ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)(最终五篇)

时间:2020-10-22 21:20:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)》。

第一篇:ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)

2018年普通高等学校招生全国统一考试 理科数学 注意事项:

1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则 A.B.C.D.【答案】C 【解析】 分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.2.已知集合,则 A.B.C.D.【答案】B 【解析】 分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:

则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【答案】A 【解析】 【分析】 首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;

新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;

新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;

新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;

故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4.设为等差数列的前项和,若,则 A.B.C.D.【答案】B 【解析】 分析:首先设出等差数列的公差为,利用等差数列的求和公式,得到公差所满足的等量关系式,从而求得结果,之后应用等差数列的通项公式求得,从而求得正确结果.详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5.设函数.若为奇函数,则曲线在点处的切线方程为()A.B.C.D.【答案】D 【解析】 【详解】分析:利用奇函数偶次项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数奇函数,所以,解得,所以,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6.在△中,为边上的中线,为的中点,则 A.B.C.D.【答案】A 【解析】 分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A.B.C.D.2 【答案】B 【解析】 【分析】 首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺, 可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则= A.5 B.6 C.7 D.8 【答案】D 【解析】 【分析】 首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.【详解】根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.【点睛】该题考查是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9.已知函数.若g(x)存在2个零点,则a的取值范围是 A.[–1,0)B.[0,+∞)C.[–1,+∞)D.[1,+∞)【答案】C 【解析】 分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10.如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则 A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p3 【答案】A 【解析】 【分析】 首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【详解】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11.已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|= A.B.3 C.D.4 【答案】B 【解析】 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离公式求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为 A.B.C.D.【答案】A 【解析】 【分析】 首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

13.若,满足约束条件,则的最大值为_____________. 【答案】6 【解析】 【分析】 首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.【详解】根据题中所给的约束条件,画出其对应的可行域,如图所示:

由,可得,画出直线,将其上下移动,结合的几何意义,可知当直线在y轴截距最大时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;

根据不同的形式,应用相应的方法求解.14.记为数列的前项和,若,则_____________. 【答案】 【解析】 【分析】 首先根据题中所给的,类比着写出,两式相减,整理得到,从而确定出数列为等比数列,再令,结合的关系,求得,之后应用等比数列的求和公式求得的值.【详解】根据,可得,两式相减得,即,当时,解得,所以数列是以-1为首项,以2为公比的等比数列,所以,故答案是.点睛:该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.15.从位女生,位男生中选人参加科技比赛,且至少有位女生入选,则不同的选法共有_____________种.(用数字填写答案)【答案】 【解析】 【分析】 首先想到所选的人中没有女生,有多少种选法,再者需要确定从人中任选人的选法种数,之后应用减法运算,求得结果.【详解】根据题意,没有女生入选有种选法,从名学生中任意选人有种选法,故至少有位女生入选,则不同的选法共有种,故答案是.【点睛】该题是一道关于组合计数的题目,并且在涉及到“至多、至少”问题时多采用间接法,一般方法是得出选人的选法种数,间接法就是利用总的减去没有女生的选法种数,该题还可以用直接法,分别求出有名女生和有两名女生分别有多少种选法,之后用加法运算求解.16.已知函数,则的最小值是_____________. 【答案】 【解析】 分析:首先对函数进行求导,化简求得,从而确定出函数的单调区间,减区间为,增区间为,确定出函数的最小值点,从而求得代入求得函数的最小值.详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。

(一)必考题:60分。

17.在平面四边形中,,.(1)求;

(2)若,求.【答案】(1);

(2).【解析】 【分析】(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;

(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.【详解】(1)在中,由正弦定理得.由题设知,所以.由题设知,所以;

(2)由题设及(1)知,.在中,由余弦定理得.所以.【点睛】该题考查是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.18.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;

(2)求与平面所成角的正弦值.【答案】(1)证明见解析;

(2).【解析】 【分析】(1)首先从题的条件中确定相应的垂直关系,即,又因为,利用线面垂直的判定定理可以得出平面,又平面,利用面面垂直的判定定理证得平面平面;

(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面的法向量,设与平面所成角为,利用线面角的定义,可以求得,得到结果.【详解】(1)由已知可得,,又,所以平面.又平面,所以平面平面;

(2)作,垂足为.由(1)得,平面.以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)可得,.又,所以.又,故.可得.则 为平面的法向量.设与平面所成角为,则.所以与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的证明以及线面角的正弦值的求解,属于常规题目,在解题的过程中,需要明确面面垂直的判定定理的条件,这里需要先证明线面垂直,所以要明确线线垂直、线面垂直和面面垂直的关系,从而证得结果;

对于线面角的正弦值可以借助于平面的法向量来完成,注意相对应的等量关系即可.19.设椭圆的右焦点为,过的直线与交于两点,点的坐标为.(1)当与轴垂直时,求直线的方程;

(2)设为坐标原点,证明:.【答案】(1)的方程为或;

(2)证明见解析.【解析】 【分析】(1)首先根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程;

(2)分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【详解】(1)由已知得,l的方程为.由已知可得,点的坐标为或.所以的方程为或.(2)当与轴重合时,.当与轴垂直时,为的垂直平分线,所以.当与轴不重合也不垂直时,设的方程为,则,直线、的斜率之和为.由得.将代入得.所以,.则.从而,故、的倾斜角互补,所以.综上,.【点睛】该题考查的是有关直线与椭圆的问题,涉及到的知识点有直线方程的两点式、直线与椭圆相交的综合问题、关于角的大小用斜率来衡量,在解题的过程中,第一问求直线方程的时候,需要注意方法比较简单,需要注意的就是应该是两个,关于第二问,在做题的时候需要先将特殊情况说明,一般情况下,涉及到直线与曲线相交都需要联立方程组,之后韦达定理写出两根和与两根积,借助于斜率的关系来得到角是相等的结论.20.某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.(1)记件产品中恰有件不合格品的概率为,求的最大值点;

(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 【答案】(1);

(2)(i);

(ii)应该对余下的产品作检验.【解析】 【分析】(1)利用独立重复实验成功次数对应的概率,求得,之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件;

(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;

在解(ii)的时候,就通过比较两个期望的大小,得到结果.【详解】(1)件产品中恰有件不合格品的概率为.因此.令,得.当时,;

当时,.所以的最大值点为;

(2)由(1)知,.(i)令表示余下的件产品中的不合格品件数,依题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.【点睛】该题考查的是有关随机变量的问题,在解题的过程中,一是需要明确独立重复试验成功次数对应的概率公式,再者就是对其用函数的思想来研究,应用导数求得其最小值点,在做第二问的时候,需要明确离散型随机变量的可取值以及对应的概率,应用期望公式求得结果,再有就是通过期望的大小关系得到结论.21.已知函数.(1)讨论的单调性;

(2)若存在两个极值点,证明:. 【答案】(1)见解析;

(2)见解析 【解析】 分析:(1)首先确定函数的定义域,之后对函数求导,之后对进行分类讨论,从而确定出导数在相应区间上的符号,从而求得函数对应的单调区间;

(2)根据存在两个极值点,结合第一问的结论,可以确定,令,得到两个极值点是方程的两个不等的正实根,利用韦达定理将其转换,构造新函数证得结果.详解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;

当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即.点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;

(2)若与有且仅有三个公共点,求的方程.【答案】(1).(2).【解析】 分析:(1)就根据,以及,将方程中相关的量代换,求得直角坐标方程;

(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.详解:(1)由,得的直角坐标方程为 .(2)由(1)知是圆心为,半径为的圆. 由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;

当时,与只有一个公共点,与有两个公共点. 当与只有一个公共点时,到所在直线的距离为,所以,故或. 经检验,当时,与没有公共点;

当时,与没有公共点. 综上,所求的方程为. 点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.23.已知.(1)当时,求不等式的解集;

(2)若时不等式成立,求的取值范围.【答案】(1);

(2)【解析】 分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;

(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,即 故不等式的解集为.(2)当时成立等价于当时成立. 若,则当时;

若,的解集为,所以,故. 综上,的取值范围为. 点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.

第二篇:高考卷-普通高等学校招生全国统一考试-理科数学(解析版)

2017年普通高等学校招生全国统一考试-理科数学

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x<1},B={x|},则()

A.B.C.D.2.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()

A.B.C.D.3.设有下面四个命题

若复数满足,则;

若复数满足,则;

若复数满足,则;

若复数,则.其中的真命题为()

A.B.C.D.4.记为等差数列的前项和.若,则的公差为()

A.1

B.2

C.4

D.8

5.函数在单调递减,且为奇函数.若,则满足的的取值范围是()

A.

B.

C.

D.

6.展开式中的系数为()

A.15

B.20

C.30

D.35

7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()

A.10

B.12

C.14

D.16

8.下面程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和

两个空白框中,可以分别填入()

A.A>1000和n=n+1

B.A>1000和n=n+2

C.A1000和n=n+1

D.A1000和n=n+2

9.已知曲线C1:y=cos

x,C2:y=sin

(2x+),则下面结正确的是()

A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()

A.16

B.14

C.12

D.10

11.设xyz为正数,且,则()

A.2x<3y<5z

B.5z<2x<3y

C.3y<5z<2x

D.3y<2x<5z

12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是26,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()

A.440

B.330

C.220

D.110

二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a,b的夹角为60°,|a|=2,|

b

|=1,则|

a

+2

b

|=

.14.设x,y满足约束条件,则的最小值为

.15.已知双曲线C:(a>0,b>0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.16.如图,圆形纸片的圆心为O,半径为5

cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,求二面角A-PB-C的余弦值.19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ

4,0.997

416≈0.959

2,.

20.(12分)

已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.21.(12分)

已知函数=ae2x+(a﹣2)ex﹣x.(1)讨论的单调性;

(2)若有两个零点,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.【参考答案】

1.A

【解析】,∴,2.B

【解析】设正方形边长为,则圆半径为

则正方形的面积为,圆的面积为,图中黑色部分的概率为

则此点取自黑色部分的概率为.3.B

【解析】设,则,得到,所以.故正确;

若,满足,而,不满足,故不正确;

若,则,满足,而它们实部不相等,不是共轭复数,故不正确;实数没有虚部,所以它的共轭复数是它本身,也属于实数,故正确;

4.C

【解析】

联立求得

5.D

【解析】因为为奇函数,所以,于是等价于|

又在单调递减

故选D

6.C

【解析】

对的项系数为

对的项系数为,∴的系数为故选C

7.B

【解析】由三视图可画出立体图

该立体图平面内只有两个相同的梯形的面

8.D

【解析】因为要求大于1000时输出,且框图中在“否”时输出

∴“

”中不能输入

排除A、B

又要求为偶数,且初始值为0,“

”中依次加2可保证其为偶

故选D

9.D

【解析】,首先曲线、统一为一三角函数名,可将用诱导公式处理..横坐标变换需将变成,即.

注意的系数,在右平移需将提到括号外面,这时平移至,根据“左加右减”原则,“”到“”需加上,即再向左平移.

10.A

【解析】设倾斜角为.作垂直准线,垂直轴

易知

同理,又与垂直,即的倾斜角为

而,即.,当取等号

即最小值为,故选A

11.D

【解析】取对数:.则,故选D

12.A

【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推设第组的项数为,则组的项数和为

由题,令→且,即出现在第13组之后

第组的和为组总共的和为

若要使前项和为2的整数幂,则项的和应与互为相反数

故选A

13.【解析】

14.【解析】不等式组表示的平面区域如图所示

由,得,求的最小值,即求直线的纵截距的最大值

当直线过图中点时,纵截距最大

由解得点坐标为,此时

15.【解析】如图,∵,∴,∴

又∵,∴,解得

16.【解析】由题,连接,交与点,由题,即的长度与的长度或成正比

设,则,三棱锥的高

令,令,即,则

体积最大值为

17.解:(1)面积.且

由正弦定理得,由得.(2)由(1)得,又,由余弦定理得

由正弦定理得,②

由①②得,即周长为

18.(1)证明:∵

∴,又∵,∴

又∵,、平面

∴平面,又平面

∴平面平面

(2)解:取中点,中点,连接,∵

∴四边形为平行四边形

由(1)知,平面

∴平面,又、平面

∴,又∵,∴

∴、、两两垂直

∴以为坐标原点,建立如图所示的空间直角坐标系

设,∴、、、,∴、、设为平面的法向量

由,得

令,则,可得平面的一个法向量

∵,∴

又知平面,平面

∴,又

∴平面

即是平面的一个法向量

由图知二面角为钝角,所以它的余弦值为

19.解:(1)由题可知尺寸落在之内的概率为,落

之外的概率为.

由题可知

(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在之外为小概率事件,因此上述监控生产过程的方法合理.

(ii),需对当天的生产过程检查.

因此剔除

剔除数据之后:.

20.解:(1)根据椭圆对称性,必过、又横坐标为1,椭圆必不过,所以过三点

将代入椭圆方程得,解得,∴椭圆的方程为:.

(2)当斜率不存在时,设

得,此时过椭圆右顶点,不存在两个交点,故不满足.

当斜率存在时,设

联立,整理得,则

又,此时,存在使得成立.

∴直线的方程为

当时,所以过定点.

21.解:(1)由于

当时,.从而恒成立.在上单调递减

当时,令,从而,得.

单调减

极小值

单调增

综上,当时,在上单调递减;

当时,在上单调递减,在上单调递增

(2)由(1)知,当时,在上单调减,故在上至多一个零点,不满足条件.

当时,.

令.

令,则.从而在上单调增,而.故当时,.当时.当时

若,则,故恒成立,从而无零点,不满足条件.

若,则,故仅有一个实根,不满足条件.

若,则,注意到..

故在上有一个实根,而又.

且.

故在上有一个实根.

又在上单调减,在单调增,故在上至多两个实根.

又在及上均至少有一个实数根,故在上恰有两个实根.

综上,.

22.解:(1)时,直线的方程为.

曲线的标准方程是,联立方程,解得:或,则与交点坐标是和

(2)直线一般式方程是.

设曲线上点.

则到距离,其中.

依题意得:,解得或

23.解:(1)当时,是开口向下,对称轴的二次函数.,当时,令,解得

在上单调递增,在上单调递减

∴此时解集为.

当时,.

当时,单调递减,单调递增,且.

综上所述,解集.

(2)依题意得:在恒成立.

即在恒成立.

则只须,解出:.

故取值范围是.

第三篇:ok 精品解析:18届 全国普通高等学校招生统一考试数学(浙江卷)(解析版)

绝密★启用前

2018年普通高等学校招生全国统一考试(浙江卷)

本试题卷分选择题和非选择题两部分。全卷共4页,选择题部分1至2页;非选择题部分3至4页。满分150分。考试用时120分钟。

考生注意:

1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:

若事件A,B互斥,则

若事件A,B相互独立,则

若事件A在一次试验中发生的概率是p,则n次独立重复试验中事件A恰好发生k次的概率

台体的体积公式

其中分别表示台体的上、下底面积,表示台体的高

柱体的体积公式

其中表示柱体的底面积,表示柱体的高

锥体的体积公式

其中表示锥体底面积,表示锥体的高

球的表面积公式

球的体积公式

其中表示球的半径

选择题部分(共40分)

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集,则()

A.B.C.D.【答案】C

【解析】

【分析】

根据补集的定义可得结果.【详解】因为全集,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.

2.双曲线的焦点坐标是()

A.,B.,C.,D.,【答案】B

【解析】

【分析】

根据双曲线方程确定焦点位置,再根据求焦点坐标

【详解】因为双曲线方程为,所以焦点坐标可设为,因为,所以焦点坐标为,选B.【点睛】由双曲线方程可得焦点坐标为,顶点坐标为,渐近线方程为.3.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)是()

A.B.C.D.【答案】C

【解析】

【分析】

先还原几何体为一直四棱柱,再根据柱体体积公式求结果.【详解】根据三视图可得几何体为一个直四棱柱,高为,底面为直角梯形,上下底分别为、,梯形的高为,因此几何体的体积为,选C.【点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.4.复数

(i为虚数单位)的共轭复数是

A.1+i

B.1−i

C.−1+i

D.−1−i

【答案】B

【解析】

分析:化简已知复数z,由共轭复数的定义可得.

详解:化简可得z=

∴z的共轭复数为1﹣i.故选:B.

点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.

5.函数y=sin2x的图象可能是

A.B.C.D.【答案】D

【解析】

分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;

因为时,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.

6.已知直线,和平面,则“”是“”的A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

【答案】D

【解析】

试题分析:直线,平面,且,若,当时,当时不能得出结论,故充分性不成立;若,过作一个平面,若时,则有,否则不成立,故必要性也不成立.由上证知“”是“”的既不充分也不必要条件,故选D.

考点:1、线面平行;2、命题的充分必要条件.

7.设,随机变量的分布列如图,则当在内增大时,()

A.减小

B.增大

C.先减小后增大

D.先增大后减小

【答案】D

【解析】

【分析】

先求数学期望,再求方差,最后根据方差函数确定单调性.【详解】,,∴先增后减,因此选D.【点睛】

8.已知四棱锥的底面是正方形,侧棱长均相等,是线段上的点(不含端点),设与所成的角为,与平面所成的角为,二面角的平面角为,则()

A.B.C.D.【答案】D

【解析】

【分析】

分别作出线线角、线面角以及二面角,再构造直角三角形,根据边的大小关系确定角的大小关系.【详解】设为正方形的中心,为中点,过作的平行线,交于,过作垂直于,连接、、,则垂直于底面,垂直于,因此

从而

因为,所以即,选D.【点睛】线线角找平行,线面角找垂直,面面角找垂面.9.已知、、是平面向量,是单位向量.若非零向量与的夹角为,向量满足,则的最小值是()

A.B.C.2

D.【答案】A

【解析】

【分析】

先确定向量、所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【详解】设,则由得,由得

因此,的最小值为圆心到直线的距离减去半径1,为选A.【点睛】以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程、解不等式、求函数值域或直线与曲线的位置关系,是解决这类问题的一般方法.10已知成等比数列,且.若,则()

A.B.C.D.【答案】B

【解析】

【分析】

先证不等式,再确定公比的取值范围,进而作出判断.【详解】令则,令得,所以当时,当时,因此,若公比,则,不合题意;

若公比,则

但,即,不合题意;

因此,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如

非选择题部分(共110分)

二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一,凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,则当时,___________,___________.

【答案】

(1)

(2).【解析】

【分析】

将代入解方程组可得、值.【详解】

【点睛】实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.

12.若满足约束条件则的最小值是___________,最大值是___________.

【答案】

(1).(2).【解析】

【分析】

先作可行域,再平移目标函数对应的直线,从而确定最值.【详解】作可行域,如图中阴影部分所示,则直线过点时取最大值,过点时取最小值.【点睛】线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得.13.在△ABC中,角A,B,C所对的边分别为a,b,c.若,b=2,A=60°,则sin

B=___________,c=___________.

【答案】

(1).(2).3

【解析】

分析:根据正弦定理得sinB,根据余弦定理解出c.详解:由正弦定理得,所以

由余弦定理得(负值舍去).点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.14.二项式的展开式的常数项是___________.

【答案】7

【解析】

分析:先根据二项式展开式的通项公式写出第r+1项,再根据项的次数为零解得r,代入即得结果.详解:二项式的展开式的通项公式为,令得,故所求的常数项为

点睛:求二项展开式有关问题的常见类型及解题策略:

(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数的值,再由通项写出第项,由特定项得出值,最后求出特定项的系数.15.已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.

【答案】

(1).(1,4)

(2).【解析】

分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数的取值范围.详解:由题意得或,所以或,即,不等式f(x)<0的解集是

当时,此时,即在上有两个零点;当时,由在上只能有一个零点得.综上,的取值范围为.点睛:已知函数有零点求参数取值范围常用的方法和思路:

(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;

(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;

(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.

16.从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答)

【答案】1260.【解析】

分析:按是否取零分类讨论,若取零,则先排首位,最后根据分类与分步计数原理计数.详解:若不取零,则排列数为若取零,则排列数为

因此一共有个没有重复数字的四位数.点睛:求解排列、组合问题常用的解题方法:

(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.17.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=___________时,点B横坐标的绝对值最大.

【答案】5

【解析】

分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.详解:设,由得

因为A,B在椭圆上,所以,与对应相减得,当且仅当时取最大值.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.三、解答题:本大题共5小题,共74分。

解答应写出文字说明、证明过程或演算步骤。

18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().

(Ⅰ)求sin(α+π)的值;

(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.

【答案】(Ⅰ);(Ⅱ)

.【解析】

【分析】

分析:(Ⅰ)先根据三角函数定义得,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得,再根据同角三角函数关系得,最后根据,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角的终边过点得,所以.(Ⅱ)由角的终边过点得,由得.由得,所以或.点睛:三角函数求值的两种类型

(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;

②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.19.如图,已知多面体ABC-A1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1;

(Ⅱ)求直线AC1与平面ABB1所成角的正弦值.

【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】

【分析】

分析:方法一:(Ⅰ)通过计算,根据勾股定理得,再根据线面垂直的判定定理得结论;(Ⅱ)找出直线AC1与平面ABB1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出,再根据线面垂直的判定定理得结论;(Ⅱ)根据方程组解出平面的一个法向量,然后利用与平面法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解.【详解】详解:方法一:

(Ⅰ)由得,所以.故.由,得,由得,由,得,所以,故.因此平面.(Ⅱ)如图,过点作,交直线于点,连结.由平面得平面平面,由得平面,所以是与平面所成的角.由得,所以,故.因此,直线与平面所成的角的正弦值是.方法二:

(Ⅰ)如图,以AC的中点O为原点,分别以射线OB,OC为x,y轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:

因此

由得.由得.所以平面.(Ⅱ)设直线与平面所成的角为.由(Ⅰ)可知

设平面的法向量.由即可取.所以.因此,直线与平面所成的角的正弦值是.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20.已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.

(Ⅰ)求q的值;

(Ⅱ)求数列{bn}的通项公式.

【答案】(Ⅰ);(Ⅱ).【解析】

【分析】

分析:(Ⅰ)根据条件、等差数列的性质及等比数列的通项公式即可求解公比;(Ⅱ)先根据数列前n项和求通项,解得,再通过叠加法以及错位相减法求.【详解】详解:(Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.21.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.

(Ⅰ)设AB中点为M,证明:PM垂直于y轴;

(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.

【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】

【分析】

分析:

(Ⅰ)设P,A,B的纵坐标为,根据中点坐标公式得PA,PB的中点坐标,代入抛物线方程,可得,即得结论;(Ⅱ)由(Ⅰ)可得△PAB面积为,利用根与系数的关系可表示为的函数,根据半椭圆范围以及二次函数性质确定面积取值范围.【详解】详解:(Ⅰ)设,.

因为,的中点在抛物线上,所以,为方程,即的两个不同的实数根.

所以.

因此,垂直于轴.

(Ⅱ)由(Ⅰ)可知

所以,.

因此,的面积.

因为,所以.

因此,面积的取值范围是.

点睛:求范围问题,一般利用条件转化为对应一元函数问题,即通过题意将多元问题转化为一元问题,再根据函数形式,选用方法求值域,如二次型利用对称轴与定义区间位置关系,分式型可以利用基本不等式,复杂性或复合型可以利用导数先研究单调性,再根据单调性确定值域.22.已知函数.

(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;

(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】

【分析】

分析:

(Ⅰ)先求导数,根据条件解得x1,x2关系,再化简f(x1)+f(x2)为,利用基本不等式求得取值范围,最后根据函数单调性证明不等式;(Ⅱ)一方面利用零点存在定理证明函数有零点,另一方面,利用导数证明函数在上单调递减,即至多一个零点.两者综合即得结论.【详解】详解:(Ⅰ)函数f(x)的导函数,由,得,因为,所以.

由基本不等式得.

因为,所以.

由题意得.

设,则,所以

x

(0,16)

(16,+∞)

0

+

2-4ln2

所以g(x)在[256,+∞)上单调递增,故,即.

(Ⅱ)令m=,n=,则

f(m)–km–a>|a|+k–k–a≥0,f(n)–kn–a<≤<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.

由f(x)=kx+a得.

设h(x)=,则h′(x)=,其中g(x)=.

由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.

综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

点睛:利用导数证明不等式常见类型及解题策略:(1)

构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.

第四篇:精品解析:2018年全国普通高等学校招生统一考试理科数学(新课标II卷)(原卷版)

绝密★启用前

2018年普通高等学校招生全国统一考试

理科数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.A.B.C.D.,则中元素的个数为 2.已知集合A.9

B.8

C.5

D.4 3.函数的图象大致为

A.A

B.B

C.C

D.D 4.已知向量,满足,则

A.4

B.3

C.2

D.0 5.双曲线的离心率为,则其渐近线方程为 A.6.在A.B.中,B.7.为计算

C.C.,D.D.,则,设计了下面的程序框图,则在空白框中应填入

A.B.C.D.8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如等于30的概率是

.在不超过30的素数中,随机选取两个不同的数,其和A.B.C.D.中,,则异面直线

所成角的余弦值为 9.在长方体A.B.10.若A.B.C.11.已知A.是定义域为

C.在D.是减函数,则的最大值是

D.的奇函数,满足

.若,则

B.0

C.2

D.50 12.已知,是椭圆为等腰三角形,A.B.C.D.的左,右焦点,是的左顶点,点在过且斜率为的直线上,则的离心率为

二、填空题:本题共4小题,每小题5分,共20分。13.曲线14.若15.已知在点满足约束条件,处的切线方程为__________.

则,则,的最大值为__________. __________.

所成角的余弦值为,与圆锥底面所成角为45°,若的16.已知圆锥的顶点为,母线面积为,则该圆锥的侧面积为__________.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题,考生根据要求作答。学科&网

(一)必考题:共60分。17.记为等差数列

(1)求的前项和,已知,. 的通项公式;

(2)求,并求的最小值.18.下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为年的数据(时间变量的值依次为)建立模型①:

;根据2010年至2016)建立模型②:

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 19.设抛物线的焦点为,过且斜率为的直线与交于,两点,.

(1)求的方程;

(2)求过点,且与的准线相切的圆的方程. 20.如图,在三棱锥(1)证明:(2)若点在棱中,平面;

为,求

与平面

所成角的正弦值.,为的中点.

上,且二面角

21.已知函数(1)若.,证明:当

时,;(2)若在只有一个零点,求.

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程] 在直角坐标系中,曲线的参数方程为

(为参数),直线的参数方程为

(为参数).(1)求和的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

23.[选修4-5:不等式选讲]

设函数.

(1)当时,求不等式的解集;

(2)若,求的取值范围.

第五篇:2014年普通高等学校招生全国统一考试数学(浙江理科卷)

2014年普通高等学校招生全国统一考试数学(浙江理科卷)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出学科网的四个选项中,只有一项是符合题目要求的.(1)设全集UxN|x2,集合AxN|x25,zxxk则CUA()

A.B.{2}C.{5}D.{2,5}

(2)已知i是虚数单位,a,bR,则“ab1”是“(abi)22i”的()

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

(3)某几何体的三视图(单位:cm)如图所示,则此几何体的学科网表面积是

A.90cmB.129cmC.132cmD.138cm

2222

4.为了得到函数zxxkysin3xcos3x的图像,可以将函数y2sin3x的图像()

A.向右平移

C.向右平移个单位B.向左平移个单位44个单位D.向左平移个单位121

264mnf(0,3)5.在(1x)(1y)的展开式中,记xy项的系数为f(m,n),则f(3,0)f(2,1)f(1,2)

()

A.45B.60C.120D.210

6.已知函数f(x)x3ax2bxc,且0f(1)f(2)f(3)3,则()

A.c3B.3c6C.6c9D.c9

7.在同意直角坐标系中,函数f(x)xa(x0),g(x)logax的图像可能是()

x,xyy,xymax{x,y}min{x,y}8.记,设a,b为平面向量,则()y,xyx,xy

A.min{|ab|,|ab|}min{|a|,|b|}

B.min{|ab|,|ab|}min{|a|,|b|},|ab|2}|a|2|b|2

2222 D.min{|ab|,|ab|}|a||b|C.min{|ab|

9.已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个篮球学科网m3,n3,从乙盒中随2机抽取ii1,2个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ii1,2;

(b)放入i个球后,从甲盒中取1个球是红球的概率记为zxxkpii1,2.则

A.p1p2,E1E2B.p1p2,E1E2

C.p1p2,E1E2D.p1p2,E1E2

10.设函数f1(x)x2,f2(x)2(xx2),f3(x)

13|sin2x|,ai

i99,i0,1,2,,99,Ik|fk(a1)fk(a0)||fk(a2)fk(a1)||fk(a99)fk(a98)|,k1,2,3.则

A.I1I2I3B.I2I1I3C.I1I3I2D.I3I2I1

二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的学科网结果是

________.记

12.随机变量的取值为0,1,2,若P01,E1,则D________.5x2y40,13.当实数x,y满足xy10,时,zxxk1axy4恒成立,则实数a的取值范围是________.x1,

14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).2xx,x015.设函数fx2若ffa2,则实数a的取值范围是______ x,x0

x2y

216.设直线x3ym0(m0)与双曲线221(ab0)两条渐近线分别交于点A,B,若ab

点P(m,0)满足PB,则该双曲线的离心率是__________

17、如图,某人在垂直于水平地面为,某目标点沿墙面的射击线的大小.若的墙面前的点处进行射击训练.学科网已知点到墙面的距离移动,此人为了准确瞄准目标点,需计算由点观察点的仰角则的最大值

19(本题满分14分)

已知数列an和bn满足a1a2an2nN.zxxkbn若an为学科网等比数列,且a12,b36b2.(1)求an与bn;

(2)设cn11nN。记数列cn的前n项和为Sn.anbn

(i)求Sn;

(ii)求正整数k,使得对任意nN,均有SkSn.20.(本题满分15分)如图,在四棱锥ABCDE中,zxxk平面ABC平面BCDE,CDEBED900,ABCD2,DEBE1,AC2.(1)证明:DE平面ACD;

(2)求二面角BADE的大小

21(本题满分15分)

x2y2

如图,设椭圆C:221ab0,动直线l与椭圆C只有一个公共点P,学科网且点Pab

在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;

(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离学科网的最大值为ab.22.(本题满分14分)已知函数fxx33xa(aR).(1)若fx在1,1上的最大值和最小值分别记为M(a),m(a),求M(a)m(a);

(2)设bR,若fxb4对x1,1恒成立,zxxk求3ab的取值范围.

下载ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)(最终五篇)word格式文档
下载ok,精品解析:18届,全国普通高等学校招生统一考试理科数学(新课标I卷)(解析版)(最终五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐