第一篇:农业数据采集体系设计思考论文(大全)
本文针对农业机械基础数据的采集,联系农业监理部门的管理,从信息交流和共享的角度出发,设计了一种农业机械基础数据采集系统。
需求分析
本设计的目标是实现网络化数据的共享。联系实际需求,提供传统媒体的数据共享也是不错的选择。运用对信息库进行新建、扩建和整合等手段,使农业机械基础数据实现网络化和数字化,再运用互联网这个媒介将农业科技信息提供给社会,达到信息资源共享的目的。此外,还可以运用内部网来将相关的信息提供给政府部门和科技管理部门。同时,本项目还能够提供转换接口,此功能就是利用传统媒体来表示数据库里面的内容,从而扩大农业机械基础数据共享的范围,充分发挥农业机械基础数据具备的作用。
1系统功能分析
对农业机械实施信息化管理,首先需要对其功能需求进行分析。农业机械基础数据采集系统的主要功能包括驾驶员管理、机械管理、机械事故管理、监理人员管理和综合报表处理等5个方面。
1)对农业机械的驾驶员进行管理。管理内容主要包括对驾驶员进行登记、查询、统计、驾驶证和台帐业务报表的打印,以及驾驶员的补证、换证、注销、转籍、审验或变更修改等。
2)对机械进行管理。一般而言,农业机械主要是指拖拉机和联合收割机。对农业机械进行管理就是指对农机进行登记和统计等,以及对拖拉机进行检验、封存与补证等活动。
3)对农业机械的事故进行管理。简而言之,对农业机械的事故进行管理是指对农业机械发生的事故进行登记、调查和统计等。
4)农业监理执法人员的管理。主要包括登记、录入、修改、删除、审验、查询、预览和备份农机监理执法人员的各种信息,能进行执法证及各类统计分析报表及各类台帐的打印。同时,还可用于对执法证进行审核、检验和注销等行为。
5)进行各种农业机械综合报表的生成和处理。这类活动通常是指编制月报、季报和年报,并对编制的这些报表进行统计与分析。
2系统建设原则
1)实用性。一般而言,实用性要坚持的原则就应该体现出需求和技术相结合的原则,而且所研究出的系统应该以满足用户需求为目的。
2)可扩充性和兼容性。这个原则就是指在设计系统时,认真分析系统的发展因素和历史因素是很有必要的,从而就可以有效地把系统的设计和产品的生命周期结合起来,为产品的升级提供方便,为功能扩展提供接口。
3)结构优化。系统结构设计要合理,这样才能保证程序运行有较快的速度,减少等待时间,提高工作效率。
4)简便性。软件要使用大量代码,尽量地使用自动选择、显示和按钮操作,以使操作人员更加准确和简便地操作,减少人工录入的工作量。
5)良好的人机交互性。良好的人机交互性要求具有良好的操作界面,人机交互功能主要靠可输入输出的外部设备和相应的软件来完成。可供人机交互使用的设备主要有键盘显示、鼠标和各种模式识别设备等。与这些设备相应的软件就是系统提供人机交互功能的部分。
系统总体设计
对农业机械的管理,基础数据采集主要侧重于地县级和省级,数据库服务器设立在省级。地市级农机部门建立的数据能够存入到省级监理部门的网络中心,经过网络中心对数据服务器进行调配和分析后,达到每个授权用户权责的功能。省县级的农业机械基础数据采集和交换的网络结构如图1所示。国家级信息中心在准确拥有这些基础数据资源后可进行宏观监管和调控,制定相应的政策。通常情况下,国家级网络中心处于核心地位,省级监理部门属于主干,地市级监理部门起着基础作用,而县级监理部门则处于依托的作用,通过互联网技术监理网络应用平台,实现数据在权利范围内的共享,其网络结构如图2所示。根据农业机械对基础数据采集系统功能的需求,把农业机械基础数据的采集系统划分为6个模板,即拖拉机管理子系统、农业机械事故管理子系统、农业机械驾驶员管理子系统、联合收割机管理子系统、农业机械综合报表子系统以及农机监理人员管理子系统。
基础数据采集模块的设计
1农业机械驾驶员管理子系统。按照业务操作流程的不同,农业机械驾驶员管理可以分为注册审核、证件管理以及登记3方面。其中,注册审核可以机械分为初学登记、增驾登记和年度审验。农机驾驶员管理模块的初学登记业务操作流程如下:首先,有意向学习农机驾驶的人员要在自己的居住地进行报名,填写登记表,同时交验身份证件,并进行体检。若这些条件达到了所制定的要求后就可以对这些人员进行科目培训,再进行理论和技术科目的考试,考试成绩合格者可以取得驾驶证,成为真正驾驶员。驾驶员需要增驾时,需持本人驾驶证及有效身份证件到农机监理机构填写相关申请材料,并经过增驾考试,符合规定的领发新证。证件管理就是指农机的驾驶证出现遗失、有效期满、被盗或损坏等情况下,持本人有效证件到当地农机监理机构办理相关手续。这些业务大体分为挂失、补发和换发等,其流程基本一致。农机驾驶员因调动或其驾驶证的内容有变更的情况下,需要及时到农机监理机构办理登记手续,通常包括转籍和变更两种情况。具体来讲,转籍就是指转入和转出。当转入的时候,农机驾驶员应该凭自己的有效证件到农机监理部门办理相关的转入手续;当转出的时候,农机驾驶员也应该凭自己的有效证件到农机监理部门办理相关的转出手续,农机监理机构就会把驾驶员的档案及时转给新籍的农机监理部门,同时也将转出的事项标注在驾驶证上。农机驾驶员管理子模块功能结构如图3所示。
2拖拉机管理子系统。在对拖拉机进行管理的过程中,各县、区、市的农机监理站都应该面向机手,主动担当并做好基础的管理工作,如报户、建档、异动登记和管理原始档案等。另外,农机基础数据采集系统主要目的就是解决拖拉机登记、统计以及驾驶证的审验、异动与封存等相关的业务。通常情况下,这个模块的拖拉机分为小型拖拉机和大中型拖拉机。小型拖拉机就是指发动机功率不足14.7kW的拖拉机,而大中型拖拉机就是指发动功率大于14.7kW的拖拉机。一般而言,拖拉机管理模块的基本数据是指拖拉机的机主、号牌、地址、联系方式、机器的类型、出厂日期、制造商、功率、核定质量、发动机号、颜色、登记时间和所在管辖区等相关的基础数据信息。拖拉机管理模块功能结构如图4所示。
3联合收割机管理子系统。联合收割机管理模块进行联合收割机数据的提取、查询、统计、分析处理和对全国联合收割机的监控指挥。联合收割机的查询是为了进行数据挖掘,以便对联合收割机进行监控和宏观调配,主要是对号牌号码、机主、辖区、厂牌型号或登记日期等信息的查询。统计分析是对其档案进行数据挖掘,主要包括机械类型分布、使用年限分布、机型分布、驱动方式分析等进行统计分析。
4农业机械事故管理子系统。简而言之,农业机械事故管理的模块就是采集、统计和分析农业机械事故的数据,在对这些数据进行分析后研究出事故发生存在的隐患或者规律,从而有效地对农机事故进行预测和监管。农机事故管理模块统计分析的基础数据包括:24h发生事故起数和死亡人员统计;月事故数和月死亡人数;各县农机事故数和死亡人数;农机事故原因统计,包括无证驾驶、酒后驾驶、超速超载、机械故障和操作失误等;事故路面类型统计;事故路面坡度统计和事故气候统计等。
5农机监理人员管理子系统。农机监理执法人员管理模块就是对农机监理人员的数据进行采集、统计与分析,并对我国农机监理执法人员进行管理。在对农机监理人员档案进行统计和分析后,再对这些数据进行处理,从而实现对我国农机监理执法人员的管理和控制。通常这个模块的主要内容是指查询或者统计农机监理执法证号、根据执法人员所在管理辖区的代码进行查询或按农机监理执法人员职称查询等。
6农业机械综合报表子系统。通常情况下,农业机械综合报表的子系统是指实现农业机械报表的编制,并对这些报表上的数据进行上报、统计和分析。这些报表包括月报、季报和年报。月报,如农业机械事故月报表;季报,如报户建档拖拉机情况季度表、拖拉机及驾驶员增减分析季报表;年报,如拖拉机驾驶员考试情况统计报表、地县农机监理业务培训情况表和农业机械事故情况年报表等。
结论与展望
农业机械基础数据采集系统能对信息库进行新建、扩建与整合等,从而使得农业机械基础数据实现网络化和数字化,再运用互联网这个媒介将农业科技信息提供给社会,达到信息资源共享的目的。此外,还可以运用内部网来将相关的信息提供给政府部门和科技管理部门。本文从理论上对农业机械基础数据采集系统进行了研究和设计,下一步需要在具体的开发环境中对其进行开发实现。
第二篇:虚拟仪器数据采集应用论文
虚拟仪器是以一种全新的理念来设计和发展的仪器,他是90年代发展起来的一项新技术,主要用于自动测试、过程控制、仪器设计和数据分析等领域,其基本思想是在仪器设计或测试系统中尽可能用软件代替硬件,即“软件就是仪器”,他是在通用计算机平台上,根据用户需求来定义和设计仪器的测试功能,其实质是充分利用计算机的最新技术来实现和扩展传统仪器的功能。
虚拟仪器的特点和构成 1.1 虚拟仪器的特点
与传统仪器相比,虚拟仪器具有高效、开放、易用灵活、功能强大、性价比高、可操作性 好等明显优点,具体表现为:
智能化程度高,处理能力强 虚拟仪器的处理能力和智能化程度主要取决于仪器软件水平。用户完全可以根据实际应用需求,将先进的信号处理算法、人工智能技术和专家系统应用于仪器设计与集成,从而将智能仪器水平提高到一个新的层次。
复用性强,系统费用低 应用虚拟仪器思想,用相同的基本硬件可构造多种不同功能的测试分析仪器,如同一个高 速数字采样器,可设计出数字示波器、逻辑分析仪、计数器等多种仪器。这样形成的测试仪 器系统功能更灵活、更高效、更开放、系统费用更低。通过与计算机网络连接,还可实现虚 拟仪器的分布式共享,更好地发挥仪器的使用价值。
可操作性强,易用灵活 虚拟仪器面板可由用户定义,针对不同应用可以设计不同的操作显示界面。使用计算机的 多媒体处理能力可以使仪器操作变得更加直观、简便、易于理解,测量结果可以直接进入数 据库系统或通过网络发送。测量完后还可打印、显示所需的报表或曲线,这些都使得仪器的 可操作性大大提高而且易用、灵活。
1.2 虚拟仪器的构成 虚拟仪器的构建主要从硬件电路的设计、软件开发与设计2个方面考虑。
硬件电路的设计主要根据用户所面对的任务决定,其中接口设计可选用的接口总线标准包 括Gp IB总线、VXI总线等。推荐选用VXI总线。因为他具有通用性强、可扩充性好、传输速 率高、抗干扰能力强以及良好的开放性能等优点,因此自1987被首次推出后迅速得到各大仪 器生产厂家的认可,目前VXI模块化仪器被认为是虚拟仪器的最理想平台,是仪器硬件的发 展方向。由于VXI虚拟仪器的硬件平台的基本组成是一些通用模块和专用接口。因此硬件电 路的设计一般可以选择用现有的各种不同的功能模块来搭建。通用模块包括:信号调 理和高速数据采集;信号输出与控制;数据实时处理。这3部分概括了数字化仪 器的基本组成。将具有一种或多种功能的通用模块组建起来,就能构成任何一种虚拟仪器。例如使用高速数据采集模块和高速实时数据处理模块就能构成1台示波器、1台数字化仪或 1台频谱分析仪;使用信号输出与控制模块和实时数据处理模块就能构成1台函数发生器、1台信号源或1台控制器。专用接口是针对特定用途仪器需要的设计,也包括一些现场总线 接口和各类传感器接口。系统的主要硬件包括控制器、主机箱和仪器模块。常用的控制方案 有GpIB总线控制方式的硬件方案、MXI总线控制方式的硬件方案、嵌入式计算机控制方式的 硬件方案3种。VXI仪器模块又称为器件(devices)。VXI有4种器件:寄存器基器件、消 息基器件、存储器器件和扩展器件。存储器器件不过是专用寄存器基器件,用来保存和传输 大量数据。扩展器目前是备用件,为今后新型器件提供发展通道。将VXI仪器制作成寄存器 基器件,还是消息基器件是首先要做出的决策。寄存器基器件的通信情况极像VME总线器件,是在低层用二进制信息编制程序。他的明显优点在于速度寄存器基器件完全是在 直接 硬件控制这一层次上进行通信的。这种高速通信可以使测试系统吞吐量大大提高。因此,寄 存器基器件适用于虚拟仪器中信号/输出部分的模块(如开关、多路复用器、数/模转换输出 卡、模/
数转换输入卡、信号调理等)。消息基器件与寄存器基器件不同,他在高层次上用A SCII字符进行通信,与这种器件十分相似是独立HpIB仪器。消息基器件用一组意义 明确的 “字串行协议”相互进行通信,这种异步协议定义了在器件之间传送命令和数据所需的挂钩 要求。消息基器件必须有CpU(或DSp)进行管理与控制。因此,消息基器件适用于虚拟仪器 中数字信号处理部分的模块。
软件的开发与设计包括3部分:VXI总线接口软件、仪器驱动软件和应用软件(软面板)。软件结构如图1所示。
VXI总线接口软件由零槽控制器提供,包括资源管理器、资源编辑程序、交互式控制程序和 编程函数库等。该软件在编程语言和VXI总线之间建立连接,提供对VXI背板总线的控制和支 持,是实现VXI系统集成的基础。
仪器驱动程序是完成对某一特定仪器的控制与通信的软件程序,也即模块的驱动软件,他 的设计必须符合Vpp的2个规范,即Vpp3.1《仪器驱动程序结构和模型》和Vpp3.2《仪器 驱动程序设计规范》。
“软面板”设计就是设计具有可变性、多层性、自助性、人性化的面板,这个面板应不 仅同传统仪器面板一样具有显示器、LED、指针式表头、旋钮、滑动条、开关按钮、报警装 置等功能部件,而且应还具有多个连贯操作面板、在线帮助功能等。
虚拟仪器在数据采集中的应用
利用虚拟仪器制作数据采集器可以按照硬件设计、软件设计两个步骤来完成。
2.1 硬件设计
硬件设计要完成以下内容:
1)模/数转换及数据存储
设置具有通用性的数据自动采集系统,一般应满足能对多路信号尽可能同步地进行采集,为了使所采集到的数据不但能够在数据采集器上进行存储,而且还能及时地在采集过程中 将数据传送到上位机,选用存储量比较适中的先进先出存储器,这样既能满足少量数据存储 的需要,又能在需要实时传送数据时,在A/D转换的同时进行数据传送,不丢失任何数据。)VXI总线接口
VXI总线数据采集器通常可以利用两种VXI总线通用接口消息基接口和寄存器基接口。消 息基接口的作用是通过总线传送命令,从而控制仪器硬件的操作。通用寄存器基接口是由寄存器简单的读写来控制仪器硬件的操作。利用消息基接口进行设计,具体消息基接口的框图见图2。
3)采样通道控制
为了满足几种典型系统通道控制的要求,使通道的数量足够多,通道的选取比较灵活,可以利用寄存器电路、可预置计数器电路以及一些其他逻辑电路的配合,将采样通道设计成最多64路、最少2路可以任意选择,而且可以从任意一路开始采样,也可以到任意一路结束采样,只要截止通道号大于起始通道号就可以了。整个控制在虚拟仪器软面板上进行操作,通过消息基接口将命令写在这部分的控制寄存器中,从而设置计数器的初值以及采样的通道总数。
4)定时采样控制
由于不同的自动测试系统对采样时间间隔的要求不同,以及同一系统在不同的试验中 需要的采样时间间隔也不尽相同,故可以采用程控的方式将采样时间间隔设置在2 μs~13.0 ms之间任意选择,可以增加或减少的最小单位是2 μs。所有这些选择设置可以在虚拟仪器软面板上进行。
5)采样点数控制
根据不同测试系统的需求,将采样点数设计成可在一个比较大的范围中任意选择,该选择同样是在软面板上进行。
6)采样方式控制
总结各种自动测试系统的采样方式不外乎软件触发采样和硬件 触发采样。在硬件触发采样中又包括同步整周期采样和非同步整周期采样,这2种采样又可 以是定时进行的或等转速差进行的。所有这些采样方式,对于数据采集器来说都可以在软面 板上进行选择。
2.2 软件设计
软件是虚拟仪器的关键,为使VI系统结构清晰简洁,一般可采用组件化设计思想,将各部分彼此独立的软件单元分别制成标准的组件,然后按照系统的总体要求组成完整的应用系统,一个标准的组件化的虚拟仪器软件系统,如图3所示。
应用软件为用户提供了建立虚拟仪器和扩展其功能的必要工具,以及利用pC机、工作站的 强大功能。同时Vpp联盟提出了建立虚拟仪器标准结构库(VISA)的建议,为虚拟仪器的研 制与开发提供了标准。这也进一步使由通用的VXI数据采集模块、CpU/DSp模块来构成虚拟仪 器成为可能。
基于虚拟仪器的数据采集器的软件包括系统管理软件、应用程序、仪器驱动软件和I/O接 口 软件。以往这4部分需要用户自己组织或开发,往往很困难,但现在NI公司提供了所有这 四部分软件,使应用开发比以往容易得多。
下面简单介绍以NI公司的Lab Windows/CVI为开发环境,来进行VXI虚拟仪器的驱动程序开 发的方法。
第一步:生成仪器模块的用户接口资源文件(UIR)。用户接口资源、文件是仪器模块 开 发者利用Lab Windows/CVI的用户界面编辑器为仪器模块设计的一个图形用户界面(GUI)。一个Lab Windows/CVI的GUI由面板、命令按钮、图标、下拉菜单、曲线、旋钮、指示表以及 许多其他控制项和说明项构成。
第二步:Lab Windows/CVI事件驱动编程。应用程序开发环境Lab Windows/CVI中设计一个 用户接口,实际上是在用户计算机屏幕上定义一个面板,他由各种控制项(如命令按钮、菜 单、曲线等)构成。用户选中这些控制项就可以产生一系列用户接口事件(events)。例如,当用户单击一个命令按钮,这个按钮产生一个用户接口事件,并传递给开发者编写的C语 言驱动程序。这是运用了Windows编程的事件驱动机制。Lab Windows/CVI中使用不同类型的 控制项,在界面编辑器中将显示不同类型的信息,并产生不同操作的接口事件。在Lab Wind ows/CVI的开发平台中,对事件驱动进行C程序编程时可采用2种基本的方法:回调函数法和 事件循环处理法。
回调函数法是开发者为每一个用户界面的控制项写一个独立的用户界面的控制函数,当选中某个控制项,就调用相应的函数进行事件处理。在循环处理法中,只处理GUI控制 项所产生的COMMIT事件。通过Get User Event函数过滤,将所有的COMMIT事件区分开,识别 出是由哪个控制项所产生的事件,并执行相应的处理。
第三步:应用函数/VI集与应用程序软件包编写。应用函数/VI集需针对具体仪器模块 功能进行编程,应用程序软件包只是一些功能强大、需要完善的数据处理能力的模块才需要 提供,如波形分析仪模块、DSp模块等。结语
本文探讨了虚拟仪器的基本组成,以及实际的虚拟仪器软硬件设计的一般方法,这些方法经过实际设计工作运用证明是可靠的,可供系统工程技术人员在组建具体的基于VXI总线的虚拟仪器数据采集、测试时参考使用。
参考文献
1]赵勇.虚拟仪器软件平台和发展趋势[J].国外电子测量技术,2002,(1)
2]陈光禹.VXI总线测试平台[M].北京:电子科技大学出版社,1996
3]孙昕,张忠亭,薛长斌.集成VXI总线自动测试系统的方法[J].测控技术,1996,15(4)
4]张毅刚,彭喜元,姜宁达,等.自动测试系统[M].哈尔滨:哈尔滨工业大学出版社,2001
5]汪红.基于组件的虚拟仪器软件系统[J].微型计算机信息,2001,(1):76-77
第三篇:FPGA数据采集与回放系统设计论文
FPGA数据采集与回放系统设计论文
在个人成长的多个环节中,大家或多或少都会接触过论文吧,论文是我们对某个问题进行深入研究的文章。怎么写论文才能避免踩雷呢?下面是小编为大家整理的FPGA数据采集与回放系统设计论文,欢迎阅读,希望大家能够喜欢。
1系统及其原理
基于通用信号处理开发板,利用FPGA技术控制AD9233芯片对目标模拟信号采样,再将采样量化后的数据写入USB接口芯片CY7C68013的FIFO中,FIFO写满后采用自动触发工作方式将数据传输到PC机。利用VC++6.0软件编写上位机实现友好的人机交互界面,将传输到PC机上的数据进行储存和实时回放。本系统主要实现以下两大功能:1)ADC模块对目标模拟信号进行采样,利用FPGA技术将采样后的数据传输到USB接口芯片CY7C68013的FIFO中存储。2)运用USB2.0总线数据传输技术,将雷达回波信号数据传输到PC机实时回放。分为应用层、内核层和物理层3部分。应用层和内核层主要由软件实现。应用层采用VC++6.0开发用户界面程序,为用户提供可视化操作界面。内核层基于DriverWorks和DDK开发系统驱动程序,主要起应用软件与硬件之间的桥梁作用,把客户端的控制命令或数据流传到硬件中,同时把硬件传输过来的数据进行缓存。物理层主要以FPGA为核心,对USB接口芯片CY7C68013进行控制,通过USB2.0总线实现对中频信号采集。系统设计采用自底向上的方法,从硬件设计开始逐步到最终的应用软件的设计。
2硬件设计
FPGA在触发信号下,控制ADC采样输入信号,并存入FIFO中。当存满时,将数据写入USB接口芯片CY7C68013,同时切换另一块FIFO接收ADC转换的数据,实现乒乓存储,以提高效率。FPGA模块的一个重要作用是控制USB接口芯片CY7C68013。当ADC采样后,数据进入FPGA模块,FPGA控制数据流将其写入CY7C68013的FIFO中,以便于USB向PC机传输。CY7C68013的数据传输模式采用异步slaveFIFO和同步slaveFIFO切换模式。通过实测,前者传输速度约为5~10Mbit/s,后者传输速度最高可达20Mbit/s,传输速度的提高可通过更改驱动程序的读取方式实现。
3软件设计
3.1USB驱动程序设计
USB2.0总线传输技术最高速率可达480Mbit/s。本系统采用批量传输的slaveFIFO模式。CY7C68013芯片内部提供了多个FIFO缓冲区,外部逻辑可对这些端点FIFO缓冲区直接进行读写操作。在该种传输模式下,USB数据在USB主机与外部逻辑通信时无需CPU的干预,可大大提高数据传输速度。Cypress公司为CY7C68013芯片提供了通用的驱动程序,用户可根据需求开发相应的固件程序。
3.2FPGA模块程序设计
系统中FPGA模块的'核心作用是控制AD9233芯片进行采样。AD9233作为高速采样芯片,其最高采样速率达125Mbit/s,最大模拟带宽为650MHz。通过改变采样速率可使该系统采集不同速率需求的信号,扩展了该系统的应用范围。描述FPGA控制USB数据写入接口芯片FIFO的状态机如图6所示。状态1表示指向INFIFO,触发FIFOADR[1:0],转向状态2;状态2表示若FIFO未满则转向状态3,否则停留在状态2;状态3表示驱动数据到总线上,通过触发SLWR写数据到FIFO并增加FIFO的指针,然后转向状态4;状态4表示若还有数据写则转向状态2,否则转向完成。
3.3上位机设计
为实现人机交互,利用VC++MFC在PC机上编写了可视化操作界面,即上位机。上位机既用于数据采集的控制,同时也用于采集数据的实时回放。上位机界面如图7所示。上位机主要功能:
1)按下“检测USB”按钮,可检测USB是否连接正常,并显示USB基本信息。
2)按下“开始采集”按钮,可将采集的数据传输到PC机并实时回放数据波形;再次按下“开始采集”按钮,可暂停数据波形回放。
3)按下“保存数据”按钮,可将采集的数据以*.dat文件的形式存储到PC机硬盘。
4)按下“结束采集”按钮,可关闭采集系统并退出界面;或按下“确定”和“取消”按钮,也可直接退出界面。
4系统实测
为了测试数据采集与回放系统,利用通用信号处理开发板设计了DDS模块。该DDS模块产生一个正弦波作为测试信号,通过AD9744芯片转换后变为模拟信号输出,并将此输出信号接至示波器以便验证系统。数据采集与回放系统的实物图及系统实测波形与回放波形。
5结束语
通过实际测试,基于FPGA的数据采集与回放系统达到了预期设计的要求。此系统能够对目标模拟数据进行采集,并能对采集的数据实时回放,且可将数据以*.dat文件的形式存入PC机硬盘;系统具有高速的采集传输功能,上位机能够实时、动态地回放数据;信号采集板和处理板共用一套硬件,避免了重复制板,在实际调试时可方便地在信号采集与信号处理的工作模式间来回切换,提高了工作效率。原驱动程序官方版本为了满足通用性和稳定性的要求,限制了传输速率,本设计开发了相应的USB驱动程序,提高了传输速率。
第四篇:长春完善论文农业体系论文
长春完善论文农业体系论文
久居“钢筋水泥丛林”的市民都渴望到山清水秀的乡野间,呼吸新鲜空气,放松紧张心情,了解播、耕、采、收知识。与此同时,生活在城郊的农民,也期望借力城市的快速发展及市民日益强烈的休闲需求,尽快提高土地收益和生活水平。那么,究竟如何做才能让市民快乐生活,让农民幸福增收呢?近日,长春市出台的《关于加快发展现代都市农业的指导意见》(讨论稿)(以下简称《意见》),就为我们提供了一个解决方案,也打开了一扇现代都市的农业之窗。
万顷蔬菜基地,百公顷君子兰种植园,10个农业旅游观光园,100个集观光、采摘、休闲、度假、科普、健身等多功能于一体的瓜果采摘园„„《意见》指出,到2015年,主城区农业基本实现普通粮食种植和传统畜牧业“双退出”,城区农业实现由单一的生产功能向生产、生活和生态多功能转变,初步形成以特色农业、设施农业、休闲农业、会展农业为主体,集安全优质农产品生产、科技示范、休闲观光、生态保育等功能于一体、具有北方特色的现代都市农业体系。
六大产业带动现代步伐
未来4年时间,长春市将按照“长吉一体化”发展的要求,重点打造以净月生态新城和奢岭为重点的长吉南线生态休闲旅游产业带,以莲花山旅游度假村为重点的长吉中线生态旅游和现代农业产业带,以长东北开放开发先导区和卡伦新城为重点的长吉北线农产
品加工及现代物流产业带。围绕主要交通干线,重点打造长白西线绿色有机蔬菜产业带、302线设施农业产业带、长营高速生态农业产业带等各具特色的现代都市农业产业带,促进都市农业项目集中摆放、产业集群发展,实现现代都市农业在优势区域内率先突破,进而带动全市现代都市农业整体提升。菜、花、果竞相飘香
为了实现城区逐步退出普通粮食种植,加快形成精品、特色、集约、高效的种植业新格局,长春市将积极做大蔬菜产业,全力推进“万顷蔬菜基地”建设,打造高标准、长久性的城区菜田基地。到2015年,城区蔬菜耕地面积发展到1.5万公顷。大力发展花卉苗木产业,重点建设城区5个“百公顷君子兰种植园区”;以产业基础好的乡镇为重点,加快建设高档盆花、鲜切花生产基地;重点发展高档常绿绿化苗木、彩叶树种、名优木本花卉、盆景盆花,形成具有北方特色的园林绿化花卉苗木品种体系。
突出发展壮大特色瓜果产业,在旅游区沿线、中心城镇、度假村周边、交通干线两侧,建设100个集观光、采摘、休闲、度假、科普、健身等多功能于一体的瓜果采摘园,发展瓜果产业专业村10个以上,形成长春区域特色品种群。充分利用长春市玉米秸秆等副产物进行草腐菌培养基生产,实现食用菌规模化、工厂化、专业化生产,打造具有国际标准的食用菌生产基地。休闲农业点亮都市生活
今后一个时期,长春市各城区、开发区将依托自然生态、田园景
观、民俗文化和农业特色产业,大力开发农业生态旅游及专项休闲产品,建设一批农业休闲、森林休闲、湿地休闲、科普休闲、乡村休闲基地,扶持发展一批特色乡村旅游点,打造完善一批生态餐饮服务点,为城市居民观光旅游、休闲度假、餐饮娱乐、体验学习提供清新优美的场所。其中,长春市将着力实施“休闲农业十百千工程”,即重点建设以净月潭国家森林公园、莲花山农林生态旅游运动休闲基地为代表的旅游观光园区,到2015年,各类农业旅游观光园区要达到10个;建设以城西镇跃进村休闲体验园、乐山镇绿色蔬菜采摘基地为代表的休闲采摘园,到2015年,各类休闲采摘园要达到100个;建设以关东文化园、各类休闲山庄以及乡村农家乐为代表的生态餐饮服务点,到2015年,各类生态餐饮及乡村农家乐服务点要达到1000个。
第五篇:人才培养工作状态数据采集与管理论文
摘要:《高等职业院校人才培养工作状态数据采集平台》(以下简称“数据平台”)是高职评估的重要组成部分,已被广泛应用于国家优质院校建设和创新发展行动计划等多个领域。“数据平台”研究将有助于高职学院监测学院人才培养工作状况、了解自身优势与存在差距,从而成功应对面临问题与挑战,促进学校健康稳定发展。
关键词:高职院校;数据平台;研究
1高职院校人才培养状态数据采集与管理平台发展与应用现状
自2008年《教育部关于印发<高等职业院校人才培养工作评估方案>的通知》(教高〔2008〕5号)中要求“所有独立设置的高等职业院校自本评估方案发布起,每学必须按要求填报“数据平台”以来,数据采集工作已经开展了十余年,平台已从最初的标准版(见图1)发展为网络版(见图2)。2013年,高职状态数据中心(见图3)的创立实现了国、省、校数十亿条数据相互关联和贯通,标志着“数据平台”由数据采集向应用发展。2015年,教育部印发《高等职业教育创新发展行动计划(2015-2018年)》,提出了要“稳步推进高等职业院校人才培养工作状态数据管理系统的建设、部署与应用,逐步加强状态数据在宏观管理、行政决策、院校治理、教学改革、报告中的基础性作用。”遗憾的是,很多高校虽然开始重视数据平台的应用,但主要集中在数据查询、填写报表、完成质量报告等,制约了数据平台使用效率的充分发挥。鉴于此,对“数据平台”的进行应用研究是很有必要的。
2数据平台数据功能分析与应用研究
2.1数据平台的功能分析
2.1.1统计汇总功能数据平台作为一个数据采集平台,可以统计汇总学院办学条件与教学工作现状的基本信息:院校基本办学条件、院校领导、实践办学条件、办学经费、信息化资源、固定资产、师资队伍、专业设置、课程设置、教学管理与教学研究、社会评价、学生就业信息、他补充信息和案例分析等。这些信息的统计汇总为学院了解自身办学条件与教学工作现状,进行数据查询提供了便利。2.1.2管理监控功能数据平台通过采集反映学校人才培养工作全过程的各项主要状态数据,为学校提供了一种有效管理的工具和方法[1];教育行政部门通过数据平台能及时准确掌握高职院校人才培养工作现状、发展趋势和存在问题,强化宏观监控和指导的针对性;社会各界通过数据平台能了解高职教育发展状况,监督高职教育发展。[2]2.1.3比较分析功能高职数据中心对每所高职学校自2013年以来的数据平台数据进行了分析比较,形成高职学校的支持度、置信度、发散度和达标率仪表盘;对学校数据与全国示范中心数据、国家骨干及省示范中位数、同类中位数、省中位数、全国中位数和合格指标进行比较分析,形成“诊改核心指标”“案例分析指标”和“相对分析指标”;对学院数据2013年以来数据进行对比分析,形成“数据综合应用”等。这些非常有利于学校分析评价自身人才培养工作状态。
2.2数据平台应用研究
2.2.1监测办学现状数据平台数据统计汇总功能使高职学校能了解学院发展现状,尤其是案例分析和新增核心指标汇总数据更是方便学院监测发展优势与短板,扬长补短。例如,某院生均教学科研仪器设备值高于核心指标中评估指标4000元/生,但新增值低于核心指标中设定的10%时,就可监测出其科研仪器设备投入过低,需要适时上调学院科研仪器或实训设备购置预算,以满足学院发展需求。
2.2.2服务内部诊改当前,在大多数学校没有建立“校本数据平台”的情况下,可以通过“数据平台”“校级数据中心”收集数据,开展学校内部诊改工作。首先,按诊改5个层面梳理平台,找出对应关系:学校层面对应平台一级目录基本信息、院校领导、基本办学条件、办学经费、教学管理与教学研究和社会评价;专业层面对应专业和实践教学条件;课程层面对应子目录课程设置;教师层面对应师资队伍,学生层面对应学生信息。其次,扩展每个层面对应平台子目录乃至字段,进行诊改。当然,数据平台因采集数据有限,要更好进行诊断,最好是将数据平台与校级平台结合起来。
2.2.3科学规划发展战略高职院校通过数据中心数据对比分析,可确定学校在同类院校中的地位、与社会需求的符合度、发展的基本走向,从而科学制定发展目标和发展战略。[3]例如,对比分析表2中某校具有研究生学位教师占专任教师的比例,可以发现该校该指标高出同类中位数2.27个百分点,处于中等偏上水平;低于省中位数和全国中位数2.66个百分点,略低;分别低于国家骨干及省示范位数和全国示范中位和全国中位数11.29和17.61个百分点,差距较大。据此,该校就可以确定自身师资发展规划,逐步提高具有研究生学位教师比例,先发展至省级乃至全国中等水平,再发展成为省示范学校和国家骨干学校,将全国示范定为长期发展目标。
2.2.4存在问题数据平台在应用的过程中存在以下问题:一是数据采用报表化采集,真实性没有保证,不利于实施有效管理监测;二是数据一年采集一次,不利于及时监测,及时诊改;三是数据分析法多为对比法,不够深入,有待进一步提高,切实提高数据的应用效率。
3数据平台存在问题解决策略思考
3.1加强采集系统建设,实现源头采集和实时采集
随着智慧校园的普及,高职学校现已普遍建有自己的OA办公系统、教务系统、人事系统、学生系统、财务系统等,积累了大量的原始数据。数据平台可通过加强采集系统建设,建立校本人才培养工作状态数据管理系统,对接院校内部业务管理系统,实现数据源头采集和实时采集,提高数据采集的效率和数据的准确性,满足高职院校教育与教学管理监测、各级教育主管的宏观决策管理、授权教育专家的科学研究和数据分析的需求。
3.2深度加工分析数据,提高数据应用效率
数据的深入加工和分析,会产生更多的有效信息。高职数据中心若能对数据进行更深层的科学加工与分析,形成报表、曲线图或分析报告,将会更进一部提高数据平台的使用价值,扩大数据的应用层面,提升数据的使用效率,规范各项管理工作。
4结语
数据平台采集数据涵盖反映学校人才培养工作的主要信息,是政府监管高职学校和制定政策的有效凭据,也是社会了解高职学校的重要途径。高职学校在做好数据采集、确保数据真实和准确的同时,要充分利用数据平台进行自我监测、自我诊断,通过分析学校发展的优势、劣势和学校所处处地位,科学制定发展规划与策略,促进学校持续健康发展。目前,平台信息采集具有一定的滞后性,需要加强体系建设,实现数据的源头采集和实时采集,并对数据进行深度加工分析,以满足各方对平台应用的需求。
参考文献:
[1]何锡涛.高职评估数据采集平台的建设与使用[J].高教发展与评估,2009(5).[2]周慎.基于V2.11a001人才培养工作状态数据平台的功能与使用研究[J].湖北社会科学,2012(6).[3]郑卫东.构建高职院校教学质量保障体系的研究与探索———从数据采集走向数据管理[J].中国高教研究,2010(10).