空调水系统中的冷却塔节能性研究论文(精选5篇)

时间:2019-11-02 06:48:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《空调水系统中的冷却塔节能性研究论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《空调水系统中的冷却塔节能性研究论文》。

第一篇:空调水系统中的冷却塔节能性研究论文

摘 要:通过分析不同因素对冷却塔冷却能力的影响,从运行过程中节约风机、水泵等能耗的观点出发,总结了利用冷却塔节能的各种实施方法。室外空气湿球温度,入口水温,及冷却水量的变化都将引起冷却塔冷却能力的变化。为了用户的最大限度节能,冷却塔的生产厂家在设计与制造过程中应多考虑冷却塔的自控功能,并且提供冷却塔在冬夏两种工况的热工参数。

关键词:冷却塔;温度调节器;节能;冷却塔供冷

冷却塔被广泛地应用于制冷空调系统及工业设备的冷却水系统。对于空调用户而言,冷却塔的功耗在整个空调系统的能耗中也占有一定的比例,而且由于其使用频率高,累计能耗是十分可观的。从节能的角度讲,我们应当对空调系统中冷却塔的耗能给予同样的重视,系统节能应整体考虑。为了适应越来越高的节能要求,我们应该分析影响冷却塔冷却能力的因素,从运行过程中节约风机、水泵等能耗的观点出发,找出冷却塔节能的各种实施方法,在能源日趋紧张的今天,是一项十分有意义的工作。

当前,国内外冷却塔的节能研究(以机械通风湿式塔为主)主要集中在以下几个方面:

(1)改进冷却塔体的结构,优化冷却塔内部构件的布置,使气、水分布均化,减少阻力,提高效率;

(2)改进冷却塔运行方式,减少能耗;

(3)高温水在进入冷却塔之前,先进行一定的“预处理”,使水进入冷却塔后能增大与空气的接触面积和接触时间,以达到节水和节能的目的。

1.冷却塔性能

在制冷空调系统中,冷却塔起着非常重要的作用。从热力学方面考虑有3种基本形式的冷却塔:湿式(蒸发式)、干式、湿干混合式。目前应用较广泛的是湿式(蒸发式)冷却塔。冷却水通过冷却塔与外界空气同时进行着热量和质量的交换,热量分为显热和潜热两部分。冷却水通过冷却塔与外界空气同时进行着热量和质量的交换,热量分为显热和潜热两部分。假若换热量全部为水的潜热,则冷却水降低6℃,蒸发的水量不及供水量的1/100。冷却塔的性能与温度范围和接近度有关。温度范围是指冷却塔出水与进水的温度差。冷却塔的选择与以下几个因素有关:需冷却的热负荷,冷却的温度范围,接近度,湿球温度。

2.冷却塔的冷却能力

冷却塔的冷却作用是通过水与空气进行直接或间接的热、质交换来实现的。为了达到节能的目的,首先我们应该清楚影响冷却塔冷却能力的各个因素,以便在运行过程中采取适当的措施,使冷却负荷与冷却能力相匹配,尽可能地节省能耗。对结构已经确定的冷却塔而言,影响冷却塔的冷却能力的主要因素有:室外空气(湿球)温度、冷却水入口温度、冷却水量及诱导风量等。

(1)室外空气(湿球)温度

冷却塔出口水温度的理论极限值为室外空气的湿球温度。因此,当水量一定,入口水温一定时,室外空气的湿球温度越低,与入口水温之差越大,冷却塔冷却能力就越强。但是我们必须注意的是冷却水温度太低的话,制冷机组的冷凝压力会大幅度降低。因为对于制冷机冷凝器冷凝压力有一个低限,冷凝温度也有一个低温限制,所以冷凝温度过低,将导致制冷机组运行容易出现故障。

(2)入水口温差

当冷却水量一定,室外空气湿球温度一定时,随着冷却塔入口水温的增加,入口水温及出口水温与空气湿球温度之差都将增加,促进了冷却,因此冷却能力会增加。但是对于某一结构形式已确定的冷却塔而言,由于冷却能力的限制,可能使出水口水温有较大的升高,这样可能导致制冷机组的冷凝压力过高,使机组制冷量不足。

(3)冷却水量

当冷却水入口水温、空气湿球温度一定时,冷却水量增加,冷却塔的总容积传热系数也会增加,虽然冷却水温降有所减少,但总的效果还会使制冷能力增加。但也要注意的是,由于水量的增加,将使配管内的腐蚀、管内压力损失增加。因此必须在检验循环水泵,制冷机组及冷却塔等设备的使用条件后才能确定。

3.冷却塔的运行与节能途径

由上所述,室外空气湿球温度,入口水温,及冷却水量的变化都将引起冷却塔冷却能力的变化。因此,如果在运行过程中,当室外空气(湿球)温度变化或冷却负荷发生改变时,充分利用上述特性,采用适当的措施必然能做到使冷却塔的冷却能力与冷却负荷相匹配,从而节省运行能耗。

(1)通过温度调节器控制风机的启、停

当冬季室外空气(湿球)温度降低时,冷却塔的冷却能力增加,出口水温降低,由温度调节器感知水温,停止风机运转,达到防止水温过低及节能的目的。

(2)通过调速装置改变风机用电机的转速

由于室外空气湿球温度的变化是随机性的,采用调速装置可以改变风机用电机的转速,可以使电机实现无级调速,从而获得更好的节能效果,同时也可以减少风机的启、停次数,延长风机的使用寿命。根据生产的需要预先设定供水温度,由气候气象环境对水温的影响、系统换热条件的改变对水温的影响,用温感探头的实测值反应出来,最终通过调控降温设备的能耗来稳定供水温度,实现自控节能。

(3)风机台数控制

当空调系统有几台冷却塔或每台冷却塔有几台风机时,风量的调节可以通过风机台数控制来实现,根据需要来确定风机开启的台数,因此这种调节手段更强,调节范围更大,且水温比较稳定,尤适合在制冷负荷变化不大而室外空气参数变化大的情况下使用,工业用冷却塔上最为实用。表3-1 为维持冷却塔出水温度32℃不变,室外空气湿球温度变化与风机开启台数变化对应表。风机的开与停,可以采用手动,也可通过温感来实现自动控制。根据测量供水温度的变化,自动调节风机的开、停机数量达到控温节能的目的,从而节省冷却塔风机能耗。

表 3-1

(4)封闭式冷却塔洒水泵的运行控制

当室外空气(湿球)温度降低或者冷却负荷减少时,可通过设置在冷却塔内的温控器关闭洒水泵,节约洒水泵的能耗。当洒水泵停止运行时,冷却水仅仅靠与空气的显热交换来冷却。

(5)冷却塔进水控制

以往的研究基本上局限于冷却塔本身,而对冷却塔的处理对象——待冷却高温水却涉及很少,如果让高温水在进入冷却塔之前,先进行一定的“预处理”,改变气、水之间的传热、传质性能,同样也能达到节水和节能的目的。同济大学[5]做法:以现有的冷却塔为基础,在进水管装上溶气设备(溶气罐或射流溶气器),利用一定的压力将空气溶于进水中,然后再进行冷却。改进后的冷却塔的容积散质系数比原来提高15%—20%,冷却效率大大提高。

(6)冷却塔直接供冷系统。

在前面已经讲到,在空调的水系统中,通常情况下,被冷却塔冷却的水流经制冷机组的冷凝器,形成冷却塔——冷凝器的冷却水循环环路,系统的另一循环环路为蒸发器——用户的冷冻水环路。如果当室外空气湿球温度下降到某一值时,制冷机组可以停止运行,由冷却塔冷却的冷却水可直接送入用户空调末端,形成冷却塔——用户的循环环路,即冷却塔直接供冷的模式。这样,设计通过两个途径节省能耗:1)停止制冷机组可以节省大部分能耗,2)系统的循环水泵由冷却水泵与冷冻水泵同时运行变成只有冷却水泵运行。

对空调用户而言,所消耗电量为制冷机组、冷却塔、水泵等系统各部分耗电量的总和。因此,节约各部分的耗电量对于用户同等重要,这样才有可能保证系统总体上节能。在空调系统中利用冷却塔节能,可以从改变其自身的运行工况着手,也可以从冷却塔系统的角度,充分利用冷却塔的冷却能力。为了用户的最大限度节能,冷却塔的生产厂家在设计与制造过程中应多考虑冷却塔的自控功能,并且提供冷却塔在冬夏两种工况的热工参数。

4.结论

我国是个淡水严重短缺的国家,而经济确以惊人的速度增长,人民生活水平的提高,使得空调的普及率迅速升高,因此对空调水系统的冷却塔节水节能提出了更高的要求,虽然冷却塔的运行节能往往被忽视,但笔者相信,随着控制技术的不断提高和制造成本的不断下降,冷却塔的节能技术将会被用户更多地接受和采用。冷却塔的节能有多条途径,而且随着研究工作的不断深入,还会有各种新的方法不断出现。各种方法、途径之间不是孤立的,而是相互联系、相互制约的关系。在实际操作中,既可以从某一角度对冷却塔进行节能改造,也可以从多方面综合评价,最终目的都是为了使冷却塔效率达到最优,节能节水率达到最高,以缓解当前紧张的水资源和能源问题。

参考文献

[1] 黄仲杰.我国城市供水现状.问题与对策.给水排水,2011,24(2):18—20.

[2] 冀兆良.夏热冬暖地区的居住建筑节能.制冷空调与电力机械.2003年第六期.[3] 刘迎云.利用冷却塔节能的途径与方法.节能.2009.12:37-41.

[4] 林宏.利用冷却塔供冷技术的初探.制冷空调与电力机械.2010.3:19-21.

[5] 郅玉声等.提高冷却塔冷却效率的工艺研究.化工给水排水设计.2011(1):5-7.

[6] 刘随兵,周琪等.冷却塔高效节能的研究进展.给水排水.2010.25(5):61-65.

[7] 路延魁主编.《空气调节设计手册》(第二版).中国建筑工业出版社.1995.11.

[8] 陆耀庆主编.《实用供热空调设计手册》.中国建筑工业出版社.1993.6.

第二篇:几种典型空调水系统中水处理方法

中央空调 几种典型空调水系统中水处理方法

钠离子交换软化:利用置换原理,将水中的Ca+和Mg+用其他不形成硬度的阳离子(如Na+)来置换,使水中的钙镁盐类变成钠盐以除去水中硬度。

静电场阻垢处理:在一定强度的静电作用下产生极化作用,使水中难溶盐的正负离子难以结合,结晶,结垢。特点为有一定的杀菌灭菌作用,无缓蚀及过滤作用。电子水处理器:水经过处理后,其物理结构发生变化,水中溶解盐类的离子及带电离子间静电引力减弱,不能相互聚集,防止结垢。特点同静电场阻垢处理。投放阻垢分散剂:投放阻垢分散剂后提高水介质自身的溶碳酸钙硬度,同时改变碳酸钙晶体晶格,难以聚集成垢,从而达到阻垢目的。特点为阻垢效果较好,但对铜有腐蚀,也部适用于水温较高的冷却水系统。

强磁水处理:利用流动的水经过强磁场的磁力线切割后水的物理化学性质发生变化,活性,溶解度大大提高来解决防垢,杀菌,除锈,灭藻。缺点是价格昂贵。药物处理:投放杀生剂和纯化剂等药物,防止细菌和水藻繁殖。分为氧化剂和非氧化剂两大类。常见的氧化剂型有氯,次氯酸钙,二次氯酸钙(以上为价廉),氯胺(效用持久);常见的非氧化剂型有季胺盐类,氯酚类,烯醛类等。

Y型管道过滤器:基本上市场上常见的阀门厂都生产,安装在精密控制阀门或设备的进口段,用于清除介质中的杂质,以保护阀门和设备的正常使用。

直流电子水处理器:分高频电子水处理器,强磁水处理器,离子棒等方式。旁流水处理器:以平行安装于总管的安装方式得名。目前市场上常见的厂家有同济益水和杭州安康两家。同济益水前身是同济大学的附属企业,现已脱勾。其产品设计为2003年设计原型。同济水处理器分空调水和冷却水两种型式。检测报告为97年版本,特别指出的是其具有军团菌的抑菌实验报告(2002年)。产品采用叠加脉冲的低压电场原理,工作电压小于36V,水头损失为4-7米,适用于循环水系统杀菌灭藻除垢处理并去除水中悬浮物。选型安装依据:与系统输送总管通径一致,在系统水泵进出水总管旁路安装,无需增加水泵,仅旁流系统流量的1-3%。目前产品价格偏低。需要指出的是同济水处理器不具备过滤的功能,只能通过去除水中悬浮物实现过滤杂质的功能,远不能达到μ的级别。

中央空调

第三篇:办公楼节能空调系统的构建分析论文

0引言

能源危机一直是当今世界各国所关注的话题,近几年人们越来越多的关注节能减排,根据调查,建筑能耗在整个社会所产生的能耗中占据了相当大的比重,例如,2007年我国的建筑能耗即已经约占当年社会总能耗的23%[1],并且其增长速率有增无减。而在建筑能耗中,空调系统所产生的能耗占据了很大一部分,平均能够达到40%,有的甚至高达70%[2].在各种类型的建筑所产生的能耗中,办公建筑所占的比重很大[3].在绿色建筑成为开发商、研究者研究热门的今天,研究如何保证空调系统节能,优化空调系统组成,改变空调系统的设计理念具有相当重要的意义。

1舒适性空调参数设定

空气温度、湿度和气流速度是3个影响室内热舒适性的主要方面,三者相互作用、影响,每一个因素发生变化都会影响人员在室内的舒适感觉。2013年,兰芳、万建武等人以广州某办公建筑为例,采用PMVPPD模型进行了计算分析,探讨了家居环境标准和空调参数的节能控制,得出结论,在居室内的空调参数的设定在保证热舒适的条件下,从节能的角度出发,应充分考虑居住建筑及居室人的状态特点,综合考虑各种因素对人体舒适的影响作出设定。其中夏季居室空调指标设定范围可取为: 温度26~ 29 ℃,空气相对湿度为40% ~70%,气流速度≤0.3 m / s,适时调节参数为: 人静坐休息时,空调温度可设定为28.5~29 ℃,从事家务劳动时,空调温度可设定为25.5~27 ℃。[7]

综上所述,结合当下节能减排的总体思路,空调的参数设定应当充分考虑建筑物的用途,设定参数设定的大致范围,再根据人的行为进行一定程度的调节,若直接使用定参数控制,则势必会造成能源的浪费。

2冷热媒温度的确定

室内热舒适性受到室内空气温度、湿度和气流组织的影响,任何一个因素变化都会影响到室内热舒适性,研究发现,露点温度变化5.8 ℃与干球温度变化0.5 ℃具有相同的热舒适性[5].相对湿度从50%降低到35%时,采 用 低 温 送 风 可 将 房 间 的 干 球 温 度 从23.9 ℃提 高 到24.4 ℃,而 保 持 等 效 的 舒 适 性[8].Fanger的研究发现温度和湿度对空气的接受能力会产生极大的影响,空气的接受能力随空气的焓值的上升呈线性下降[9-10].因此,研究者认为,减少新风供给、增大空气焓值或者降低冷媒的温度,一样可以产生令人满意的热舒适性,通过这种方法达到节能的目的[8].2011年,于秋生对制冷循环进行了热力计算,分析了冷媒温度对制冷剂能耗及COP值之间的影响,结果表明供回水在整个系统能耗和投资影响中扮演着十分重要的角色,分析得出相同供回水温差下,供水温度越低制冷剂的能耗就越大,同时,COP就会越低,而且低温供水对冷源处是不利的,制冷剂供水温度每升高1 ℃压缩机的功率下降3.3%,同时,冷水机主COP升高3.6%.其次,供回水温差△t越大、回水温度越高,能耗损失和投资也就越大。[11]

因此,在保证室内热(冷)舒适性的条件下,为了达到节能的目的,应当慎重选择冷热媒的温度及供回水温度,以达到低能耗高收益的目的。

3冷源的改进

影响空调节能的关键因素之一是在系统设计时对设备进行合理的选型,所以合理配置中央空调系统中的冷热源对节能和合理利用能源来说起着至关重要的作用。中央空调系统常用的冷热源配置方式有水冷冷水机组加锅炉和热泵型机组[12].在实际生产中,我们应当根据不同房间的送风要求,使用不同温度的低温冷媒和空调系统给建筑物供冷。例如,当房间要求送风温度高于7 ℃时,可以采用直接膨胀式空调系统畸形低温送风,这种系统设备投资低,维护费用少; 而当送风温度低于7 ℃时,盘管内的低温水温度就需要1~4 ℃。通过对比,发现冰蓄冷技术可以满足这一要求,不仅如此,当冰蓄冷系统与低温送风相结合时,可以将整个空调系统在用电高峰时期的用电需求移至用电低谷时段,同时减少制冷机组水泵和冷却塔的容量,甚至可以省去冷却塔和部分机组设备,减少装机容量。有了冰蓄冷技术的融入,可以起到削峰填谷的作用,节省运行费用。根据研究,与冰蓄冷结合的低温送风系统较常规的空调系统年运行费用可降低18%~28%.4空调系统的节能控制

我国幅员辽阔,很多地区夏季炎热,较多的住宅和办公楼采取中央空调集中供冷系统,并且保持空调机组长时间运行。这样保持统一功率或粗犷式的控制势必导致能源的流失,达不到节能降耗的目的。所以近几年,越来越多的写字楼和综合性建筑被设计为智能型建筑(Intelligent Building,IB)[13],人们希望通过智能化控制,分时分地段的进行供冷供热。这种新型的自动化控制方式日益成为研究者和建筑从业人员的关注焦点。

4.1基于OPC系统的室内环境控制

OPC[14]技术以微软公司的COM /DCOM(组件对象模型/分布式组件对象模型)技术为基础,为控制软件定义了一套标准的对象、接口和属性。通过这些对象接口,应用软件之间能够无缝地集成在一起,实现应用程序之间数据交换的标准化,从而极大地提高自动化系统、现场设备和商业办公系统的互操作性。在控制空调系统方面,OPC系统可以用自控手段对室内的温度、湿度和CO2浓度做出调节。由于人对于湿度和CO2浓度并不敏感,所以OPC系统中CO2浓度和湿度的目标值由管理员设定。用户自行设定的是温度的目标参数。通过该系统,可以实现对建筑物内的空调系统的智能化控制,对室内温度参数的动态化处理,实时的控制空调系统(其中最主要是对空调系统末端装置)的运行状态,使得空调系统更加节能[15].不仅如此,OPC系统良好的人机交互功能可以使用订阅的方式来读取数据,得到温度、湿度等[16].4.2 EIB技术对于风机盘管的控制

EIB最大的特点是通过单一多芯电缆替代了传统分离的控制电缆和电力电缆,并确保各开关可以互传控制指令,因此总线电缆可以以线型、树型或星型铺设,方便扩容与改装。每条支线利用线路耦合器可以连接为一个区域,而每巧个区域利用总线祸合器可以连接成一个大的系统。根据标准,一条总线的最大长度为1[17]EIB系统非常适用于一二线城市中的办公用写字楼或新建的CBD,这些建筑采用时尚的建筑风格,较多地采用开敞式空间与隔断、房间相结合的方式,若不进行细致地管控,空调系统的能耗将大大加大。EIB系统对风机盘管控制的原理为: 对空调末端供冷(热)区域采用2种控制方式,即集中控制(开敞办公区)和集中加就地控制(隔断、独立办公室、会议室等)。[18]吴琴霞等人的研究通过利用EIB系统实现空调风机盘管系统的最优化节能控制为整栋建筑的节能打下了一个好的硬件及软件基础,在实际的施工过程中,虽然前期投资将相对加大,但从长远来看,使用EIB系统则是最节能、环保和经济的选择。EIB系统的运用,有效地降低了能耗和运行费用,根据实际数据和测算,节能比例将达到31%左右,而且其前期投资回报期只有3年左右,具有很大的利用价值和市场潜能。

5结论

目前,空调系统基本上已经是建筑物中必备的设施,在建筑节能中,由于暖通空调系统的节能占据主要部分,我们应当对系统的每一个部分都进行思考和改进,冷热源、热媒、设定参数,尤其是末端装置的智能化控制。从设备的角度改进,提升系统的整体性能,而从末端装置的智能化控制,可以改变人们对于该系统的认识,毕竟空调系统由人设置,也是服务于人的,所以行业从业者和研究人员应当更加关注暖通空调系统的自动化方面的研究。

参考文献:

[1]清华大学建筑节能研究中心。中国建筑节能发展研究报告[R].2010.[2]兰芳,万建武。办公建筑空调室内设计参数选取的研究[J].制冷,2013,(4):26-32.[3]张立文。重庆市公共建筑空调运行现状调研及节能运行控制[D].重庆: 重庆大学,2009.[4]GB /T18049-2000,中等热环境PMV和PPD指数的测定及热舒适条件的规定[S].[5]Berglumd L G.Comfort benefits for summer air conditioning with icestorage[J].ASHRAE transactions,1997,(1):843-847.[6]文洁。不同热湿环境参数组合对空调系统能耗的影响研究[D].长沙: 湖南大学,2014.[7]李莉。夏季居住建筑室内热舒适及其空调环境标准[J].集美大学学报: 自然科学版,2009,14(4):399-405.[8]刘伟,张岩,冯圣红。低温送风系统设计与节能分析[J].建筑节能,2011,(1):21-24.[9]Jom Toftum,P Ole Fanger.Air humidity requirements for human com-fort[J].ASHRAE transactions,1999,(2):641-647.[10]Lei Fang,Geo Clausen.Temperature and humidity:important factorsfor perception of air quality and for ventilation requirements[J].ASHRAEtransactions,2000,(2):503-510.[11]于秋生。冷媒温度与空调系统节能应用研究[D].长春: 吉林建筑工程学院,2011.[12]闫志勇。简述暖通空调系统中环保节能技术的应用[J].科技与企业,2012,(2):93.[13]Finley M R,Karakura A,Nbogni R.Survey of intelligent buildingconcepts[J].Communication M agazine,1991,29(4):18-23.[14]Chen Liding,Tang Xiaoyan.Research on intelligent building systemintegration based on OPC[C]/ / First IEE International Conference onBuilding Electrical Technology(BETNET),2004.[15]李伟伟。基于OPC的室内环境自动调节系统研究[D].北京: 北京工业大学,2012.[16]郭正波。智能建筑空调系统数据通信和实时优化研究[D].长沙:湖南大学,2012.[17]施耐德电气(中国)投资有限公司上海分公司。KNX /EIB安装总线技术介绍-EIB的发展以及通信原理简介[J].仪器仪表标准化与计量,2007,(5):5-7.[18]吴琴霞。EIB技术在建筑节能中的典型应用[J].智能建筑,2013,(1):52-55.

第四篇:循环水冷却塔节能改造可行性方案

二化循环水冷却塔技改可行性计算

1、系统各单元实际运行参数及工作状况 1.1 循环水泵型号:RDL700-820A; 向外供水实际压力: 0.48MPa 出口阀门开度:全开;额定电压:10KV 额定电流:96.8A;实际电流:86-89A 1.2 风机部分

电机额定功率:200KW;额定电压:380V 电机额定电流:362A;电机实际电流:260A 1.3 冷却塔部分

海鸥方形逆流塔:7台;设计流量4500m3/h;实际流量3800-4000m3/h; 实际温差8-9℃;上塔管径:900;上塔阀门开度40o;系统回水压力0.25-0.26MPa;布水器高度:11米。

2、风机轴功率及系统富余能量核算 2.1 风机轴功率计算

P电机=3× U × I×coSφ=1.732 × 380 × 260× 0.85=145.45KW 受电机效率、传动轴效率、减速机效率等影响风机实际功率为: P风机=P电机×η电机 ×η减速机×η传动轴=145.45 × 0.92 ×0.91× 0.98=119.33KW(说明:根据机械设计手册第二、四卷电机效率为0.92、传动轴效率为0.98、减速机效率为0.91)2.2 系统富余压头计算 目前上塔阀门没有完全打开,开度为400,阀门消耗的压头可由下列公式计算

流速:V=Q/S 压头:H=§V2/2g 其中:H-----系统中阀门所消耗的扬程

§-----阻力系数;查《水工业工程设计手册》水力计算表;取为400阀门开度时,§= 81 V-----循环水系统水的流速 g-----重力加速度9.81m2/s Q-----实际流量:按实际3850m2/h计算 S-----管道横截面积

计算:V=Q / s =1.68m/s。

H=§V2/2g =81×1.682/2 ×9.81=11.65m。

目前系统回水压力按0.25MPa计,克服阀门阻力和布水高程11m阻力,布水阻力按3m损失计算到达布水喷头余压为:25-11.65-11-2=0.35m 理论计算与实际基本相差不大。

从上计算可以看出,改造后将阀门全开,水轮机可利用的系统富余压头为:回水管阀前压力-布水管高程-布水管至塔顶高程-布水阻力=25-11-2=12m 2.3 系统实际富余能量计算

P=η水轮机×g×Q×H÷3600 η水轮机:贯流式水轮机效率93 P水轮机=0.93×9.81×3850×12÷3600=117.08KW P风机(水)= P水轮机×η减速机×η传动轴=117.08 ×0.91× 0.98=104.41KW

3、水轮机改造条件判断

水轮机输出功率为:P风机(水)=104.41KW;冷却塔风机需要的功率为:P风机=119.33KW。

改造条件判断:P风机(水)/P风机(电)=104.41/119.33=0.875 从计算结果看,回水压力在0.25MPa时,改造P水轮机/P风机为0.875,基本达到电机功率水平但仍有差距,回水压力在0.26MPa时则P水轮机=0.93×9.81×3850×13÷3600=126.84KW P风机(水)= P水轮机×η减速机×η传动轴=126.84×0.91× 0.98=113.12KW 改造条件判断:P风机(水)/P风机(电)=104.41/119.33=0.948 基本达到电机功率水平但仍有差距

因此要完全满足替代则需将系统其他部位消耗的能量移至水轮机处,初步考虑以下两种方案:

一种为将尿素循环水回水总管阀门开度再增大减小阻力将回水压力由0.26MPa提升至0.27MPa,重新计算结果如下: P水轮机=0.93×9.81×3850×14÷3600=136.60KW P风机(水)= P水轮机×η减速机×η传动轴=136.60×0.91× 0.98=121.81KW 改造条件判断:P水轮机/P风机=121.81/119.33=1.021 从计算结果看,改造P风机(水)/P风机(电)> 1 ;满足了完全替代条件。

另一种为将改造塔的进水量由实际的3850m2/h提升至4300m2/h,重新计算结果如下:

P水轮机=0.93×9.81×4200×13÷3600=138.37KW P风机(水)= P水轮机×η减速机×η传动轴=138.37×0.91× 0.98=123.39KW 改造条件判断:P水轮机/P风机=123.39/119.33=1.034 从计算结果看,改造P风机(水)/P风机(电)> 1 ;满足了完全替代条件。

从上述计算结果来看,即便是不作调整使用水轮机也可以达到原电机带动负荷的90%左右,夏季基本满足,冬季五个月由于风机只开5台有时还有富余,这五个月电量完全可以节约下来,夏季根据情况可以将电机恢复或对工况做出调整(采用贯流式水轮机)。因此先期改造一台对系统运行没有风险。

供水二车间

第五篇:义乌市建筑及空调节能问题研究

龙源期刊网 http://.cn

义乌市建筑及空调节能问题研究

作者:李 娜

来源:《沿海企业与科技》2009年第01期

[摘要]建筑节能及空调节能几年前就已经成为我国节能技术领域的重要议题。随着中国经济水平的快速发展,空调普及率的增长,空调节能已日渐成为刻不容缓的大事。文章通过实地调研,考察义乌市居民住宅的建筑结构、空调使用习惯等基本情况,从建筑物和空调系统两方面进行分析,并相应提出几点建议,为相关部门制定及调整能源政策提供依据。

[关键词]住宅建筑;节能措施;空调;节能技术;义乌

[基金项目]本文为浙江省金华市社科联立项课题“义乌市建筑及空调节能问题研究”研究成果,立项号:2008YB229

[作者简介]李娜,义乌工商学院土木工程系教师,在读硕士研究生,浙江 义乌,322D00

[中图分类号]TU984.11+1 [文献标识码]A [文章编号]1007-7723(2009)01-0041-0004

下载空调水系统中的冷却塔节能性研究论文(精选5篇)word格式文档
下载空调水系统中的冷却塔节能性研究论文(精选5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中水系统范文

    中水系统—城市消防供水的新水源 内容简介 用城市污水处理系统的产物—中水,来满足城市消防供水的需要,解决目前城市消防供水水压偏低,无法保证火场需要的问题。用消防水鹤来......

    地铁工程中暖通空调系统的施工研究

    地铁工程中暖通空调系统的施工研究 摘要:在地铁工程的建设中,暖通空调系统的安装施工是地铁机电设备安装中的重要组成部分。由于地铁工程施工环境的封闭性和局限性,地铁施工技......

    关于暖通空调系统中环保节能技术的应用发展

    关于暖通空调系统中环保节能技术的应用发展 [论文摘要]暖通空调系统的节能已经不再是新兴问题。随着现代人们的生活理念和方式的多样化细节化,对于建筑物内的环境要求也日益......

    既有建筑中暖通空调系统的节能改造技术(合集)

    既有建筑中暖通空调系统的节能改造技术 摘要:随着科技的进步,经济的发展,大量先进设备及技术被广泛的应用。年铜空调是先进设备的一种,具有调节温度、改善空气质量的作用,因此得......

    空调水系统试运转调试记录填写范例

    空调水系统试运行调表B.0.7试报审、报验表资料号工程名称:XXXXXXXXXXXXXXXXX项目致:XXXXXXXXXX监理有限公司(项目监理机构)我方已完成一层洁净区空调水系统试运行调试工作,经自......

    电动汽车热泵空调系统的实验研究

    电动汽车用热泵空调系统的实验研究 轩小波1. 2. 1,2陈斐1,2上海新能源汽车空调工程技术研究中心 上海加冷松芝汽车空调股份有限公司制冷研究院 摘要:基于一款电动汽车空调设......

    关于空调系统中噪声的控制措施

    最新【精品】范文 参考文献专业论文 关于空调系统中噪声的控制措施 关于空调系统中噪声的控制措施 摘要:当今社会,空调的使用越来越普及,而空调带来的噪声问题也日益突出。......

    新课程实施中课堂教学设计的质性研究论文

    摘要:对一节化学公开课的形成过程的分析表明:教师的已有实践性知识、评价导向、课程理念、同伴互助、专业引领和现实因素共同影响课堂教学设计;“理念+案例+实践+反思”是教师......