第一篇:浅析低速电动车用电机控制器的设计与实现论文
引高
随着新能源产业的兴起,电动汽车以低成本运营,绿色环保等优势进入到人们的生活中。低速电动车作为一种新型的代步工具,在农村占据了很大的市场。但是低速电动车目前使用的电机及控制器大多为直流有刷控制系统。直流有刷控制系统的缺点是电机维护费用高,最高转速低,爬坡能力有限,这些因素一直制约着低速电动车的推广。交流异步电机控制系统可以有效克服直流有刷控制系统的缺点,但是价格偏高。本设计在电路设计及器件选型上做了大量的分析及试验验证,提供了一种操作简单,价格低廉的低速电动车用交流异步电机控制器
1电机控制器系统设计
电动汽车电机控制器主要工作方式为扭矩控制方式。工作原理为:采集车辆油门踏板的信号和电机速度传感器信号作为输入,根据检测到的电机U,V,W的相电流做闭环反馈,得到电机驱动需要的PW M波形。同时,电机控制器需要实时监测电机的温度信号、电流大小、控制器的温度信号、电压信号等,保障控制系统的安全及行车的安全为了方便实现对电机参数的匹配设置及整车特性的设置,专门设计了CAN总线通信电路,提高了控制器使用的方便性及故障定位的便捷性。本设计共由三部分组成,控制板、功率板及电容。
控制器的主芯片采用T1公司的TMS320LF2406,该款芯片将实时处理能力和控制器外设功能集于一身,为控制系统应用提供了一个理想的解决方案。控制器的外围电路主要包括:模拟量检测电路、开关量检测电路、电流检测电路、电压检测电路、温度检测电路、转速采集电路及CAN通信电路、参数存电路
1.1模拟量检测电路
模拟量检测电路通过运放完成对输入油门踏板信号的采集功能。
1.2电流检测电路
电流检测电路是电机控制器系统的重要组成部分。电流采样的准确性影响电机相电压矢量三角形的闭合性,即影响电机的效率及运行的平稳性。但是由于集成的电流传感器价格比较贵,本设计采用Allegro公司的A 1326芯片,配合磁环进行电流的检测,通过改变磁环的磁场气隙,可以调整电流的检测范围。实践证明,使用该电路可以实现对电流的准确采集
1.3电压检测电路
电压检测电路可以通过检测电池的端电压,实现对电池的过欠压报警。由于蓄电池的工作电压范围比较宽,为了准确检测到最高电压和最低电压,本设计采用I双运放分段采集的方式。其中,低电压由U8A检测,高电压由U 8B部分电路检测。低电压段输出:VO =(R58*(1/CR57 +R45)+1/R58 +1/R56)*Vi+)。R58/R56*VREF。高电压段输出:V 1=(R49*(1/R52+1/R49+1/R50)* Vi+)-R49/R50* V REF。其中,Vi+=R48/(R37+R48)* U do ,V REF=3.OV do。此种检测方法大大提高了电压的采集精度,而且电路简单,器件便宜。
2结束语
文章详细论述了采用'PMS320LF2406 DSP为核心的低速车交流异步电机控制器的硬件设计,给出了模拟量采集、电流采集、电压采集、CAN通信等电路的设计方法及器件选型。本电机控制器通过台架测试及实际车辆道路测试,证明硬件电路工作可靠,控制器效率达到95%以上,各种保护功能完善。通过CAN总线进行电机匹配设置及故障读取,增强了控制器的可操作性,方便了用户使用。
第二篇:电动车用电机的技术发展概况
电动车用电机的技术发展概况
蒸汽机启动了18世纪第一次产业革命以后,19世纪末到20世纪上半叶电机又引发了第二次产业革命,使人类进入了电气化时代。20世纪下半叶的信息技术引发了第三次产业革命,使生产和消费从工业化向自动化、智能化时代转变;推动了新一代高性能电机驱动系统与伺服系统的研究与发展。
21世纪伊始,世界汽车工业又站在了革命的门槛上。虽然,汽车工业是推动社会现代化进程的重要动力;然而,汽车工业的发展也带来了环境污染愈烈和能源消耗过多两大问题。而对于我国日益扩大的汽车市场,这种危机就更明显。据了解,2000年我国进口汽油7000万吨,预计2010年后将超过1亿吨,相当于科威特一年的总产量。目前世界上空气污染最严重的10个城市中有7个在中国,而国家环保中心预测,2010年汽车尾气排放量将占空气污染源的64%。虽然,加剧使用传统内燃机技术发展汽车工业,将会给我国的能源安全和环境保护造成巨大的影响。为此,国家科技部启动了十五“863”电动汽车重大专项。
高密度、高效率、宽调速的车辆牵引电机及其控制系统既是电动汽车的心脏又是电动汽车研制的关键技术之一,已被列为863电动汽车重大专项的共性关键技术课题。20世纪80年代前,几乎所有的车辆牵引电机均为直流电机,这是因为直流牵引电机具有起步加速牵引力大,控制系统较简单等优点。直流电机的缺点是有机械换向器,当在高速大负载下运行时,换向器表面会产生火花,所以电机的运转不能太高。由于直流电机的换向器需保养,又不适合高速运转,除小型车外,目前一般已不采用。
近十年来,主要发展交流异步电机和无刷永磁电机系统。与原有的直流牵引电机系统相比,具有明显优势,其突出优点是体积小,质量轻(其比质量为0.5-1.0kg/Kw)、效率高、基本免维护、调速范围广。其研究开发现状和发展趋势如下。
1.异步电机驱动系统
异步电机其特点是结构简单、坚固耐用、成本低廉、运行可靠,低转矩脉动,低噪声,不需要位置传感器,转速极限高。
异步电机矢量控制调速技术比较成熟,使得异步电机驱动系统具有明显的优势,因此被较早应用于电动汽车的驱动系统,目前仍然是电动汽车驱动系统的主流产品(尤其在美国),但已被其它新型无刷永磁牵引电机驱动系统逐步取代。
最大缺点是驱动电路复杂,成本高;相对永磁电机而言,异步电机效率和功率密度偏低。
2.无刷永磁同步电机驱动系统
无刷永磁同步电机可采用圆柱形径向磁场结构或盘式轴向磁场结构,由于具有较高的功率密度和效率以及宽广的调速范围,发展前景十分广阔,在电动车辆牵引电机中是强有力的竞争者,已在国内外多种电动车辆中获得应用。
内置式永磁同步电机也称为混合式永磁磁阻电机。该电机在永磁转矩的基础上迭加了磁阻转矩,磁阻转矩的存在有助于提高电机的过载能力和功率密度,而且易于弱磁调速,扩大恒功率范围运行。内置式永磁同步电机驱动系统的设计理论正在不断完善和继续深入,该机结构灵活,设计自由度大,有望得到高性能,适合用作电动汽车高效、高密度、宽调速牵引驱动。这些引起了各大汽车公司同行们的关注,特别是获得了日本汽车公司同行的青睐。当前,美国汽车公司同行在新车型设计中主要采用内置式永磁同步电机。
表面凸出式永磁同步电机也称为永磁转矩电机,相对内置式永磁同步电机而言,其弱磁调速范围小,功率密度低。该结构电机动态响应快,并可望得到低转矩脉动,适合用作汽车的电子伺服驱动,如汽车电子动力方向盘的伺服电机。
无位置传感器永磁同步电机驱动系统也是当前永磁同步电机驱动系统研究的一个热点,将成为永磁同步电机驱动系统的发展趋势之一,具有潜在的竞争优势。
永磁同步电机驱动系统低速时常采用矢量控制,高速时用弱磁控制。
3.新一代牵引电机驱动系统
从20世纪80年代开关磁阻电机驱动系统问世后,打破了传统的电机设计理论和正弦波电压源供电方式;并随着磁阻电机,永磁电机、电力电子技术和计算机技术的发展,交流电机驱动系统设计进入一个新的黄金时代;新的电机拓朴结构与控制方式层出不究,推出了新一代机电一体化电机驱动系统迅猛发展。高密度、高效率、轻量化、低成本、宽调速牵引电机驱动系统已成为各国研究和开发的主要热点之一。SRD开关磁阻电机驱动系统的主要特点是电机结构紧凑牢固,适合于高速运行,并且驱动电路简单成本低、性能可靠,在宽广的转速范围内效率都比较高,而且可以方便地实现四象限控制。这些特点使SRD开关磁阻电机驱动系统很适合电动车辆的各种工况下运行,是电动车辆中极具有潜力的机种。SRD的最大特点是转矩脉动大,噪声大;此外,相对永磁电机而言,功率密度和效率偏低;另一个缺点是要使用位置传感器,增加了结构复杂性,降低了可靠性。因此无传感器的SRD也是未来的发展趋势之一。永磁式开关磁阻电机也称为双凸极永磁电机,永磁式开关磁阻电机可采用圆柱形径向磁场结构、盘式轴向磁场结构和环形横向磁场结构。该电机在磁阻转矩的基础上迭加了永磁转矩,永磁转矩的存在有助于提高电机的功率密度和减小转矩脉动,以利于它在电动车辆驱动系统中应用。
转子磁极分割型混合励磁结构同步电机这一概念一提出就引起国际电工界和各大汽车公司研发中心的极大关注。转子磁极分割型混合励磁结构同步电机具有磁场控制能力,类似直流电机的低速助磁控制和高速弱磁控制,符合电动车辆牵引电机低速大力矩和恒功率宽调速的需求。目前该电机的研究处于探索阶段,电机的机理和设计理论有待于进一步深入研究与完善,作为假选的电动车辆牵引电机具有较强的潜在的竞争优势。
此外,正在研发的热点课题还有:
具有磁场控制能力的永磁同步电机驱动系统;
车轮电机驱动系统;
动力传动一体化部件(电机、减速齿轮、传动轴);
双馈电异步电机驱动系统和双馈电永磁同步电机驱动系统。
4.下一代汽车电子伺服系统及其车用伺服电机
1993年美国能源部、商务部、贸易部、国防部、环保局、宇航局、国家科学基金会七个政府部门下美国三个最大的汽车制造公司,克莱斯勒、福特和通用,建立了新一代车辆伙伴关系(PNGV,Partnership for a New Generation of Vehicles),目标是开发新一代机动车技术,以增强美国汽车工业的实力。1998年至2002年期间,美国国家自然科学基金(NSF)资助美国国家电力电子中心(由美国Virginia和美国Wisconsin等四所大学组建)研发车辆电子动力驱动系统、电子伺服控制系统和各种车辆专用IC模块,提高汽车电子电气部件的可靠性,降低其成本和抢占车辆电气自动化技术的制高点,增强在国际市场的竞争力。线控的汽车电子伺服系统(X-by-wire)在未来将是十分重要的技术,该技术可将各种独立的系统(如转向、制动、悬挂等)集成到一起由计算机调控,使汽车的操纵性、安全性以及汽车的总体结构大大改善,设计的灵活度也大大增加。目前,电子动力方向盘和线控刹车已经在一些欧洲车型上被采用,在这个系统中已经削减了相当多的机械部件,如液压泵等。汽车电子伺服技术是具有革命性的技术,随着这个技术的使用,许多传统的机械部件将会在未来的汽车上消失,而越来越多的车用伺服电机将出现在未来的汽车上。
全球最大的汽车零部件企业一美国德尔福汽车系统公司预计,在未来的3-5年内全世界的汽车将逐步采用电子伺服驱动系统,如电子动力方向盘和线控刹车伺服驱动系统。目前,美国德尔福汽车系统公司正在全球范围内寻找年产300万台以上的电子动力方向盘的交流伺服电机合作伙伴。
第三篇:基于DSP的步进电机控制器的设计
《DSP原理及应用》 课程设计指导书
学 院 :机械工程学院 系 所 :测控技术与仪器系 班 级 : 姓 名 : 学 号 : 指导老师:
江苏大学测控技术与仪器系
2016-01-18 应用于包装机的步进电机控制器的设计
(江苏大学机械工程学院仪器科学与工程系,江苏,镇江,212013)
摘要
本文介绍了以典型电机微控制器TMS320LF2407芯片为控制核心的步进电机控制系统,阐述了如何利用TMS320LF2407实现电机转向、速度控制,并给出了相应系统控制策略。简述了步进电机的驱动控制和DSP的PWM脉宽调制原理,详细阐述了DSP实现步进电机的加减速控制问题。
步进电机是一种通过电脉冲信号控制相绕组电流实现定角转动的机电元件,与其他类型电机相比具有易于开环精确控制、无积累误差等优点,广泛运用于数控机床、机器人、自动化仪表等领域。DSP芯片的出现,开创了步进电机控制的新局面。用DSP控制的步进电机不仅减小了控制系统的体积、简化了电路,同时进一步提高了电机控制的精度和控制系统的智能化,从而逐步实现控制系统的嵌入式。基于DSP的步进电机控制技术在九十年代时期得到了较大发展,主要应用在工业、航天、机器人、精密测量等领域。数控机床、跟踪卫星用电经纬仪在采用了步进电机技术后,大大提高了控制与测量精度,这样就使步进电机伺服系统的应用前景更加广阔。鉴于此,本文提出了基于DSP的步进电机控制系统的设计方案。包括其硬件设计和软件设计。在软件设计中给出了主要控制程序,达到对步进电机转向、转速的控制,如正转、反转、加速、减速等。使用DSP最明显的优点在于提高了系统的可靠性,并降低了整个系统的成本。实验证明,此驱动系统简化了电路,提高了系统控制性能。
关键词:步进电机;DSP;控制系统;TMS320LF2407;
目录
第一章 绪论..................................................................................................................1 1.1引言..................................................................................................................1 1.2数字信号处理器DSP发展和现状..................................................................2 1.3 课题背景及意义.............................................................................................3 第二章 总体方案设计..................................................................................................5 2.1 设计方案.........................................................................................................5 2.2 TMS320LF2407 DSP芯片介绍........................................................................5 2.2.1 TMS320LF2407 的性能特点...................................................................5 2.2.2 A/D转换原理........................................................................................7 2.2.3 TMS320LF2407 内部A/D转换模块概述...............................................7 2.2.4 事件管理器.............................................................................................8 2.2.5 通用定时器.............................................................................................8 2.2.6 全比较单元.............................................................................................9 2.2.7 捕获单元和正交编码脉冲电路...........................................................10 2.3 四相反应式步进电机.................................................................................10 2.3.1 步进电机的结构.................................................................................10 2.3.2 步进电机的工作原理...........................................................................11 2.4 四相反应式步进电机的数学模型...............................错误!未定义书签。2.4.1 电路方程...............................................................错误!未定义书签。2.4.2 机械方程...............................................................错误!未定义书签。2.5 驱动芯片结构与特点...................................................................................12 第三章 详细设计........................................................................................................13 3.1 系统硬件设计...............................................................................................13 3.2系统软件设计................................................................................................13 3.2.1 DSP开发软件CCS介绍........................................................................13 3.2.2 程序控制流程.......................................................................................14 3.2.3 电机初始化程序...................................................................................15 3.2.4 电机控制程序.....................................................................................16 3.3 程序调试.....................................................................................................17 第四章 心得体会........................................................................................................19 参考文献......................................................................................................................20 附录..............................................................................................................................21
第一章 绪论
1.1引言
随着人们生活水平不断提高,对各种方便食品的需求也随之大增,这近一步拉动了我国食品包装业的快速发展。包装机是发展比较快的包装机械之一,拥有着广阔的发展前景。在制袋、充填、封口为一体的包装机中,要求包装用塑料薄膜定位定长供给,采用步进电机与拉带滚轮直接连接拉带,不仅结构得到了简化,而且调节极为方便,只要通过控制面板上的按钮就可以实现,这样既节省了调节时间,又节约了包装材料。
步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机。它的位移速度与脉冲频率成正比,位移量与脉冲数成正比。每来一个脉冲电压,转子就旋转一个步距角。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,从而使电机旋转。步进电机具有步进数可控、运行平稳、价格便宜的优点,在加速器控制系统中的应用很广。
传统的步进电机一般可分为永磁式步进电动机(PM Step Motor),反应式步进电动机(VR Step Motor)和混合式步进电动机(Hybrid Step Motor)三种。
在数字化电机控制系统产生之前,要想获得高性能的步进电机驱动要么是采用昂贵、难维护的直流电机配便宜的控制装置,要么就是使用便宜的交流电机配昂贵、复杂的控制装置。基于DSP的数字化电机控制的出现改变了这一状况,由于DSP强大的运算能力,它可以实时地实现一些先进的控制算法,获得高性能的电机驱动控制。
数字化电机控制的优点正是由于数字化的信号和信号处理所带来的,和模拟控制相比,它具有互联方便,稳定性好,便于大规模集成,可以构成复杂的系统,容易修改,便于测试、调试和大规模生产等优点。数字化电机控制技术包括两个组成部分,现代电机控制理论和数字信号处理,其中数字信号处理又包括数字信号处理技术和数字信号处理器技术。数字化电机控制的发展和这几个方面的进展是密不可分的。
现代电机控制理论以矢量控制理论为代表,还有近年来得到快速发展的直接转矩控制理论等,这些高性能的控制方案需要进行大量的实时运算,用模拟器件的硬件方案来实现相当困难,难以实用化。只是在具有强大运算能力的控制器如 DSP等价格下降,性能提高之后,数字化的高性能控制方案才开始大量步入实用领域。
1.2数字信号处理器DSP发展和现状
DSP是Digital Signal Processor的缩写,DSP在70年代末、80年代初产生后起初并不显眼,主要应用于一些特定的数字信号处理密集的领域如军事的声纳和雷达、监测和监听设备,以及气象卫星、地震监测器等。虽受到个人计算机发展光辉的遮掩,它一直在幕后悄悄发展着。80年代后期开发出较通用产品后,逐步进入各个领域。近年来,随着通讯领域的红火,个人计算机的普及以及家用电器的发展,DSP更是从幕后走到了台前,各种应用如手机、MODEM、硬盘、声卡、显卡、DVD.VCD、可视电话、数字电视、数字相机、导弹、高保真音响、洗衣机、空调、语音识别、游戏等等数不胜数,大到上天入地,小到我们每个人的身边,现在是哪儿都有它的踪迹了。
如果说CPU是PC时代的技术核心,则说DSP是后PC时代的技术核心毫不为过。由于具有超强的数字信号处理能力和合理的性价比,二十几年时间,DSP的发展日益迅猛,应用日益广泛。现在,DSP已经成为计算机网络、无线通讯、信息家电、电子产品、图形处理、视频会议、数字音频广播等领域的核心。业内人士预言:DSP将是未来发展最快的电子器件,是电子产品更新换代的决定性因素。
DSP芯片能够高速发展,一方面得益于集成电路的发展,另一方面也得益于巨大的市场。目前,DSP芯片的价格越来越低,性能价格比日益提高,具有巨大的市场潜力。据世界半导体贸易统计组织(WSTS)发布的统计和预测报告显示:1996~2005年,全球DSP市场一直保持稳步增长,2005年增长率为35%;另据CCID统计:2005年中国DSP增长率超过40%,销售量达到13亿块。
据市场调查公司ICE统计,1998年DSP市场达33.4亿美元,其中通信占48%,计算机/MODEM占30%,硬盘12%,消费类产品5%,军用航空航天5%,典型应用产品和市场包括:电视会议、文件成像、可视电话、数字蜂窝电话、数字设备、电机调速等,一些家用电器如空调、洗衣机、电冰箱等为了节能和静音也开始采用DSP控制。
DSP按数据格式分可分为定点DSP和浮点DSP两种,也可按用途分为通用型 DSP和专用型DSP,近年来德州仪器(TI)和美国模拟器件公司(Analog Device,简称AD)都推出了专门针对电机控制领域的专用型DSP系列,TI是TMS320-2XX系列,AD则是ADMC系列,这些芯片都是定点DSP,具有普通定点DSP的运算能力和单片机般的外围设备,使得它们成为用于数字化电机控制的最佳选择。当前,DSP芯片还在快速发展中,它的处理速度正随着时间的前进而不断提高,从1982年的5MIPS(每秒百万指令)到1997年的100MIPS,再到现在的2000MIPS(多DSP单一化),预计2007年将达到320000MIPS。DSP的价格则正走着一条相反的道路,据DSP最大的生产厂家TI公司的历史价格统计,12年来每MIPS的价格己从200美元降到了一个美元,价格的下降导致应用领域的扩大,而应用的扩大也引起价格的下降,形成了一种良性的循环。
技术的高速发展引发了信息产业革命,以计算机技术、通信技术为核心的信息技术正在以前所未有的速度改变着人们的生活和工作方式。数字信号处理是信息技术中的一个核心问题。实现数字信号处理的核心器件是数字信号处理器(以后简称为DSP)。
数字化电机控制包括电机模型的数字化和信号处理的数字化,而DSP的运算速度则是这样的实时一控制所必须的。为实现上述步进电机控制和交流电机控制融合的想法,由于其中有较多实时数学运算的要求,因此考虑使用德州仪器(TI)C2000系列DSP中的TMS320LF2407来实现。
1.3 课题背景及意义
用DSP控制的步进电机不仅减小了控制系统的体积、简化了电路,同时进一步提高了电机控制的精度和控制系统的智能化,从而逐步实现控制系统的嵌入式。基于DSP的步进电机控制技术在九十年代时期得到了较大发展,主要应用在工业、航天、机器人、精密测量等领域。数控机床、跟踪卫星用电经纬仪在采用了步进电机技术后,大大提高了控制与测量精度,这样就使步进电机伺服系统的应用前景更加广阔。
DSP控制器的技术水平主要体现在三个层面:硬件方案、核心控制算法以及应用软件功能。国内步进电机控制器所采用的硬件平台和国外产品相比并没有太大差距,有的甚至更加先进。DSP用于电机控制有很多好处:
(1)可执行高级运算,减少力矩纹波,从而实现低振动、长寿命;(2)高级运算使谐波减小,很容易满足国家要求,同时降低滤波器成本;(3)提供无传感器运算,省去位置和速度传感器:
(4)实时产生平滑的、近乎完美的参考模型,获得良好的控制性能;(5)控制逆变器,产生高精度PWM输出;(6)提供单片机控制系统。
本课题的研究内容是使用TI公司的DSP芯片TMS320LF2407控制步进电机,实现步进电机的驱动,构成控制系统。
第二章 总体方案设计
2.1 设计方案
本次设计是步进电机控制器系统,整个控制系统分为四个部分:DSP中央控制器TMS320LF2407、外接电位器、步进电机及其驱动。
在本次设计中采用的电机是微型四相反应式步进电动机,其接受数字控制信号(电脉冲信号),并转换为与之相对应的角位移。基于对低碳节能的考虑,在这里设计成一个单四拍信号来进行步进电动机的控制,通电顺序为A-B-C-D-A,步距角为15°。驱动芯片采用的是ULN2003芯片,控制流程如下:首先由DSP的A/D转换模块将电位器输出的模拟信号转换为数字信号,然后将该数字信号输入到DSP中以设定脉冲信号的间隔时间以便控制电机的转速,接着将由DSP的四个I/O口提供脉冲信号给驱动芯片,脉冲信号经过驱动芯片的处理后用来驱动步进电机的四个相,从而达到控制电机运转的目的。
在本次步进电机的控制系统中,由于步进电动机本身所拥有的精确定位特点我们采用开环控制系统。系统总体结构图如下所示:
电位器A/DTMS320LF2407 DSP驱动芯片步进电机
图2-1 系统总体结构图
2.2 TMS320LF2407 DSP芯片介绍
2.2.1 TMS320LF2407 的性能特点
TMS320LF2407芯片是Texas Instruments公司生产的16位定点数字信号处理器TMS320C2000家族中的一种,是TMS320X240X系列DSP控制器中功能最强、片上设施最完备的一个型号。与其他TMS320C2000系列芯片相比具有以下特点:
1、采用高性能静态CMOS技术,使供电电压降为3.3V,减小了控制器功耗;40MIPS的最高指令执行速度使得指令周期为33ns(30MHz),从而提高了控制器的实时控制能力。
2、基于TMS320C2xxDSP的CPU内核,保证了TMS320LF2407代码和TMS320系列DSP代码兼容。
3、片内有高达32K字FLASH程序存储器,高达1.5K字数据/程序RAM,544字双口RAM(DARAM)和2K字单口RAM(SARAM)。
4、两个事件管理模块EVA和EVB,每个模块包括:两个16位通用定时器;8个16位脉宽调制(PWM)通道。它们能够实现: PWM的对称和非对称波形;可编程PWM死区控制以防止上下桥臂同时输出触发脉冲;3个捕获单元;片内光电编码器接口电路;16通道10位A/D转换器。事件管理器模块适用于控制交流感应电机、无刷直流电机、开关磁阻电机、步进电机和功率逆变器。
5、可扩展外部存储器总共192K字空间:64K字程序存储空间;64K字数据存储空间;64K字I/O寻址空间。
6、看门狗定时器模块(WDT):可用来监控系统软件和硬件的操作,它可以按照用户设定的时间间隔产生中断。如果软件执行进入一个不正确的循环或者CPU运行出现异常时,该模块可以实现系统复位,使系统进入预定状态。
7、控制器局域网络(CAN)2.0模块:CAN模块给用户提供了设计分布式或网络化运动控制系统接口。
8、串行通信接口(SCI)模块:用于实现DSP与其他异步外设之间的串行通信,其接收器和发送器都是双缓冲的。9、16位串行外设(SPI)接口模块:用于DSP与外设或其他控制器进行串行通信,典型应用包括与数模转换器、LED显示驱动等器件的通信。
此外,TMS320LF2407包含高达40个可单独编程或复用的通用输入/输出引脚和基于锁相环的时钟发生器。之所以称TMS320LF2407为电机控制专用芯片,主要原因在于该芯片内置有功能强大的事件管理器、PWM脉冲发生器和两路10位模数转换模块。有了事件管理器强大的实时处理功能和PWM控制波形发生器以及两路同时采样、保持、转换的高速A/D,TMS320LF2407几乎可以实现任何电机控制。
2.2.2 A/D转换原理
A/D转化电路亦称“模拟数字转换器”,简称“模数转换器”。将模拟量或连续变化的量进行量化(离散化),转换为相应的数字量的电路。
随着数字技术,特别是信息技术的飞速发展与普及,在现代控制。通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。由于系统的实际对象往往都是一些模拟量(如温度。压力。位移。图像等),要使计算机或数字仪表能识别。处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析。处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路-模数和数模转换器。
A/D转换器的功能是把模拟量变换成数字量。由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的A/D转换芯片。A/D转换器按分辨率分为4位、6位、8位、10位、14位、16位和bcd码的31/2位、51/2位等。按照转换速度可分为超高速(转换时间≤330ns)、次超高速(330~3.3μs)、高速(转换时间3.3~333μs)、低速(转换时间>330μs)等。A/D转换器按照转换原理可分为直接a/d转换器和间接a/d转换器。所谓直接A/D转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联比较型等。其中逐次逼近型a/d转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化A/D芯片采用逐次逼近型者多;间接A/D转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型);电压/频率转换型,电压/脉宽转换型等。其中积分型a/d转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯A/D转换功能,使用十分方便。
2.2.3 TMS320LF2407 内部A/D转换模块概述
TMS320LF2407的A/D转换模块(ADC)具有以下特性:
1、带内置采样和保持(S/H)的10位ADC。
2、多达16个模拟输入通道(ADCIN0-ADCIN15)。
3、自动排序的能力。一次可执行最多16个通道的“自动转换”,而每次要转换的通道都可以通过编程来选择。
4、两个独立的最多可选择8个模拟转换通道的排序器(SEQ1和SEQ2)可以独立工作在双排序器模式,或者级联之后工作在一个最多可选择16个模拟转换通道的排序器模式。
5、在给定的排序方式下,4个排序控制器(CHSELSEQN)决定了模拟通道转换的顺序。
6、可单独访问的16个结果转换器(RESULT0-RESULT15)用来储存转换结果。
7、可有多个触发源启动A/D转换: 软件:软件立即启动(用SOC和SEQN);
EVA/B:事件管理器(在EVA/B中有多个事件源可以启动A/D); 外部:ADC SOC引脚;
8、灵活的中断控制,允许在每一个或每隔一个序列的结束时产生中断请求。
9、排序器可工作在启动/停止模式,允许多个按时间排序的触发源同步转换。
10、EVA和EVB可各自独立地触发SEQ1和SEQ2(仅用于双排序器模式)。
11、采样和保持获取时间窗口有单独的预定标控制。
12、内置校验模式。
13、内置自测试模式。
2.2.4 事件管理器
在实际应用中,使用TMS320LF2407来构成运动控制系统的关键是该芯片具有一个事件管理器(Event Manager)专用外设模块。事件管理器是一个专门用于电动机控制的外设模块,主要由通用定时单元、比较单元、捕获单元、正交编码脉冲电路QEP和外部输入组成。
2.2.5 通用定时器
TMS320LF2407的每个事件管理模块有两个可编程通用定时器(GP)。每个GP定时器x(EVA,x=1,2;对EVB,x=3,4)包括:
一个16位定时器增/减计数的计数器TxCNT,可读写。一个16位定时器比较寄存器(映射双缓冲寄存器)TxCMPR,可读写。一个16位定时器周期寄存器(映射双缓冲寄存器)TxPR,可读写。一个16位定时器控制寄存器TxCON可读写。可选择的内部或外部输入时钟。
用于内部或外部时钟输入的可编程预定标器(Prescaler)。
控制和中断逻辑用于四个可屏蔽的中断:下溢、溢出、定时器比较和周期中断。
可选方向的输入引脚TMRDIR(当选择双向计数方式时,可以用来选择向上或向下计数)。
在实际应用中,这些定时器能够产生系统所需要的计数信号、离散控制系统的采样周期、QEP电路、捕获单元和比较单元的时基等。为了适应不同应用的需要,每个通用定时器都有6种可选的计数模式,分别是:停止/保持模式;单增计数模式;连续增计数模式;定向增/减计数模式;连续增/减计数模式;单增/减计数模式。
每个GP定时器都有一个比较寄存器和一个比较PWM输出引脚,通用定时器可以工作在比较操作模式或比较PWM输出模式。当工作在比较操作模式时,定时器的计数器值总是和相关的比较寄存器中的值相比较,当两者相等时就发生比较匹配事件。当工作在比较PWM模式时,其输出引脚的信号受通用定时器控制寄存器的定义、定时器所处的计数模式以及定时器的计数方向的影响。
2.2.6 全比较单元
事件管理器EVA模块中有三个全比较单元CMPx(x=1,2,3);事件管理器EVB模块中同样有三个全比较单元CMPx(x=4,5,6)。每个比较单元都可以工作在比较模式或PWM模式下,可以通过COMCON中的位决定每个比较单元的工作模式。
当比较模式被选中并且全比较操作被使能时,定时器的计数器就会不断地与全比较单元的比较寄存器中的值进行比较。当发生比较匹配时,全比较单元的输出引脚会根据ACTR中的定义产生合适的电平跳变,同时比较中断标志被置位。如果同组中没有其他更高优先级的中断挂起,该中断标志将向DSP内核发出中断请求。当工作在PWM模式下,全比较的操作类似于通用定时器的比较操作。2.2.7 捕获单元和正交编码脉冲电路
捕获单元在TMS320LF2407的捕获引脚上出现跳变时被触发,事件管理器总共有6个捕获单元。当捕获引脚CAPx(对EVA,x=1,2,3:对EVB x=4,5,6)上检测到所选的跳变时,所选的GP定时器的计数值被捕获并存储在两级FIFO栈中。
每个EV模块都有一个正交编码脉冲电路。该电路被使能后,可以在编码和计数引脚CAP I /QEP I和CAP2/QEP2(对于EVA模块)或CAP3lQEP3和CAP4/QEP4(对于EVB模块)上输入正交编码脉冲。正交编码脉冲电路可用于连接光电编码器以获得旋转机械的位置和速率信息。此电路在处理电机测速光电编码器的输出信号时很有用,可以大大简化电机测速的软硬件开销,提高控制系统的测速精度与可靠性。如果使能了正交编码脉冲电路,则相应引脚上的捕获功能将被禁止。
2.3 四相反应式步进电机
2.3.1 步进电机的结构
四相步进电机的基本机构如图2-2。四相步进电机在结构上分为转子和定子两部分。定子一般由硅钢片叠成,定子上所绕的线圈称为励磁线圈。对于如图2.1所示的绕线方式,A、A’引线形成一相,B、B’引线形成一相,C、C’引线形成一相D、D’引线形成一相。当给某相线圈通电时将形成8个磁极。这样,对于四相八级步进电机共有A、A’,B、B’,C、C’和D、C’四个绕组、8个磁极。每个定子磁极内表面都分布着小齿,它们大小相同,间距相同。
转子是由软磁材料制作成的。其外表面也均匀分布着小齿,这些小齿与定子磁极上的小齿相同,形状相似。
由于小齿的齿距相同,所以不管是定子还是转子,它们的齿距角都可以由下式
Z2/Z(2.1)
来计算。式中,Z为转子的齿数。
图2-2 四相步进电机步进示意图
2.3.2 步进电机的工作原理
在步进电机的结构中必定有错齿和对齿的存在如图2-3所示。我们把定子小齿和转子小齿对齐的状态称为对齿;把定子小齿与转子小齿不对齐的状态称为错齿。错齿的存在是步进电机能够旋转的前提条件。如果给处于错齿状态的相线圈通电,转子在电磁力的作用下,如果磁极相异,则转子向完全对齿方向转动,如果磁极性相同,则转子向完全错齿方向转动。假设将电机的转子置于线圈所产生的磁场中,便会受到磁场的作用而产生与磁场方向一致的力,转子便开始转动,直到转子的磁场和线圈的磁场方向一致为止。步进电机的转动就是基于这一原理实现的。
定子小齿
转子小齿
(a)对齿(b)错齿
图2-3 定子齿与转子齿的磁导现象
按如下四个步骤循环通电: A’A相通电,电流方向为A’—A; B’B相通电,电流方向为B’—B; C’C相通电,电流方向为C’—C; D’D相通电,屯流力向为D’—D。
可以分析出,在每一次通电过程中,步进电机的转子均相对上次通电时的平衡位置顺时针旋转了一个位移角。对绕组通电一次的操作称为一拍,根据上面给出的算式每给电机一个脉冲,步进电机将转过15度,既转过一圈则需要,360/15=24个脉冲。
2.5 驱动芯片结构与特点
本次设计采用的驱动芯片是ULN2003。它是高耐压、大电流达林顿陈列。由七个硅NPN达林顿管组成。该电路的特点如下:
ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V的工作电压下它能与TTL和CMOS电路直接相连。可以直接处理原先需要标准逻辑缓冲器来处理的数据。ULN2003工作电压高.工作电流大.灌电流可达500mA,并且能够在关断时承受50v的电压,输出还可以在高负载电流并行运行。
图2-4 ULN2003内部结构图 第三章 详细设计
3.1 系统硬件设计
系统硬件设计详细信息请查阅成员朱永良报告。
3.2系统软件设计
3.2.1 DSP开发软件CCS介绍
CCS(Code Composer Studio)软件是德州仪器公司专为TMS320系列DSP开发的一个开发软件。
CCS在Windows环境下工作,类似于VC++集成开发环境,它采用图形接口界面,提供有编辑工具和工程管理工具,将代码产生工具,如汇编器、链接器、C/C++编译器、建库工具整合为一个统一的开发平台。CCS支持汇编语言、C/C++语言编程。能对DSP进行指令级的仿真和可视化实时数据分析,极大地方便了DSP系统地软硬件开发。但多数情况下,考虑到软件的移植性问题,一般采用C语言编程。下图所示为CCS平台的组成。
图3-1 CCS平台组成 CCS集成的源代码编辑环境,使程序的修改更为方便;CCS集成的代码生成工具,使开发设计人员不必键入大量的命令及参数;CCS集成的调试工具,使程序调试一目了然,大量的观察窗口使程序调试得心应手。更重要的是CCS增强了实时、嵌入信号的开发过程,开发人员可在不中断程序运行的情况下检查算法的对错,实现对硬件的实时跟踪调试,大大缩短了程序的开发时间。3.2.2 程序控制流程
如下图所示为主程序流程图:
开始系统初始化I/O口模式设置所有LED初始化LCD初始化调用电机子程序
图3-2 主程序流程图
程序运行开始后,首先进行系统初始化,初始化内容包括:将DSP的IOPE0到IOPE7管脚设置为I/O模式、将中断模式位清零使所有未屏蔽的中断使能、将IOPE0到IOPE7管脚设置为低电平既使开发板上的灯全部熄灭、定时器1初始化设置定时周期和计数模式等。
3.2.3 电机初始化程序 main(){
SystemInit();
//系统初始化
MCRC=MCRC & 0xFF00;
//IOPE0-7设为IO口模式
PEDATDIR=0xFF00;
asm(“ CLRC INTM ”);
LcdInit();
Timer1Init();
while(1)
{
KeyLed();
} }
void SystemInit()
{
asm(“ SETC INTM ”);
asm(“ CLRC SXM ”);
asm(“ CLRC CNF ”);asm(“ CLRC OVM ”);
SCSR1=0x83FE;
时钟CLKOUT=40M */
WDCR=0x006F;
KickDog();
IFR=0xFFFF;
IMR=0x0002;
}
//所有LED=0,/*LCD初始化*/
//定时器初始化
//系统初始化程序
/* 关闭总中断 */
禁止符号位扩展 */
/* B0块映射为 on-chip DARAM*/ /* 累加器结果正常溢出*/
/* 系统时钟CLKOUT=20*2=40M */ /* 打开ADC,EVA,EVB,CAN和SCI的时钟,系统
/* 禁止看门狗,看门狗时钟64分频 */
/* 初始化看门狗 */
/* 清除中断标志 */
/* 打开中断2*/
/*
3.2.4 电机控制程序
调用电机控制程序numled=0,numled++提取AD模块采样结果(AD>0)numled等于AD?numled++是IOPE1输出高电平;LED1亮 numled等于2*AD?numled++是IOPE2输出高电平;LED2亮 numled等于3*AD?numled++numled++是IOPE3输出高电平;LED3亮 numled等于4*AD?numled++是是IOPE4输出高电平;LED4亮 numled等于5*AD?图3-3 电机控制流程图
void KeyLed(){
if(numled==AD)
//修改参数AD可以控制步进电机转速
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0002;
//IOPE=1;LED1亮
}
if(numled==2*AD)
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0004;
//IOPE2=1;LED2亮
} if(numled==3*AD)
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0008;
//IOPE3=1;LED3亮
} if(numled==4*AD)
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0010;
//IOPE3=1;LED4亮
}
if(numled>=4*AD)
{
Que();
WriteMenu1(6,b);
numled=1;
}
}
程序初始化后,DSP的AD转换模块将电位器输入的电压模拟信号转换为数字信号,并存在结果寄存器RESULT0(设计采用的通道为AD0通道)中,我们通过赋值的方式将寄存器里的值赋给数组,然后用求平均数的方式来进行滤波,最后将平均值赋值整数值AD。根据上面的程序可以看出AD的大小决定了脉冲之间的间隔,也就是说通过调节AD的值可以控制电机的转速。
3.3 程序调试
在PC机系统安装好编译软件CCS3.3后,在计算机桌面上将出现两个快捷方式图标,一个是Setup CCStudio v3.3,另一个是CCStudio v3.3。Setup CCStudio v3.3是用来对该编译器的运行环境进行配置;CCStudio v3.3为程序仿真调试集成环境软件。CCS集成开发环境不能直接将汇编源代码或C语言源代码文件Build生成DSP可执行代码。必须使用项目(Project)来管理整个设计和调试过程。项目保存为*.pjt文件。新建完项目并把C源程序文件(.C)、汇编源程序文件(.ASM)、目标文件(.OBJ)、库文件(.LIB)、命令文件(.CMD)等都加入后,便可以开始调试程序。其中的头文件将通过在程序中用include来添加。在调试过程中也遇到了一些问题,例如电机无法正常运转,后来在同学的帮助下终于找到了问题的所在,最终解决了问题。
第四章 心得体会
这次为期一周的DSP课程设计,我不仅仅学到了DSP设计方面的知识,更使我懂得一个仪器的设计过程。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。
在这次难得的课程设计过程中我锻炼了自己的思考能力和动手能力。通过题目选择和设计电路的过程中,加强了我思考问题的完整性和实际生活联系的可行性。在方案设计选择和芯片的选择上,培养了我们综合应用的能力,对集成开发环境CCS的使用也有了更深的了解,对DSP芯片的应用也有了更深刻的体会。还锻炼我们个人的查阅技术资料的能力,动手能力,发现问题,解决问题的能力。并且我们熟练掌握了有关器件的性能及测试方法。
再次感谢老师的辅导以及同学的帮助,是他们让我有了一个更好的认识,无论是学习还是生活,生活是实在的,要踏实走路。课程设计时间虽然很短,但我学习了很多的东西,使我眼界打开,感受颇深。
在今后社会的发展和学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上劈荆斩棘,而不是知难而退,那样永远不可能收获成功,收获喜悦,也永远不可能得到社会及他人对你的认可!19
参考文献
[1]王玲,王晓明.电动机的DSP控制-TI公司DSP应用.北京:北京航空航天大学出版社,2004 [2]刘和平,邓力.DSP原理及电机控制应用.北京:北京航空航天大学出版社,2006 [3]王晓丹.基于单片机的步进电机细分驱动系统的研究:[硕士学位论文].长沙:中南大学控制科学与工程,2008 [4]孙忠献.电机技术与应用.福州:福建科学技术出版社,2004 [5]李爱芹.基于DSP的三相混合式步进电机细分驱动系统研究:[硕士学位论文].杭州:浙江工业大学控制理论与控制工程,2006 [6]孙忠献.电机技术与应用.福州:福建科学技术出版社,2004 [7]章烈剽.基于单片机的高进度步进电机控制研究:[硕士学位论文].武汉:武汉理工大学控制理论与控制工程,2007 [8]刘爱萍.基于C8051F005单片机的两相混合式直线步进电机驱动系统的设计:[硕士学位论文].呼和浩特:内蒙古农业大学农业电气与自动化,2007 [9]汤涌.基于电机参数的同步电机模型.电网技术,2007 [10]杨渝钦.控制电机.天津:机械工业出版社,2008 20
附录
/*Main.c*/
/*步进电机控制系统程序*/ #include “hd44780.h” #include “global.c” void SystemInit();void Timer1Init();void LcdInit(void);void WriteCom(Uint16 com);void WriteMenu1(Uint16 num,Uint16 *pBuffer);void KickDog();
void KeyLed();void Lv();void Que();Uint16 a[6],b[6];unsigned int numled=0;unsigned int i=0,j=0,t0=0,k=0,D=0;unsigned int RESULT_0=0,AD=0;unsigned int AD0[18],AD_0,AD_FLAG=0;float AD_E=0.0;main(){
SystemInit();
//系统初始化
MCRC=MCRC & 0xFF00;
//IOPE0-7设为IO口模式
PEDATDIR=0xFF00;
//所有LED=0,asm(“ CLRC INTM ”);
LcdInit();
/*LCD初始化*/
Timer1Init();
//定时器初始化
while(1)21
{
KeyLed();
}
}
void SystemInit(){
asm(“ SETC INTM ”);
asm(“ CLRC SXM ”);asm(“ CLRC CNF ”);asm(“ CLRC OVM ”);
SCSR1=0x83FE;
CLKOUT=40M */
WDCR=0x006F;
KickDog();
IFR=0xFFFF;
IMR=0x0002;
}
void Timer1Init()
{
EVAIMRA=0x0080;
EVAIFRA=0xFFFF;
GPTCONA=0x0000;T1PR=2500;
/* 关闭总中断 */
/* 禁止符号位扩展 */
/* B0块映射为 on-chip DARAM*/ /* 累加器结果正常溢出*/
/* 系统时钟CLKOUT=20*2=40M */
/* 打开ADC,EVA,EVB,CAN和SCI的时钟,系统时钟
/* 禁止看门狗,看门狗时钟64分频 */
/* 初始化看门狗 */
/* 清除中断标志 */ /* 打开中断2*/
// 定时器1周期中断使能
// 清除中断标志
// 定时器1初值,定时0.4us*2500=1ms
}
T1CNT=0;T1CON=0x144E;
//增模式, TPS系数40M/16=2.5M,T1使能
void KeyLed(){
while(1)
{
if(AD_FLAG==1)
{
AD_FLAG=0;
for(i=0;i<18;i++)
{
AD_Simple();
AD0[i]=RESULT_0;
}
Lv();
}
}
if(numled==AD)
// 修改这些参数可以控制步进电机转速
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0002;
//IOPE=1;LED1亮
}
if(numled==2*AD)
{
} if(numled==3*AD)
{ PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0004;
//IOPE2=1;LED2亮
} PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0008;
//IOPE3=1;LED3亮
if(numled==4*AD)
{
PEDATDIR=PEDATDIR & 0xFF00;
//IOPE1,2,3,4=0;LED全灭
PEDATDIR=PEDATDIR | 0x0010;
//IOPE3=1;LED4亮
}
if(numled>=4*AD)
{
Que();
WriteMenu1(6,b);
numled=1;
}
}
void Que(){
int v=2500/AD;
a[2]=v/1000;
//千位 a[3]=(v-a[2]*1000)/100;
//百位 a[4]=(v-a[2]*1000-a[3]*100)/10;
//十位 a[5]=(v-a[2]*1000-a[3]*100)%10;
//个
for(i=0;i<=6;i++)
{
b[i]=a[i]+0x30;
};}
void AD_Simple(){
ADCTRL1=0x4000;
asm(“ NOP ”);
/* ADC模块复位 */
ADCTRL1=0x0020;
/* 自由运行,启动/停止模式,双排序器工作模式 */
MAXCONV=0x0000;
CHSELSEQ1=0x0000;
//第0通道
ADCTRL2=0x4000;
//复位使排序器指针指向CONV00
ADCTRL2=0x2000;
/* 启动ADC转换 */
/*等待转换完成 */
while((ADCTRL2&0x1000)==0x1000);
asm(“ NOP ”);
RESULT_0=RESULT0>>6;
}
void Lv(){
unsigned int MaxAD0=0;
unsigned int MinAD0=AD0[0];
unsigned int tempAD0=0;
for(j=0;j<18;j++)
{
if(AD0[j]>MaxAD0)
MaxAD0=AD0[j];
else if(AD0[j] MinAD0=AD0[j]; } for(j=0;j<18;j++) { tempAD0=tempAD0+AD0[j]; } AD_0=(tempAD0-MaxAD0-MinAD0)/16; AD_E=AD_0*100/1023+10;} void interrupt c_int2() /*定时器1中断服务程序*/ { T1CNT=0;numled++;AD=(int)AD_E; if(PIVR!=0x27){ asm(“ CLRC INTM ”);return; } t 0++;if((AD_FLAG==0)&((t0%1000)==0)) //定时AD采样 } void KickDog(){ } #include “global.c” WDKEY=0x5555;WDKEY=0xAAAA; /*踢除看门狗 */ { AD_FLAG=1;} EVAIFRA=0x80;asm(“ CLRC INTM ”); #include “hd44780.h” PADATDIR = PADATDIR | 0xFF08 PADATDIR = PADATDIR & 0xFFF7 PADATDIR = PADATDIR | 0xFF10 PADATDIR = PADATDIR & 0xFFEF PADATDIR = PADATDIR | 0xFF20 PADATDIR = PADATDIR & 0xFFDF #define SetRS #define ClrRS #define SetRW #define ClrRW #define SetE #define ClrE void LCDPIN(void){ } void LCDPOUT(void){ } PEDATDIR = PEDATDIR | 0x0080;PBDATDIR = PBDATDIR & 0x00FF;PEDATDIR = PEDATDIR & 0xFF7F;PBDATDIR = PBDATDIR | 0xFF00;void delay(Uint16 number){ } //============================================ void Busy(void){ Uint16 Temp = 0x0080;LCDPIN();delay(200);ClrRS;Uint16 j;for(j = 0;j < number;j++); } SetRW;while(Temp){ } SetE;delay(50);Temp = PBDATDIR;Temp = Temp & 0x0080;ClrE;delay(50);//========================================== void WriteCom(Uint16 com){ } void WriteMenu1(Uint16 num,Uint16 *pBuffer)Busy();delay(100);LCDPOUT();delay(200);ClrRS;ClrRW;delay(50);com = 0xFF00 | com;PBDATDIR = com;SetE;delay(50);ClrE; { } //================== void LcdInit(void){ WriteCom(0x30);WriteCom(0x30);WriteCom(0x30);delay(1000);WriteCom(0x01);delay(1000);WriteCom(0x02);delay(1000);WriteCom(0x06);Uint16 i,t;WriteCom(0x80);SetRS;ClrRW;delay(50);for(i=num;i!=0;i--){ } t = *pBuffer;t = 0xFF00 | t;PBDATDIR = t;SetE;delay(50);ClrE; pBuffer++;29 } delay(1000);WriteCom(0x0c);delay(1000);WriteCom(0x38); //==================== // No more 12电机设计论文_电动机论文 一、选题的依据及意义 现在社会中,电能是使用最广泛的一种能源,在电能的生产、输送和使用等方面,作为动力设备的电机是不可缺少的一部分。电机在国家经济建设,节约能源、环保和人民生中起着十分重要的作用。发电机主要用于移动电源、风力发电、小型发电设备中;电动机在生产和交通运输中得到广泛使用,电动机主要用于驱动水泵、风机、机床、压缩机、冶金、石化、纺织、食品、造纸、建筑、矿山等机械产品上。随着科学技术的不断创新和工农业的迅猛发展,电气化与自动化水平不断提高,国民经济各部门对异步电动机的需求量日益增加,对其性能,质量,技术经济指标也相应地提出了越来越高的要求。因此,对异步电动机品种,必须适时实地做出更新与发展,以适应各个新兴工业领域不同的特殊要求,特别是对需求量最大的中小型异步电动机,在保证其质量运行,寿命长和能满足使用要求的同时,进一步节约铜、铁等材料,提高效率和功率因数,以提高其经济技术指标与降低耗电量,是具有十分重要的意义。由于Y系列异步电动机具有体积小,重量轻,运行可靠,结构坚固耐用,外形美观等特点,具有较高的效率,有良好的节能效果,而且噪音低,寿命长,经久耐用。作为普遍用于拖动各种机械的动力设备,其用电量在总的电网的总的负荷中占有重要的一席。Y系列共有两个基本系列、十六个派生系列、九百多个规格,能满足国民经济各部门的不同需要。所以设计研究三相异步电动机意义重大。国内外研究现状及发展趋势(含文献综述) 1、现状 国外公司注重新产品开发,在电机的安全、噪声、电磁兼容等方面很重视。国外的先进水平主要体现在电机的可靠性高,寿命长,通用化程度高,电机效率不断提高,噪声低,重量轻,电机外形美观,绝缘等级采用F级和H级,而且也考虑电机制造成本的降低等国内虽有部分产品已达90年代初的国际水平,但相当部分的产品可靠性差,重量重,体积大和噪声大,综合水平只相当于80年代初期国际水平,其主要原因是制造工艺落后,关键材料的质量和品种不能满足要求,科研和设计工作没有跟上,科研投入少,新产品开发资金匮乏,企业技术创新能力较弱 2、电机行业发展趋势 1)企业在改造中求发展 企业要自己选准位置,立足生求,真抓实干,稳步发展。我国中小电机生产销售受各种因素的影响,变化幅度比较大,企业要看准改革市场,并重点地去占领他,发挥企业自身的优势,例如,目前的稀土永磁电机,大量用于风机、水泵、1 机床、压缩机、城市交通及工矿电动车辆等变频调速装置,预测会有较大的发展前途。2)发展派生、专用系列电机 我们要开拓多用途、多品种派生和符合国外先进标准的电机产品。随着社会的不断前进,科技水平的不断提高,电机行业的不断发展,市场需求会不断变化,电机产品的外延和内涵也不断拓展,电机产品配套面广,它广泛地应用于能源、交通、石油、化工、冶金、矿山、建筑等各个领域,并且电机的通用性逐步向专用性方面发展,打破了过去同一类电机同时用于不性质、不同场合的局面。电机产品正向着专业性、特殊性、个性化方面发展,这也是国外企业发展的最新观点与动向。3)电机要高效、节能 我国中小型电机作为各种机械设备的动力源,其耗电总量已占全国发电量的70%左右。因此,发展中国高效电机,推广节能产品,是响应国家节能政策、实现节能降耗的重要举措。 在产品开发中,以前的科学院所、企业在产品设计采用了许多办法,如采用降低起动力矩、电容补偿、阻尼槽方法来节约电能,但这些都是在频率不变的条件下来实现的。自从有了逆变器后,电源的变频变压变的更加容易,从而可以调节异步电机在最佳工作点上运行,保证出力不变的情况下,可用最大效率和功率因数代替额定效率和额定功率因数,减小了电机尺寸,减轻了电机重量,降低了成本,提高了企业经济效益和社会效益。 4)机电一体化、智能化 随着科学技术的发展,机电一体化技术得到长足发展,同时,各种高新技术也为电机产品注入了新的活力,制造工艺和管理信息化技术通过微电子、计算机、网络技术的应用,国家政策的鼓励、各企业对科技的重视,使新产品开发的周期逐渐缩短,机电一体化、智能化电机(如交流变频调速电机是一种无级调速传动系统)应运而生,调速制造、虚拟制造等先进制造技术推广应用。我国的电机的技术性能水平与发达国家的水平相当。 2、发展趋势 随着国家宏观经济的调整以及市场需求的推动,二十世纪中小型电机的品种将得到更大的发展,尤其是对于发展高效率电机、高品位的出口电机和机电一体化的交流变频电机将会给予特别的重视,而一些新颖的电机,如永磁电机、无刷直流电机、开关磁阻电机等,将进一步完善。同时,随着CAD技术、数控机床、专用加工设备、冷轧矽钢片、F级、H级绝缘材料等新技术、新材料的推广,电 2 机行业的生产方式也将出现新的重大的变化。电机的技术发展动向是向小型化、薄型化、轻量化、无刷化、智能化、静音化、高效化、节能化、环保化、可靠化、精密化、组合化,电机采用新型磁性、导电、绝缘材料。 二、本课题研究内容 本课题主要是研究设计Y802-4三相鼠笼式异步电动机---设计计算.首先根据给定的功率,功率因数,相数,频率及额定相电压确定异步发电机的主要规格。 本课题的主要计算过程如下: 1.额定数据及主要尺寸计算 2.磁路计算 3.参数计算 4.起动计算 根据Y802-4三相鼠笼式异步电动机各性能指标:效率?,功率因数cos?,TSTISTTmax 最大转矩倍数 TN,起动转矩倍数 TN,起动电流倍数 IN 计算出各个参数。 三、本课题研究方案 本课题的研究方案是根据设计任务书并结合所选机型的各参数指标进行复算,通过方案比较,确定电机电磁性能有关的尺寸和数据,选定材料,并核算其电磁性能。最终算计出符合国家有关标准和技术要求的电机参数; 利用计算机进行辅助设计,提高功率因数,提高效率,提高电动机的工作能,节省制造材料。 四、研究目标、主要特色及工作进度 1.研究目标:在原复算方案的基础上既节省材料,又提高性能;将不同方案进行比较,以求得最佳结果。 2、主要特色 进行发电机的电磁设计时,先釆用手算的方法,使各项性能指标都满足。后釆用计算机编程的方法进行计算,得出最优方案。 3、工作进度 3 六、参考文献 [1] 陈世坤 电机设计[M] 机械工业出版社 2000 [2] 李发海 电机学[M] 科学出版社 1995 [3] 三相异步电动机设计、原理与试验 沈阳机电学院 [3] 张跃峰 AUTOCAD2004 入门与提高 清华大学出版社 4 目 录 摘 要........................................................................................................................I ABSTRACT..................................................................................................................II 前 言..........................................................................................................................1 第1章 概 述................................................................................................................2 1.1我国电机制造工业发展近况与发展趋势..........................................................2 1.2 电机的分类..........................................................................................................2 1.3三相异步电动机的结构和用途..........................................................................3 1.3.1异步电动机结构............................................................................................3 1.3.2异步电动机用途............................................................................................4 1.4三相异步电动机的基本工作原理和运行特性..................................................5 1.4.1 基本工作原理...............................................................................................5 1.4.2三相异步电动机的工作特性........................................................................5 1.5 三相异步电动机的起动与调速..........................................................................6 1.5.1三相异步电动机的起动................................................................................6 1.5.2三相异步电动机的调速................................................................................7 1.6 感应电动机的主要性能指标和额定参数........................................................8 1.7电机节能..............................................................................................................8 第2章 三相鼠笼式异步电动机的设计方法............................................................10 2.1 电磁负荷的选择与匹配....................................................................................10 2.1.1电磁负荷对电机性能和经济性的影响......................................................10 2.1.2 电磁负荷的选择.........................................................................................10 2.1.3 电荷负荷的匹配.........................................................................................11 2.2 主要尺寸、气隙长度的选取及绕组型式的选择............................................11 2.2.1主要尺寸的选择..........................................................................................11 2.2.2 气隙长度的选取及确定.............................................................................12 2.2.3铁心尺寸......................................................................................................12 2.2.4定子绕组形式和节距的选择......................................................................13 2.3 笼型转子的尺寸设计........................................................................................14 2.3.1 转子槽数选择及定转子槽配合问题.........................................................14 12电机设计论文_电动机论文 2.3.2 转子槽形的选择和槽形尺寸的确定.........................................................15 第3章 三相鼠笼式电动机电磁设计与方案调整....................................................17 3.1鼠笼式电动机电磁方案的设计........................................................................17 3.2电机调整方案....................................................................................................37 3.3 方案结果分析....................................................................................................40 3.4 提高电机工作性能的一些措施........................................................................41 第4章 计算机辅助工具在电机设计的应用............................................................43 结束语..........................................................................................................................45 致 谢.........................................................................................错误!未定义书签。参考文献......................................................................................................................45 Y802-4 0.75 kW三相鼠笼式异步电动机设计 摘 要 本文介绍了Y系列三相鼠笼异步电动机的设计方法,文章首先从异步电机的基本理论及工作特性着手,简单介绍了异步电机的发展近况、基本特性、类型、结构、用途、技术指标、工作原理及运行特性等,为电机设计的做好必要的理论准备。电机设计是个复杂的过程,因此需要考虑的因素、确定的尺寸和数据很多。同时本文也详细阐述了三相鼠笼异步电动机的设计改进调整方案,以及计算机辅助工具的应用,这给电机设计和优化带来了新的契机。 关键词 :三相异步电动机;设计;电磁路参数;工作性能;优化方案 Y802-4 0.75KW Three-phase Squirrel-cage Induction Motor Design Abstract In this paper, Y series three-phase squirrel-cage induction motor design method, the article first of all, from the basic theory of induction motor characteristics and the work to proceed, briefly introduced the latest development of the induction motor, the basic characteristics, type, structure, purpose, technical indicators, the working principle and operation characteristics, designed for the motor to make the necessary preparations for the theory.Electrical design is a complex process and therefore need to take into consideration to determine a lot of size and data.At the same time, this article also detailed three-phase squirrel-cage induction motor to improve the design of adjustment programs, as well as the application of computer-aided tools, this motor design and optimization to bring a new opportunity.Keyword: Three-phase asynchronous motor;design;electromagnetic parameters;performance;optimization program 前 言 现在社会中,电能是使用最广泛的一种能源,在电能的生产、输送和使用等方面,作为动力设备的电机是不可缺少的一部分。中小型电机行业是机械工业的重要组成部分,在国民经济中起着举足轻重的作用。发电机主要用于移动电源、风力发电、小型发电设备中;三相异步电动机在生产和交通运输中得到广泛使用,例如,在工业方面,它被广泛用于拖动各种机床。水泵、压缩机、搅拌机、起重机械等。在农业方面,他被广泛用于拖动排灌机械、脱粒机及各种农产品的加工机械。在家用电器和医疗器械和国防设施中,异步电动机也应用十分广泛,作为拖动各种机械的动力设备。随着科学技术的不断创新和工农业的迅猛发展,电气化与自动化水平不断提高,国民经济各部门对异步三相异步电动机的需求量日益增加,对其性能,质量,技术经济指标也相应地提出了越来越高的要求。因此,对三相异步电动机性能提出了许多新的更新的要求,必须适时实地做出更新与发展,以适应各个新兴工业领域不同的特殊要求,特别是对需求量最大的中小型三相异步电动机,在保证其质量运行,寿命长和能满足使用要求的同时,进一步节约铜、铁等材料,提高效率和功率因数,以提高其经济技术指标与降低耗电。三相异步电动机已有近20年多年的研制开发、设计和生产史。尤其近些年来,随着研制开发技术的不断创新、迅速发展和完善,如集成化技术、智能化技术、网络化技术、虚拟技术等,设计出 ―更快、更精、更净‖的产品。第1章 概 述 1.1我国电机制造工业发展近况与发展趋势 电动机制造是我国机械工业中较大的行业之一,它既是关系到各行各业自动化的重要基础产品,又是与人类生活密切相关的面广量大、品种繁多的通用产品。电动机是把电能转变为机械能的主要执行部件,国内60%~70%的发电量被电机所消耗。因此,电机产品的品种、数量和质量各种性能水平的提高和发展,都会直接影响国民经济各部门成套设备的发展水平。 20世纪40年代以前,我国电机制造工业极端落后。50年代以仿制国外产品为主,60年代起走上自行设计的道路。在此之前只能生产一般中小型电机,而且批量小,品种单一。我国所生产的电动机大多是六十年代发展的产品, 部分是七、八十年代引进的国外移植产品,与国外同行业相比, 其技术水平、产品质量、结构工艺、制造能力、自动化程度等均偏低,仍有不小的差距。 解放五十多年来,国内的电机制造业通过广大工程技术人员的不懈努力,在非常落后的基础上逐步建立起较为完整的电机制造工业体系,无论是在发展品种、提高产品质量方面,还是在数量方面,都取得了世人瞩目的成绩,为工业的发展和人民生活水平的提高做出了巨大的贡献。我国已能独立自主地生产各种中小型电机,国内产品已经发展到100 多个系列,500多个品种,年生产能力达到5500万kW以上,基本上满足了社会各个方面对电机产品的需求。 随着电机理论的不断完善,高新技术的快速发展,可以预言:未来的电机产品将朝着高性能化、智能化、微型化和网络化的方向发展。1.2 电机的分类 电机是以磁场为媒介进行电能与机械能相互转换的电力机械。电机在国民经济各个领域得到广泛应用。需要的电机的种类各不相同,性能各异。电机的分类方法也用很多,故电机的种类也有很多。 1)按工作电源分类: 根据电动机工作电源的不同,可分为直流电动机和交流电动机。2)按结构及工作原理分类: 根据电动机按结构及工作原理的不同,可分为直流电动机,异步电动机和同步电动机。直流电动机按结构及工作原理可分为无刷直流电动机和有刷直流电动机。12电机设计论文_电动机论文 3)按转子的结构分类: 根据电动机按转子的结构不同,可分为笼型感应电动机和绕线转子感应电动机。 4)按用途分类: 可分为驱动用电动机和控制用电动机。 我国目前生产的三相异步电动机月100个系列额,500多个品种,500多个规格。按电机尺寸分成大、中、小型。 大型:中心高H > 0.63m,定子铁心外径Di > 1m,功率范围在400KW以上,电压为300 V和600 V。 中型:中心高H =(0.355——0.63)m,定子铁心外径Di =(0.5——1.0)m,功率范围在(45——1250)KW以上,电压为380 V和3000 V和6000 V。 小型:中心高H =(0.08——0.315)m,定子铁心外径Di =(0.12——0.5)m,功率范围在(0.55——132)KW以上,电压为380 V。Y(IP44)系列的中心高H =(0.08——0.28)m,定子铁心外径Di =(0.12——0.445)m,共11个机座,功率范围为(0.55——90)KW,电压380V。1.3三相异步电动机的结构和用途 1.3.1异步电动机结构 (1)固定部分有定子绕组、定子铁心、机壳、端盖、风罩。 定子绕组是电动机的电路部分,通入三相交流电产生旋转磁场的绕组。由三个在空间互隔120°电角度、队称排列的结构完全相同绕组连接而成,这些绕组的各个线圈按一定规律分别嵌放在定子各槽内。定子铁心是电机磁路的一部分,并在其上放置定子绕组。通常是用轧成厚0.5或0.35毫米的硅钢片叠成的(如图1)。机壳是用来支撑定子铁心和电动机端盖。端盖是用来支撑电动机的转动部分(一般指转子)。风罩保护风叶同时又起到通风的风路作用。图1 定子铁心 (2)转动部分有转子铁心、转子鼠笼、转轴、起动开关、轴承、风叶。转子铁心是整个电动机磁路的一部分,一般使用硅钢片DR510-50,DR280-35。转子鼠笼起转子绕组的作用转子的导条均由鼠笼的端环所短路,形成一个多相的电路(如图2)。鼠笼的材料一般采用高纯铝L01~L05。转轴是作为支撑转子铁心和传递力矩最不可缺少的结构部分。轴承主要是连接转动部分与不动部分。风叶主要是冷却电动机。图2 鼠笼转子(3)其他部分有出线盒、铭牌、起动或工作电容器。(4)三相异步电动机的总结构图 图3 封闭式三相笼型异步电动机结构图 1—轴承;2—前端盖;3—转轴;4—接线盒;5—吊环;6—定子铁心; 7—转子; 8—定子绕组;9—机座;10—后端盖;11—风罩;12—风扇 1.3.2异步电动机用途 对于小型异步电动机来说,用途是十分广泛的,常作为各类机械中的主要动力元件。Y系列小型异步电动机根据需要,既可以用于正常的工作环境,又可在潮湿、多尘、湿热、多霉和日晒雨淋、严寒酷暑,冲击波动,有爆炸危险和腐蚀性环境中使用,既可恒速传动,又可变速传动。这类电机既可连续工作,有可断续工作。因此广泛用于各种机床,风机,水泵,压缩机和传输机,农业食品加工 等各类机械设备。 1.4三相异步电动机的基本工作原理和运行特性 1.4.1 基本工作原理 电动机的工作原理是建立在电磁感应定律、全 电流定律、电路定律和电磁力定律等基础上的。如 右图4是三相交流异步电动机转子转动的原理图(图中只示出两根导条),当磁极沿顺时针方向旋 转,磁极的磁力线切割转子导条,导条中就感应出 电动势。电动势的方向由右手定则来确定。因为运 动是相对的,假如磁极不动,转子导 条 沿逆时针 方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力F,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。异步电动机的工作原理用箭头式子可以简单的表示如下: 定子绕组通入三相交流电流?产生旋转磁场?切割转子绕组? 转子绕组产生感应电势?转子中产生感应电流?转子电流与磁场作用?产生电磁转矩?运行。 1.4.2三相异步电动机的工作特性 异步电动机的工作特性是指在额定电压及额定频率下,电动机的主要物理量转差率,转矩电流,效率,功率因数等随输出功率变化的关系曲线。1转差率特性 ○ 通常把同步转速n1和电动机转子转速n二者之差与同步转速n1的比值叫做转差率,用s表示。关于转差率的定义如下:当电机的定子绕组接电源时,站在 s?定子边看,如果气隙旋转磁通密度与转子的转向一致,则转差率s为:n1?n;n1 如果两者转向相反,则:s?n1?n。式中的n1、n都理解为转速的绝对值s是n1 一个没有单位的数,它的大小能反映电动机转子的转速。随着负载功率的增加,转子电流增大,故转差率随输出功率增大而增大。2转矩特性 ○ 异步电动机的输出转矩:转速的变换范围很小,从空载到满载,转速略有下降,转矩曲线为一个上翘的曲线(近似直线)。3电流特性 ○ 空载时电流很小,随着负载电流增大,电机的输入电流增大。4效率特性 ○ 其中铜耗随着负载的变化而变化(与负载电流的平方正比);铁耗和机械损耗近似不变;效率曲线有最大值,可变损耗等于不变损耗时,电机达到最大效率。异步电动机额定效率载74-94%之间;最大效率发生在(0.7-1.0)倍额定效率处。5功率因数特性 ○ 空载时,定子电流基本上用来产生主磁通,有功功率很小,功率因数也很低;随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升高;在额定功率附近,功率因数达到最大值。如果负载继续增大,则导致转子漏电抗增大(漏电抗与频率正比),从而引起功率因数下降。1.5 三相异步电动机的起动与调速 1.5.1三相异步电动机的起动(1)直接起动 直接起动是用闸刀开关或接触器把电机的定子绕组直接接到具有额定电压的电源上。是一种最简单而应用广泛的起动方法。1)优点:无需附加起动设备,操作方便; 2)缺点:起动电流大,起动转矩小,须足够大的电源; 3)适用条件:小容量电动机带轻载的情况起动。(2)降压起动 用降低电机端电压的方法限制制动起动电流,待电机转速接近正常转速后,再将端电压升高到额定电压。如果电源容量不够大,可采用降压起动。即起动时,降低加在电动机定子绕组电压,起动时电压小于额定电压,待电动机转速上升到一定数值后,再使电动机承受额定电压,可限制起动电流。1)Y-Δ降压起动 2)自耦变压器降压起动 3)电阻降压或电抗降压起动 4)延边三角形降压起动(3)软起动 软起动就是在电动机(鼠笼式)定子回路串入有限流作用的电力器件来实现电机的起动。通过这种方法降低起动电流。软起动是采用软件控制方式来平滑起动电动机,一方面在控制方式上以软件控制强电,另一方面在控制结果上将电动机的起动特性由―硬‖平滑变为―软‖。软起动过程中产生高次谐波,对周边环境要求比较高,同时起动设备投资非常大;但它起动时无冲击电流,可保持平滑起动,并且可根据负载情况实现自由无级的起动。软起动方式:○1 液阻式软起动 ○2 磁控式软起动 ○3 智能式软起动。 1.5.2三相异步电动机的调速 三相异步电动机转速公式为: n?60f1?1?s? p 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。异步电动机的调速主要有三种方法.1、变极调速 n1?60f1,异步电动机正常运行时,转子转速n略低于n1,所以,一旦p p改变,n1改变,n也随着改变。1)Y→YY 变极调速 属于恒转矩调速方式 2)Δ→YY变极调速 属于恒功率调速方式 2、变频调速 异步电动机的转速:n?60f1?1?s?。当转差率S变化不大时,n近似正p 比于频率f1,可见改变电源频率就可改变异步电动机的转速。常用的异步电动机变频调速控制方式通常有两种,即恒转矩变频调速和恒功率变频调速。 (1)恒转矩变频调速。电机变频调速前后额定电磁转矩相等,即恒转,T?TTeNTeN矩调速时,有。 (2)恒功率变频调速。电机变频调速前后它的电磁功率相等,即 ''。Pem?TTem?1?TTem?1 12电机设计论文_电动机论文 3、转子回路串电阻调速 转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。串电阻前后保持转子电流不变,则有: R2R2?R?,cos?2?cos?2N ?SNS 电磁转矩为: Tem?CM?mI2cos?2,保持不变,即属于恒转矩调速。1.6 感应电动机的主要性能指标和额定参数 感应电动机的主要性能指标、基准值和额定参数。1.7电机节能 电动机广泛应用于工业、商业、公用设施和家用电器等各个领域,作为风机、水泵、压缩机、机床等各种设备的动力。中小型三相异步电动机是电力机械的最主要的原动机。目前中国电动机消耗的电量约占全国用电量的60%,而中小型电动机占到全国电动机功率的75%,若把中小型电动机的效率平均提高一个百分点,一年可节电20多亿kWh。由此可见,电动机的节能潜力巨大,提高中小型电动机的能源效率是工业终端设备节能的一个重要方面。一般采取的节能措施如下: 1、选用节能电动机 Y系列三相异步电动机是全国统一设计的新系列小型鼠笼转子电动机。Y系列电动机效率较高,全系列加权平均效率为88.27%,比J02系列高0.41%,起动转矩比J02系列平均提高30%,因此有利于用户既满 足对起动转矩要求高而又 可选用容量较小的电动机。这有利于提高节电效果。 2、合理选择电动机容 一般电动机负载的系数在0.5-1范围内为高效区。电动机容量要根据生产机械需要的功率来决定。但实际中往往会出现―大马拉小车‖的现象,由于容量选择不合理,使电动机经常处于轻载状态,致使功率因数降低,增加线路损耗。所以要根据不同负载合理选择电动机。 3、异步电动机采取调速节电 目前,风机与泵类设备常用调节阀门或挡板开启度的方法来调节流量,电能浪费很大。而用电动机调速来调节流量,可使风机、泵长期在高效率状态运行,节电可达30%-60%a。表1列出异步电动机几种常用的调速方式及特点。在工农业生产中可根据电机、场地、调速要求等情况选择调速方案。对于不同的负载类型选用不同类型的电动机,可以获得良好的节电效果。 (1)可变转矩型异步电动机。其最大转矩和额定转矩都和转速成正比,故低速时最大转矩和额定转矩都只有高速时的一半(倍极比电动机),而额定功率只有高速额定功率的1/4。这类电动机适合泵、风机使用,因它的特性基本上与负载特性配合。接线方式是低速时为串联Y,高速时为并联Y。 (2)恒转矩型异步电动机。其最大转矩和额定转矩近似地保持不变,额定功率正比于转速。这类电动机适合传送带、压缩机和机床进给机构使用接线方式是:低速时为串联0,高速时为并联Y(3)恒功率型异步电动机。其最大转矩和额定转矩反比于转速。这类电动机适合于金属切削机床、卷扬机等。接线方式是:低速时为并联Y,高速时为串联△。 第2章 三相鼠笼式异步电动机的设计方法 2.1 电磁负荷的选择与匹配 2.1.1电磁负荷对电机性能和经济性的影响 /由于正常电机中系数?p、KNM、与Kdp实际上变化不大,因此在计算功率P/ 与转速n一定时,电机的主要尺寸决定于电磁负荷A、B?。电磁负荷越高,电机尺寸将越小,重量越轻,成本也越低。这就是在一般可能情况下,一般希望选取较高电磁负荷和B?的原因。但电磁负荷选取与众多因素有关,不但影响电机有效材料的耗用量,而且对电机参数、起动和运行性能、可靠性都有重要影响。(1)线负荷A较高,气隙磁密B?不变 1 电机体积和尺寸的减小,可节约钢铁材料 ○ 2 B?一定时,由于铁心重量减小,铁耗随之减小 ○ 3 绕组用铜量增加 ○ 增大了电枢单位表面上铜耗,绕组温升增高 ○ 5 影响电机参数和电机特性 ○(2)气隙磁密B?高,线负荷A不变 电机体积和尺寸的减小,可节约钢铁材料 ○ 2 电枢基本铁耗增大 ○ 气隙磁位降和磁路饱和程度增大 ○ 4 影响电机参数和电机特性 ○ 2.1.2 电磁负荷的选择 电磁负荷与预防护等级、冷却方式、转子结构、绝缘等级及电压有直接关系。决定电磁负荷时。对于小型电机而言,各种产品之间磁密的波动范围不大。只是对于断续运行电机或者最大转矩要求高、功率数允许略低的产品,磁密可以略高。但电密及热负荷AJ1波动较大。当磁密及J1选定后,根据电磁负荷的匹配关系,求取转子电密及调整定子齿部、轭部的磁密,电磁负荷选得高,就节省材料,但它受效率?,cos?及温升约束,不能选得过高。在推荐的范围内: A 随功率增加而增加,减少A可提高过载能力; ○ 2 B? 随极数增加面增加,降低B?可提高cos?; ○ J1 则随功率增加而减小,随散热能力提高而提高。同时绕线转子的J1要比○ 笼型转子的J1选低5%——10%;断续运行的可比连续的选的高些。2.1.3 电荷负荷的匹配 电磁负荷的匹配直接影响电机的温升(定子绕阻温升),尽管随着电机类型不同,温度场分而亦不同,但仍有一个共同的规律。就散热而言,转子热量有很大一部分要先传给定子,再经机座或通风道,与定子热量汇集在一起传给周围介质。 对于Y系列电机而言,磁负荷亦应遵循类似的规则,转子部分损耗很小,转子部分磁密只要在推荐范围内选取,其损耗可忽略不计。电机总的铁耗可以以为仅由定子齿部铁耗及定子轭部铁耗两部分构成。当铁心尺寸确定后,铁耗随磁密的增加而增加。对于4极电机而言,齿、轭磁密相近时,由于轭部体积较大,其铁耗常常是齿部好几倍。所以设计人员常将轭部磁密选项得较低,齿部选得较高,这从计算结果看是合适的,但在散热途径中齿部的散热不如轭部;同时,齿部磁密偏高,这会使其脉振损耗显著增加,这些从计算结果很难察觉,但却往往导致温升增高,因此齿部磁密不宜偏高。 2.2 主要尺寸、气隙长度的选取及绕组型式的选择 2.2.1主要尺寸的选择 设计的主要任务是确定电动机的主要尺寸,选择定转子磁路结构,设计定转子冲片和选择绕组数据,然后利用有关公式对初始设计方案进行较核,调整电动机的某些设计参数,直至电动机的电磁设计方案符合技术经济指标求。 三相鼠笼异步电动机的主要尺寸包括定子内径Di1和电枢计算长度lef 6.11P'P' 决定电机主要尺寸的基本关系式:Dl?'.?CAABnnapKNmKdp1?2i1ef 其中感应电动机的计算功率P/为:P'?m1E1I1 由于感应电动机额定功率为:PN?m1UN?I1?cos? 比较上两式,则有P'?E1iPN UN??.cos? 在生产实际中,设计感应电机时往往只需参考已经制定的同类型、相近规格电机的尺寸。一般来说,三相异步电动机的设计可有如下两种情况:(1)直接利用某特定的定子冲片,以提高电动机定子冲片的通用性和缩短电动机的研制周期。在此情况下,由给定的定子冲片,即可知道定子冲片内径,再由电动机的功率和电机常数选取电枢计算长度。 (2)在给定电动机的性能指标,而无其他限制。此时根据预估的电磁负荷,有电动机的功率和转速可选定电动机的Di21Lef,然后凭经验选取一定的主要尺寸比Lef ?1,得出电机的主要尺寸。2.2.2 气隙长度的选取及确定 气隙?的数值基本上决定于定子内径、轴的直径和轴承间的转子长度。异步电动机的气隙长度是影响制造成本和性能的重要设计参数,它的取值范围很宽,选得小,可使励磁电流降低而提高功率因数,但槽漏抗也随之增加,使起动转矩、最大转矩降低。过小的气隙也容易招致定、转子相擦。但若选得大,则情况刚好相反。在异步电动机设计选取气隙时,需考虑多种影响。 从电抗去磁能力考虑,较小的?对提高抗去磁能力有利,但由于制造和装配工艺的限制,气隙不能取的太小。与材料有关,较小时,抗去磁能力相对较差?宜取小些。极数是选取? 值需考虑的重要因数。2.2.3铁心尺寸 铁心的尺寸指定子铁心外径、内径、转子铁心内径及铁心长。铁芯冲片一般由相互绝缘的0.5mm厚硅钢片冲成,冲片内圈有均匀分布的槽,用来嵌放定子绕线。当冷却方式、工作制不同时,可参考下列关系选取铁心尺寸。 自冷式(不带内、外风扇)电机,当上列其他特征与自扇冷(IC0104)产品的相同时,若维持相同的输出功率,应选比后者高2——3个功率等级的电机铁心尺寸。 断续运行(以S3、FC=40%工作制为代表)电机,当上列其他特征均与连续 12电机设计论文_电动机论文 运行的相同,并维持相同的功率时,可选取比连续的低约1个功率等级的铁心尺寸。若为工作制时,FC分别为15%、25%、60%,则应分别在40%的基础上乘以1.4、1.19及0.845,即为在同一铁心下分别对应的输出功率。若维持功率不变,可据此近似地推算出铁心尺寸。2.2.4定子绕组形式和节距的选择 绕组的形式,连同其结构参数对电机的所有电气性能均产生不同程度的影响。不同的形式的绕组按照各自的特性有不同的适用范围。 1、单层链式绕组 优点:○1 槽内无层间绝缘,槽利用率高,散热好; ○2 同一槽内的导线都属于同一相,在槽内不会发生相间击穿。3 线圈总数比双层少一半,嵌线比较方便,节约嵌线工时; ○ 缺点:○1 不易做成短距,磁势波形比双层绕组差; 2 电机导线较粗时,绕组嵌放和端部的整形比较困难; ○ 图 5 24槽 节距1—6 单层链式 通过改善磁动势波形是使气隙磁动势分布接近正弦波,即其谐波含量减少了,由此带来的效果是附加损耗,电磁噪声减小了;T-S曲线与的形状也改善了,即减少了附加转矩,提高了起动过程的最小转矩;提高绕阻系数则意味着使Bg下降,cos? 及效率都得到提高,或者保持Bg不变,适当减少匝数,或者缩短 铁心,即收到节铜或硅钢片的效果。 2.3 笼型转子的尺寸设计 2.3.1 转子槽数选择及定转子槽配合问题 笼型转子感应电机在选取转子槽数时,必须与定子槽数有恰当的配合。如果配合不当,会使电机性能恶化。下面就槽配合对附加损耗、附加转矩、振动与噪声等的影响作扼要的介绍。(1)槽配合对附加损耗的影响 感应电机的附加损耗主要由气隙谐波磁通引起。这些谐波磁通在定转子铁心中产生高频损耗(表面损耗和齿部脉振损耗),在笼型转子中产生高频电流损耗。其中以定、转子齿谐波的作用最为显著。 当定、转子槽数相等时,定子齿谐波磁通不会在转子中产生高频电流损耗。当定、转子槽数很接近时,转子齿中由定子齿谐波磁通引起的脉振较小,脉振损耗也就较小。同理,定子齿中由转子齿谐波磁通引起的脉振损耗也较小。(2)槽配合对异步附加转矩的影响 异步附加转矩是某一极对数的定子谐波磁场与由它感应于转子中的电流所建立的同一极对数的谐波磁场相互作用而产生的。这两个磁场之间有直接的依赖关系。定子?次谐波磁势产生的异步附加转矩最大值与基波磁势产生的起动转矩之比: Tvmax Tst 1Xm?K2vKskv???。'?2vR2KK?21sk1? 2(3)槽配合对同步附加转矩的影响 如果定子某一个谐波磁场感应于转子中的电流所建立的某一谐波磁场的极对数,等于另一个定子谐波磁场的极对数,则在某一转速下,这两个极对数相等的定转子磁场可以在空间上同步旋转而相对静止,因此它们相互作用而产生一个象同步电机一样的转矩,称为同步附加转矩。同步附加转矩迭加在电动机的异步转矩上,使电机的转矩特性曲线发生畸变,影响电机的起动性能。其中,由定子齿谐波磁场和转子齿谐波磁场所构成的附加同步转矩最严重。(4)槽配合对振动和噪声的影响 当槽配合符合下列条件时,定、转子齿谐波磁场将引起电机振动和噪声: Z1?Z1?i ? ??i?1,2,3......? Z2=Z1?2p?i? 同样,定、转子相带谐波磁场与转子一阶齿谐波引起振动和噪声的条件为: Z1?2pm1k1? ??k1?0,i?1,2,3......? Z2=2pm1k1?i?(5)感应电机定、转子槽配合的选择 定、转子槽配合对感应电机附加损耗、附加转矩、振动和噪声等影响很大。通常在选择槽配合时主要考虑下列原则: 1)为了减小附加损耗,应采取少槽近槽配合 2)为了避免在起动过程中产生较强的异步附加转矩,应使 z2?1.25?z1?p?。3)为了避免在起动过程中,产生较强的同步附加转矩、振动和噪声,应避免采用下表1第4项所列的槽配合。表1 2.3.2 转子槽形的选择和槽形尺寸的确定 (1)转子槽形 感应电动机笼型转子槽型种类很多。如下图6 图 6 感应电动机笼型转子常用槽型 a)、b)平行齿 c)、d)平行槽e)凸形槽f)刀型槽 g)、h)闭口槽i)双笼转子槽j)梯形槽(2)转子槽形尺寸的确定 转子槽形尺寸对电动机的一系列性能参数如:起动电流、起动转矩、最大转矩、起动过程中的转矩(即T-s曲线的形状)、转差率、转子铜耗、功率因数、效率和温升等有相当打的影响。其中起动转矩、起动电流、最大转矩和转差率与转子槽型尺寸的关系最为密切。此外还要重点考虑起动性能的要求;估算转子导条电流;初步给定导条电流密度;计算导条截面积;由导条截面积、槽形以及转子齿、轭部磁密,确定转子槽具体尺寸,槽口部分主要由工艺确定。(3)端环的设计 转子端环的设计与转子槽的设计相类似,在保证是够起动转力的前提下应尽使端环原型小一点,以节约铝材料和提高电动机的品质因数。1)类似槽形尺寸确定 2)为利于散热,电流密度低于导条电密 图 7 端环设计尺寸图 第3章 三相鼠笼式电动机电磁设计与方案调整 本章详细阐述Y90S—4 0.75 kW异步电动机的设计,该电机为一般用途的鼠笼式全封闭自扇冷式三相异步电动机,定子绕组为铜线,绝缘等级为B级,其基本结构防护要求达到国家电工委员会外壳防护等级IP44的要求。满足国内标准,向某些国际表准及某些发达国家标准靠拢,贯彻―三化‖——标准化、系列化及通用化的要求。3.1鼠笼式电动机电磁方案的设计 一、额定数据及主要尺寸 1.输出功率P2 P2=0.75kW 2.外施相电压U1 U1=220V 3.功电流IKW I? P2?1030.75?103 KW m=1?U1 3?220=1.1363636A 4.效率?? ??=0.77 5.功率因数cos?? cos??=0.763 6.极数p p=4 7.定子槽数Q1 Q1=24 转子槽数Q2 Q2=22 8.定子每极槽数 QP1? Q1p=24 4=6 转子每极槽数 QQ222P2? p=4 =5.5 9.定、转子冲片尺寸见右图8,图9 单位(mm)图 8 定子冲片尺寸 P2=0.75 kW U1=220 V IKW=1.13636A ??=0.77 cos??=0.763 p=4 Q1=24 Q2=22 QP1=6 QP2=5.5 图 9 转子尺寸 12电机设计论文_电动机论文 10.极距?P ?P? ??Di1= ??75 p 4 =58.9049 11.定子齿距t1 t1??75 1? ??DiQ= =9.8175 1 24 12.转子齿距t2 t??D22? = ??74.5 Q2 22 =10.6385 13.节距y y=5 14.转子斜槽宽bSK bSK=9.8175 15.每槽导体数16.每相串联导体数 ZQ1?Z1Z?1? ?1 m=24?103 Z1 Z1=103 1?a1 3?1=824 式中: a1=1 17.绕组线规(估算)式中: 导线并绕根数·截面积 N?? I?1 1?S1? N?? 1?S1(mm22)a 1??1 = 1.9342 1?6.19 =0.3125 定子电流初步估算值 I? IKW1.1363636 I/1?1 ???cos??=0.77?0.763=1.9342 定子电流密度?? 1 ??? 21查表得?1=6.19A/MM 18.槽满率(1)槽面积 2R?bS1??? ?R2 SS?2hS?h?2 =2?3.9?5.7??3.92?2 8.6?2??2 =70.2023mm2 18 ?P=58.9049 mm t1=9.8175mm t2=10.6385mm y=5 bSK=9.8175mm Z1=103 Z?1=824 a1=1 N??S? 11=0.3125 ?? 1=6.19 A/mm2 SS=70.2023mm2(2)槽绝缘占面积(3)槽有效面积(4)槽满率 绝缘厚度Ci 导体绝缘后外 槽契厚度h 19.铁心长l 铁心有效长 净铁心长lFe 铁心压装系数KFe 20.绕组系数(1)分布系数 式中: S? i?Ci???2hS??R??? =0.25(2*8.6+?*3.9)=7.5845 mm2 Se?SS?S =70.2023-7.5845=62.6178 mm2 SN1?Z1?d21*103*0.f? S=69 =0.7831 e 62.6178Ci=0.25 mm d=0.69 h=2 无径向通风道leff?l?2g =80+0.25*2 =80.5 无径向通风道lFe?KFe?l =0.95*80=76 KFe?0.95 Kdp1?Kd1?Kp1 =0.9659265*1=0.965926 sinq? ?30?1?sin??2?Kd1 ? ?2?=?2?q30 1?sin 2 2?sin2=0.965926 q1? Q124 mp= 3*4 ?2 1???p?Q=30 1 19 S2i=7.5845 mm Se=62.6178 mm2 Sf=0.7831 Ci=0.25mm d=0.69mm h=2mm leff=80.5mm lFe=76mm KFe?0.95 Kdp1=0.965926 Kd1=0.965926 q1=2 ??30(2)短距系数 Kp1?sin???90?? =1 式中: ?? y5 Q=?0.8333 p16 21.每相有效串联导体Z?1?Kdp1?Z?1?Kdp1 数 =824*0.965926 =796 二、磁路计算 22.每极磁通 ?? E1?108 2.22f?Z ?1?Kdp1 ?194.596*1082.22*50*796 =220261.7 式中: E?? 1???1??L??? U1 ??1?0.115475 ?*220=194.6 23.齿部截面积(1)定子 ST1?bT1?lFe?QP1 =4.7569*76*6 =2169.16(2)转子 ST2?bT2?lFe?QP2 =4.99495*76*5.5 =2068.89 24.轭部截面积(1)定子 S? C1?hC1?lFe =10.2667*76 =780.2667 mm2 式中:定子轭部磁路计? ?D1?Di11 算高度h? hC1 C1 2?hS?3 R 圆底槽 ? 120?752?13.5?1 3 *3.8 ?10.266720 Kp1?1 ??0.83333 Z?1?Kdp1=796 ?=220261.7 E1=194.6 V ST1=2169.16 ST2=2068.89 SC1=780.2667 h? C1? 10.2667 mm(2)转子 式中:转子轭部磁路计? SC2?hC2?lFe =11.75*76 Sc2=893 算高度h? C2平底槽 25.空气隙面积26.波幅系数 27.定子齿磁密28.转子齿磁密29.定子轭磁密30.转子轭磁密31.空气隙磁密=893 mm2 h? ?D2?Di2C2 2?h?2R3 dK2 74.5?26 ? 2 ?12.5 ?11.75mm Sg??p?leff =58.9049*80.5 =4747.84mm2 F最大? S?平均? =1.455 B? T1?FSS T1 ?1.455* 220261.7 2169.16 =14774.4 GS B? T2?FSS T2 ?1.455* 220261.7 2068.89 =15490.4 GS BC1?12??S C1 ? 12*220261.7780.2667 =14114.5 GS B1?C2?2?S C2 ? 1220261.72*893 =12332.7 GS B? g?FS S g 21 S?=4747.84 FS=1.455 BT1=14774.4 GS BT2=15490.4 GSBC1=14114.5 GS BC2=12332.7 GSBg=6758.6 GS ?1.455* 32.查附录Vl得 220261.7 =6758.6 GS 4741.8 atT1=17.8 atT2=26.7 atC1=13.2 atC2=7.22 33.齿部磁路计算长度 定子: 半开口平底槽 转子:平底槽 =9.2+ ? hT1?hS1?hS2 'hT1=10.4667mm 1 *3.8=10.4667 mm 3 'hT2=12 mm ? hT2?hR1?hR2=12 mm 34.轭部磁路计算长 定子: ? lC1?? ? ???D1?hC1?? 转子: 2p ??120?10.2667?? 8 ?43.0922mm ? ???Di2?hC2? lC2? 2p ??26?11.75?? 8 ?14.8244mmge?g?KC1?KC2 ? 'lC1=43.0922 mm 'lC2=14.8244 mm 35.有效气隙长度 式中: 定、转子卡氏系数KC1、KC2 半闭口槽和半开口槽 ge=0.33509 =0.25 * 1.05 * 1.3404 =0.33509 KC? t?4.4g?0.75bo?t4.4g?0.75bo?bo 2 KC=1.3404 即KC?KC1*KC2 式中: 齿距为 t KC1? ?4.4*0.25?0.75*2.5?9.8175 4.4*0.25?0.75*2.5?2.529.8175 KC1=1.2722 =1.2722 22 12电机设计论文_电动机论文 槽口宽bo K10.2667 C2? ?4.4*0.25?0.75*1? 10.2667 4.4*0.25?0.75*1?12 =1.0535 36.齿部所需安匝 定子: AT?at? T1T1?hT1 =17.8×1.04667=18.6307 mm2 转子: AT? T2?atT2?hT2 =26.7×1.2=32.04 mm2 37.轭部所需安匝 定子 ATC? C1?1?atC1?lC1 =0.353×13.2×4.30922 =20.0792 mm2 轭部磁路长度校正系C1=0.353 数C1 转子 AT? 2018年非道路用智能低速电动车项目可行性研究报告 编制单位:北京智博睿投资咨询有限公司 0 本报告是针对行业投资可行性研究咨询服务的专项研究报告,此报告为个性化定制服务报告,我们将根据不同类型及不同行业的项目提出的具体要求,修订报告目录,并在此目录的基础上重新完善行业数据及分析内容,为企业项目立项、申请资金、融资提供全程指引服务。 可行性研究报告 是在招商引资、投资合作、政府立项、银行贷款等领域常用的专业文档,主要对项目实施的可能性、有效性、如何实施、相关技术方案及财务效果进行具体、深入、细致的技术论证和经济评价,以求确定一个在技术上合理、经济上合算的最优方案和最佳时机而写的书面报告。 可行性研究是确定建设项目前具有决定性意义的工作,是在投资决策之前,对拟建项目进行全面技术经济分析论证的科学方法,在投 资管理中,可行性研究是指对拟建项目有关的自然、社会、经济、技术等进行调研、分析比较以及预测建成后的社会经济效益。在此基础上,综合论证项目建设的必要性,财务的盈利性,经济上的合理性,技术上的先进性和适应性以及建设条件的可能性和可行性,从而为投资决策提供科学依据。 投资可行性报告咨询服务分为政府审批核准用可行性研究报告和融资用可行性研究报告。审批核准用的可行性研究报告侧重关注项目的社会经济效益和影响;融资用报告侧重关注项目在经济上是否可行。具体概括为:政府立项审批,产业扶持,银行贷款,融资投资、投资建设、境外投资、上市融资、中外合作,股份合作、组建公司、征用土地、申请高新技术企业等各类可行性报告。 报告通过对项目的市场需求、资源供应、建设规模、工艺路线、设备选型、环境影响、资金筹措、盈利能力等方面的研究调查,在行业专家研究经验的基础上对项目经济效益及社会效益进行科学预测,从而为客户提供全面的、客观的、可靠的项目投资价值评估及项目建设进程等咨询意见。 报告用途:发改委立项、政府申请资金、申请土地、银行贷款、境内外融资等 关联报告: 非道路用智能低速电动车项目建议书 非道路用智能低速电动车项目申请报告 非道路用智能低速电动车项目资金申请报告 非道路用智能低速电动车项目节能评估报告 非道路用智能低速电动车项目市场研究报告 非道路用智能低速电动车项目商业计划书 非道路用智能低速电动车项目投资价值分析报告 非道路用智能低速电动车项目投资风险分析报告 非道路用智能低速电动车项目行业发展预测分析报告 可行性研究报告大纲(具体可根据客户要求进行调整)第一章 非道路用智能低速电动车项目总论 第一节 非道路用智能低速电动车项目概况 1.1.1非道路用智能低速电动车项目名称 1.1.2非道路用智能低速电动车项目建设单位 1.1.3非道路用智能低速电动车项目拟建设地点 1.1.4非道路用智能低速电动车项目建设内容与规模 1.1.5非道路用智能低速电动车项目性质 1.1.6非道路用智能低速电动车项目总投资及资金筹措 1.1.7非道路用智能低速电动车项目建设期 第二节 非道路用智能低速电动车项目编制依据和原则 1.2.1非道路用智能低速电动车项目编辑依据 1.2.2非道路用智能低速电动车项目编制原则 1.3非道路用智能低速电动车项目主要技术经济指标 1.4非道路用智能低速电动车项目可行性研究结论 第二章 非道路用智能低速电动车项目背景及必要性分析 第一节 非道路用智能低速电动车项目背景 2.1.1非道路用智能低速电动车项目产品背景 2.1.2非道路用智能低速电动车项目提出理由 第二节 非道路用智能低速电动车项目必要性 2.2.1非道路用智能低速电动车项目是国家战略意义的需要 2.2.2非道路用智能低速电动车项目是企业获得可持续发展、增强市场竞争力的需要 2.2.3非道路用智能低速电动车项目是当地人民脱贫致富和增加就业的需要 第三章 非道路用智能低速电动车项目市场分析与预测 第一节 产品市场现状 第二节 市场形势分析预测 第三节 行业未来发展前景分析 第四章 非道路用智能低速电动车项目建设规模与产品方案 第一节 非道路用智能低速电动车项目建设规模 第二节 非道路用智能低速电动车项目产品方案 第三节 非道路用智能低速电动车项目设计产能及产值预测 第五章 非道路用智能低速电动车项目选址及建设条件 第一节 非道路用智能低速电动车项目选址 5.1.1非道路用智能低速电动车项目建设地点 5.1.2非道路用智能低速电动车项目用地性质及权属 5.1.3土地现状 5.1.4非道路用智能低速电动车项目选址意见 第二节 非道路用智能低速电动车项目建设条件分析 5.2.1交通、能源供应条件 5.2.2政策及用工条件 5.2.3施工条件 5.2.4公用设施条件 第三节 原材料及燃动力供应 5.3.1原材料 5.3.2燃动力供应 第六章 技术方案、设备方案与工程方案 第一节 项目技术方案 6.1.1项目工艺设计原则 6.1.2生产工艺 第二节 设备方案 6.2.1主要设备选型的原则 6.2.2主要生产设备 6.2.3设备配置方案 6.2.4设备采购方式 第三节 工程方案 6.3.1工程设计原则 6.3.2非道路用智能低速电动车项目主要建、构筑物工程方案 6.3.3建筑功能布局 6.3.4建筑结构 第七章 总图运输与公用辅助工程 第一节 总图布置 7.1.1总平面布置原则 7.1.2总平面布置 7.1.3竖向布置 7.1.4规划用地规模与建设指标第二节 给排水系统 7.2.1给水情况 7.2.2排水情况 第三节 供电系统 第四节 空调采暖 第五节 通风采光系统 第六节 总图运输 第八章 资源利用与节能措施 第一节 资源利用分析 8.1.1土地资源利用分析 8.1.2水资源利用分析 8.1.3电能源利用分析 第二节 能耗指标及分析 第三节 节能措施分析 8.3.1土地资源节约措施 8.3.2水资源节约措施 8.3.3电能源节约措施 第九章 生态与环境影响分析 第一节 项目自然环境 9.1.1基本概况 9.1.2气候特点 9.1.3矿产资源 第二节 社会环境现状 9.2.1行政划区及人口构成 9.2.2经济建设 第三节 项目主要污染物及污染源分析 9.3.1施工期 9.3.2使用期 第四节 拟采取的环境保护标准 9.4.1国家环保法律法规 9.4.2地方环保法律法规 9.4.3技术规范 第五节 环境保护措施 9.5.1施工期污染减缓措施 9.5.2使用期污染减缓措施 9.5.3其它污染控制和环境管理措施 第六节 环境影响结论 第十章 非道路用智能低速电动车项目劳动安全卫生及消防 第一节 劳动保护与安全卫生 10.1.1安全防护 10.1.2劳动保护 10.1.3安全卫生 第二节 消防 10.2.1建筑防火设计依据 10.2.2总面积布置与建筑消防设计 10.2.3消防给水及灭火设备 10.2.4消防电气 第三节 地震安全 第十一章 组织机构与人力资源配置 第一节 组织机构 11.1.1组织机构设置因素分析 11.1.2项目组织管理模式 11.1.3组织机构图 第二节 人员配置 11.2.1人力资源配置因素分析 11.2.2生产班制 11.2.3劳动定员 表11-1劳动定员一览表 11.2.4职工工资及福利成本分析 表11-2工资及福利估算表 第三节 人员来源与培训 第十二章 非道路用智能低速电动车项目招投标方式及内容 第十三章 非道路用智能低速电动车项目实施进度方案 第一节 非道路用智能低速电动车项目工程总进度 第二节 非道路用智能低速电动车项目实施进度表 第十四章 投资估算与资金筹措 第一节 投资估算依据 第二节 非道路用智能低速电动车项目总投资估算 表14-1非道路用智能低速电动车项目总投资估算表单位:万元 第三节 建设投资估算 表14-2建设投资估算表单位:万元 第四节 基础建设投资估算 表14-3基建总投资估算表单位:万元 第五节 设备投资估算 表14-4设备总投资估算单位:万元 第六节 流动资金估算 表14-5计算期内流动资金估算表单位:万元 第七节 资金筹措 第八节 资产形成 第十五章 财务分析 第一节 基础数据与参数选取 第二节 营业收入、经营税金及附加估算 表15-1营业收入、营业税金及附加估算表单位:万元 第三节 总成本费用估算 表15-2总成本费用估算表单位:万元 第四节 利润、利润分配及纳税总额预测 表15-3利润、利润分配及纳税总额估算表单位:万元 第五节 现金流量预测 表15-4现金流量表单位:万元 第六节 赢利能力分析 15.6.1动态盈利能力分析 16.6.2静态盈利能力分析 第七节 盈亏平衡分析 第八节 财务评价 表15-5财务指标汇总表 第十六章 非道路用智能低速电动车项目风险分析 第一节 风险影响因素 16.1.1可能面临的风险因素 16.1.2主要风险因素识别 第二节 风险影响程度及规避措施 16.2.1风险影响程度评价 16.2.2风险规避措施 第十七章 结论与建议 第一节 非道路用智能低速电动车项目结论 第二节 非道路用智能低速电动车项目建议第四篇:电机设计论文
第五篇:2018年非道路用智能低速电动车项目可行性研究报告(编制大纲)