第一篇:叠加原理,实验报告例文(含数据处理)
报告汇编 Compilation of reports 20XX
报告文档·借鉴学习word 可编辑·实用文档
叠加原理实验报告范文 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。
二、原理说明
叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小 K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小 K 倍。
三、实验设备 高性能电工技术实验装置 DGJ-01:直流稳压电压、直流数字电压表、直流数字电流表、叠加原理实验电路板 DGJ-03。
四、实验步骤 1.
用实验装置上的 DGJ-03线路,按照实验指导书上的图3-1,将两路稳压电源的输出分别调节为12V 和6V,接入图中的 U1和 U2处。
2.通过调节开关 K1和 K2,分别将电源同时作用和单独作用在电路中,完成如下表格。
表3-1 测量项目
实验内容
U 1
(V)U 2
(V)I 1
(mA)I 2
(mA)I 3
(mA)U AB
(V)U CD
(V)U AD
(V)U DE
(V)U FA
(V)U 1 单独作用0 8.693-2.427 6.300 2.429 0.802 3.231 4.446 4.449 U 2 单独作用
0 6-1.198 3.589 2.379-3.590-1.184-1.215-0.608-0.608 U 1、U 2 共同作用0 7.556 1.160 8.629-1.162-0.382 4.446 3.841 3.841 2U 2 单独作用
0 12-2.395 7.180 4.758-7.175-2.370 2.440-1.217-1.218
3.将 U2的数值调到12V,重复以上测量,并记录在表3-1的最后一行中。
4.将 R3(330)换成二极管 IN4007,继续测量并填入表3-2中。
报告文档·借鉴学习word 可编辑·实用文档
表3-2 测量项目
实验内容
U 1
(V)U 2
(V)I 1
(mA)I 2
(mA)I 3
(mA)U AB
(V)U CD
(V)U AD
(V)U DE
(V)U FA
(V)U 1 单独作用0 8.734-2.569 6.198 2.575 0.607
4.473 4.477 U 2 单独作用
0 6 0 0 0 0-6
0 0 U 1、U 2 共同作用6 7.953 0 7.953 0-1.940
4.036 4.040 2U 2 单独作用
0 12 0 0 0 0-12 0 0 0
五、实验数据处理和分析 对图3-1的线性电路进行理论分析,利用回路电流法或节点电压法列出电路方程,借助计算机进行方程求解,或直接用 EWB 软件对电路分析计算,得出的电压、电流的数据与测量值基本相符。验证了测量数据的准确性。电压表和电流表的测量有一定的误差,都在可允许的误差范围内。
验证叠加定理:以 I1为例,U1单独作用时,I1a=8.693mA,,U2单独作用时,I1b=-1.198mA,I1a+I1b=7.495mA,U1和 U2共同作用时,测量值为7.556mA,因此叠加性得以验证。2U2单独作用时,测量值为-2.395mA,而2*I1b=-2.396mA,因此齐次性得以验证。其他的支路电流和电压也可类似验证叠加定理的准确性。
对于含有二极管的非线性电路,表2中的数据不符合叠加性和齐次性。
六、思考题 1.
电源单独作用时,将另外一出开关投向短路侧,不能直接将电压源短接置零。
2.电阻改为二极管后,叠加原理不成立。
七、实验小结 测量电压、电流时,应注意仪表的极性与电压、电流的参考方向一致,这样纪录的数据才是准确的。
报告文档·借鉴学习word 可编辑·实用文档 在实际操作中,开关投向短路侧时,测量点 F 延至 E 点,B 延至 C 点,否则测量出错。
线性电路中,叠加原理成立,非线性电路中,叠加原理不成立。功率不满足叠加原理。
第二篇:基尔霍夫定理的验证实验报告(含数据处理)
基尔霍夫定律的验证实验报告
一、实验目的1、验证基尔霍夫定律的正确性,加深对基尔霍夫定律普遍性的理解。
2、进一步学会使用电压表、电流表。
二、实验原理
基本霍夫定律是电路的基本定律。
1)基本霍夫电流定律
对电路中任意节点,流入、流出该节点的代数和为零。即 ∑
I=0
2)基本霍夫电压定律
在电路中任一闭合回路,电压降的代数和为零。即 ∑U=0
三、实验设备
四、实验内容
实验线路如图2-1所示
图 2-
11、实验前先任意设定三条支路的电流参考方向,2、按原理的要求,分别将两路直流稳压电源接入电路。
3、将电流插头的两端接至直流数字毫安表的“+,-”两端。
4、将电流插头分别插入三条支路的三个电流插座中,记录电流值于下表。
5、用直流数字电压表分别测量两路电源及电元件上的电压值,记录于下表。
五、基尔霍夫定律的计算值:
I1+I2=I3„„(1)
根据基尔霍夫定律列出方程(510+510)I1 +510 I3=6„„(2)
(1000+330)I3+510 I3=12„„(3)解得:I1 =0.00193AI2 =0.0059AI3 =0.00792A
UFA=0.98VUBA=5.99VUAD=4.04VUDE=0.98VUDC=1.98V
六、相对误差的计算:
E(I1)=(I1(测)-I1(计))/ I1(计)*100%=(2.08-1.93)/1.93=7.77%
同理可得:E(I2)=6.51%E(I3)=6.43%E(E1)=0%E(E1)=-0.08%
E(UFA)=-5.10%E(UAB)=4.17%E(UAD)=-0.50%E(UCD)=-5.58%E(UDE)=-1.02%
七、实验数据分析
根据上表可以看出I1、I2、I3、UAB、UCD的误差较大。
八、误差分析
产生误差的原因主要有:
(1)电阻值不恒等电路标出值,(以510Ω电阻为例,实测电阻
为515Ω)电阻误差较大。
(2)导线连接不紧密产生的接触误差。(3)仪表的基本误差。
九、实验结论
数据中绝大部分相对误差较小,基尔霍夫定律是正确的
十、实验思考题
2、实验中,若用指针式万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进行时,则会有什么显示呢?
答:当万用表接反了的时候会反偏实验数据处理是应注意乘以万用表自己选择的倍数用直流数字毫安表进行时会显示负值
第三篇:电子CAD实验报告与数据处理
《电子CAD技术》
实 验 报 告
物理与电子工程学院
自动化系
08自动化(2)班 方晨 08111013 实验
一、Protel 99 SE认识实验
如何修改密码?又如何增加和删除访问成员?
只有具备“Members”文件夹的“Write”权限的成员才能修改成员名称和密码,修改密码的操作步骤如下: ① 打开“Members”文件夹;
② 在设计窗口中双击需要修改密码的成员名称,或者在其上面双击鼠标右键,然后在调出的快捷菜单中选择“Properties”菜单项;
③ 在调出的对话框中根据需要对成员名称、名称描述和密码等进行修改; ④ 修改完后,单击“OK”按钮。
只有具备“Members”文件夹的“Create”权限的成员才能增加新成员,增加访问成员的操作步骤如下:
① 双击设计数据库,或者单击其前面的加号+,展开设计数据库的目录树。② 双击设计组文件夹“Design Team”,或者单击其前面的加号+,展开其目录树。③ 双击“Members”文件夹,以在设计器窗口中打开成员列表。④ 在右边设计窗口的空白处双击鼠标右键,然后在调出的快捷菜单中选择“New Member”菜单项。
增加访问成员还可以通过选择“File”菜单,然后在弹出的下拉菜单中选择“New member”菜单项。
⑤ 在调出的“User Properties”对话框中输入成员的名称描述(可省略)以及密码。
⑥ 单击“OK”按钮。操作完成后,新成员将出现在成员列表中。新增加的访问成员的权限由“Permissions”文件夹中的“[All members]”决定,用户可以进行修改。
只有具备“Members”文件夹的“Delete”权限的成员才能删除成员。删除成员的操作步骤如下:
① 打开“Members”文件夹。
② 删除的成员名称上单击鼠标右键,然后在调出的快捷菜单中选择“Delete”菜单项。或者先选择要删除的成员名称,然后按下Delete 键。③ 在调出的“Confirm”对话框中单击“Yes”按钮即可。
实验
二、两级阻容耦合三极管放大电路原理图设计
五、思考题
为什么放置元件前应先加载相应的元件库?
答: 因为元件一般保存在元件库中,不加载相应的元件库就找不到元件。电子元件数量庞大,如果每个元件都加载进来,对于运行程序来说压力太大了,会使软件的运行速度变得很慢,所以需要加载元件库。
实验
三、双路直流稳压电源电路原理图设计
习题4—8题
五、思考题
放置元件有哪几种方法?
四种方法:方法一,单击原件列表窗口下的“PLace”(放置)按钮,将某一原件电器图形符号拖到原理图编辑区,单击鼠标左键即可放置;方法二,点击画电路图工具栏内的图标 ;方法三,执行菜单命令“ PlacePart ”;方法四,点击元件管理器中的“ Place ”按钮或在元件管理器中双击所要放置的元件。
实验
四、原理图元件库编辑
五、思考题
如何对元件位置进行移动和旋转调整?
答;单个元件的移动: 将光标移至要移动的元件上,按住鼠标左键不放,将元件拖到合适的位置,松开鼠标左键即可。
多个元件的移动: 先选中多个元件;然后同时移动多个元件。
元件的旋转: 选中某一元件,按住鼠标左键不放,同时按空格键,每按一次元件旋转 90 ° ;或者在 按住鼠标左键不放时,同时按下 X 键或 Y 键。当按下 X 键时,元件左右翻转 180 °;当按下 Y 键时,元件上下翻转 180 °。
实验五、三相桥式全控整流主电路原理图设计
四、思考题
元件引脚之间的连接有哪几种不同的方法? 答:有三种方法:
(1)直接连接法: 原件引脚之间直接用导线连接,即导线的始终两端都在引脚上,这种方法直观导线的连接明确,但是电路有一些复杂,画面比较杂乱。
(2)间接连接法:导线一端起于引脚,另一端终止于原理图任意一个空白处,也就是连接的的两引脚之间的连接导线中间是断开的,它们是通过放置在导线上的网络名称来表示相互间接的连接关系。用这种方法绘制的原理图画面清晰,简练,但在分析原件引脚之间的逻辑关系是不够直观。
(3)总线连接法:为了弥补间断连接法的连接关系不够直观的不足,对于数值电路中一些具有相关性信号线,或是走向相同的连接导线,用一条较粗的线表示,这就是总线。总线在图上没有任何电气意义,它表示这些导线束的走向,具体的连接关系和间断连接方法一样需要通过网络名称来判断。
实验
六、可控硅触发电路原理图设计
思考题:什么是零件封装,它和零件有什么区别?
答:(1)零件封装是指实际零件焊接到电路板时所指示的外观和焊点位置。
(2)零件封装只是零件的外观和焊点位置,纯粹的零件封装仅仅是空间的概念,因此不同的零件可以共用同一个零件封装;另一方面,同种零件也可以有不同的封装,如RES2代表电阻,它的封装形式有AXAIL0.4、AXAIL0.3、AXAIL0.6等等,所以在取用焊接零件时,不仅要知道零件名称还要知道零件的封装。
(3)零件的封装可以在设计电路图时指定,也可以在引进网络表时指定。设计电路图时,可以在零件属性对话框中的Footprint设置项内指定,也可以在引进网络表时也可以指定零件封装。
实验
七、8031单片机存储器扩展小系统电路原理图设计
四、思考题
Bus线与Wire有何区别?
总线比导线粗一点,总线本身没有实质的电气连接意义,必须由总线接出的各个单一导线上的网络名称来完成电气意义上的连接。而由总线接出的各个单一导线上必须要放置网络名称,具有相同网络名称的导线表示实际电气意义上的连接。导线上可以放置网络名称,也可以不放。普通导线上一般不放网络名称。
层次电路原理图
MCU.prj
LED
CPU
POWER
层次电路设计方法适用于哪些情况?说明层次电路的设计步骤。
层次电路设计方法适用于复杂的、较大的电路原理图。层次电路设计方法通常有自上而下和自下而上两种方法。
1. 自上而下的层次电路设计 步骤 :
(1)执行菜单命令“ FileNew Design ”,创建一个新的设计数据库。
(2)执行菜单命令“ FileNew ”,创建一个新的原理图文件。
(3)放置方块图及放置方块电路进出点。
(4)在各方块图的进出点之间连线。
(5)生成原理图
2. 自下而上的层次电路设计方法步骤:
(l)完成电路图的绘制。
(2)激活要放置方块图的原理图。
(3)执行菜单命令“ DesignCreate Symbol From Sheet ”,系统将列出当前打开的所有原理图。选择原理图,点击“ OK ”按钮。
(4)选择原理图后,屏幕上出现选择对话框,点击“ No ”按钮。
(5)在电路图中,光标变成十字状,且带有一个方块图,系统进入放置方块图状态,移动鼠标,在合适的位置点击鼠标即可完成此方块图的放
置。在方块图中,系统将自动产生与原理图中输入输出点对应的方块图进出点。
(6)重复上述步骤,直到所有模块的电路方块图都出现在电路图中。
(7)在各模块方块图进出点之间连线,最后便可得到方块电路图。
实验
八、印制电路板的设计环境及设置
实验
九、两级阻容耦合三极管放大电路PCB图设计
(1)敷铜有什么作用,应该注意些什么?
答:敷铜的主要作用是提高电路板的抗干扰能力,如果要对线路进行包导线或补泪滴,那么敷铜应该放在最后进行。
(2)导线、飞线和网络有什么区别?
答:导线也称铜膜走线,简称导线,用于连接各个焊点,是印刷电路板最重要的部分,印刷电路板设计都是围绕如何布置导线来进行的。
与导线有关的另外一种线,常称之为飞线也称预拉线。飞线是在引入网络表后,系统根据规则生成的,用来指引布线的一种连线。
飞线与导线是有本质的区别的。飞线只是一种形式上的连线,它只是形式上表示出各个焊点间的连接关系,没有电气的连接意义。导线则是根据飞线指示的焊点间连接关系布置的,具有电气连接意义的连接线路。
网络和导线是有所不同的,网络上还包括焊点,因此在提到网络时不仅指导线而且还包括和导线相连的焊点。
实验
十、制作元件封装
DIP12 LED8
LED
实验
十一、双路直流稳压电源电路PCB图设计
第四篇:实验基尔霍夫定律叠加原理的验证
实验基尔霍夫定律及叠加原理的验证
一.实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2.学会用电流插头、插座测量各支路电流的方法。
3.验证线性电路叠加原理的正确性,从而加深对线性电路的叠加性和齐次性的认识和理解。
二.实验原理
基尔霍夫定律是电路的基本定律,测量某电路的各支路电流及多个元件两端的电压,应能分别满足基尔霍夫电流定律和电压定律。即对电路中的任一个节点而言,应有∑I=0;对任何一个闭合回路而言,应有∑U=0。
运用上述定律时必须注意电流的正方向,此方向可预先任意设定。
叠加原理指出:在有几个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。
线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其他各电阻元件上所建立的电流和电压值)也将增加或减小K倍。
三.实验设备
1.直流电压表0~20V
2.直流毫安表
3.恒压源(+6V,+12V,0~30V)
4.实验线路板
四.实验电路
基尔霍夫定律实验线路如图2—1所示
叠加原理实验线路如图2-2所示。
五.实验内容
基尔霍夫定律
1.实验前先任意设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路
结构,掌握各开关的操作使用方法。
2.分别将E1、E2两路直流稳压源(E1为+6V,+12V切换电源,E2接0~30V可调直流稳压源)接入电路,令E1=6V,E2=12V。
3.熟悉电源插头的结构,将电流插头的两端接至数字毫安表的“+、-”两端。
4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。5.用直流数字电压表分别测量两路电源及电阻元件上的电压值,记入
数据表2-1中
叠加原理
1.E1为+6V、+12V切换电源,取E1=+12V,E2为可调直流稳压电源调至+6V; 2.令E1电源单独作用时(将开关K1投向E1侧,开关K2投向短路侧),用直流电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,3.令E2电源单独作用时(将开关K1投向短路侧,开关K2投向E2侧),重复实验步骤2的测量和记录。
4.令E1和E2共同作用时(开关K1和K2分别投向E1和E2侧),重复上述的测量和记录。
5.将E2的数值调至+12V,重复上述3项的测量并记录。
数据记入表格2—2。表2—
2六.实验注意事项
1.所有需要测量的电压值,均以电压表测量的读数为准,不以电源表盘 指示值为测量的电压值。
2.防止电源两端碰线短路。
3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性,倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,此时指针正偏,但读得的电流值必须冠以负号。
4.用电流表测量各支路电流时,应注意仪表的极性及数据表格中“+、-”号的记录。5.注意仪表量程的及时更换。
七.预习思考题
1.根据图1-1的电路参数,计算出待测的电流I1、I2和I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定毫安表和电压表的量程。
2.实验中,若用万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么?若用直流数字毫安表进行测量时,则会有什么显示
3.叠加原理中E1、E2分别单独作用,在实验中应如何操作?可否直接将不作用的电源(E1或E2)置零(短接)?
4.实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?
八.实验报告
1.根据实验数据,选定实验电路中的任一个节点,验证KCL的正确性。2.根据实验数据,选定实验电路中的任一个闭合回路,验证KVL的正 确性。
3.根据实验数据表格,进行分析、比较、归纳、总结实验结论,即验证线性电路的叠加性与齐次性。
4.各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据,进行计算并作结论。
5.通过实验步骤6及分析数据表格1-3,你能得出什么样的结论? 6.误差原因分析。心得体会及其他
第五篇:醋酸的电位滴定实验报告数据处理
V 0 2 4 6 8 10 10.2 10.4 10.6 10.8 10.9 11 11.1 11.2 11.3 11.4 11.6 11.8 12 12.5 13 13.5 14.5 15 pH 3.32 4.09 4.46 4.76 5.11 5.73 5.91 6.15 6.36 6.78 7.08 7.16 7.88 8.78 9.89 10.22 10.46 10.71 11.05 11.24 11.35 11.47 11.55 11.58
V 0 2(ΔpH/ΔV)
0.385 4 6 8 10 10.2 10.4 10.6 10.8 10.9 11 11.1 11.2 11.3 11.4 11.6 11.8 12 12.5 13 13.5 14.5 15 0.185 0.15 0.175 0.31 0.9 1.2 1.05 2.1 3 3.8 4.2 9 11.1 3.3 1.2 1.25 0.85 0.38 0.22 0.24 0.3 0.2