能增强动手能力、分析问题解决问题的能力,培养良好的实验素质,提高学习兴趣。
总结:物理并不是深不可测,只要我们勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,我们就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。只要我们认真思考,提高学习物理的兴趣,我们每个人都能从中有很大收获。参考文献:
《物理光学》张洪欣
2010.8.9 《物理光学与应用光学》石顺祥 马琳 2010.9.1 《物理学》马文蔚 2006.4.1