第一篇:杭电单片机实验报告六
单片机原理与应用技术 实验报告
实验题目: :
A D/A 转换器得接口与应用
姓名: :
* *
*
学号: :
*** *** * **
实验日期: :17 7、6 6、6 6
指导教师: :
高惠芳1、实验 内容、1 波得波齿锯现实程编请,V01— 为压电考参,接所上堂课如线接得机片单与2380CADﻩ形,锯齿波得周期为 20+作业号,单位就是ms。
我得作业号就是6,所以周期就就是 26ms。经过计算后时间应为 0、102ms左右。
1)
程序代码:
H0000 GROﻩ WASAD PMJAﻩ H0020 GROﻩDASAW:CLR A LOOP1:MOV P1,A DELAY: 61#,7R VOMﻩDLY1: MOV R6,#1 DLY2: DJNZ R6,DLY2
PONﻩ DJNZ R7,DLY1
INC A
1POOL PMJSﻩ END 2)
软件程序截图
3)
编译通过截图
4)
调试截图
时间满足 0 0、s 102ms 左右
5)
仿真电路图
6)
仿真波形图
2、DAC0832 与单片机得接线如课堂上所接,参考电压为 —10V,请编程实现三角波得波形,三角波得周期为 20+作业号,单位就是ms。
我得作业号就是6,所以周期就就是 26ms。经过计算后时间应为0、102ms 左右。
1)程序代码:
ORG 0000H
WASAD PMJAﻩ ORG 0200H DASAW:CLR A LOOP1:MOV P1,A; DELAY: 61#,7R VOMﻩDLY1:
1#,6R VOMﻩDLY2: DJNZ R6,DLY2
PONﻩ 1YLD,7R ZNJDﻩ A CNIﻩ CJNE A,#00H,LOOP1 LOOP2:MOV P1,A;
DEC A
2POOL,H00#,A ENJCﻩ SJMP DASAW
END 2)代码程序截图
3)编译通过截图
4)仿真电路图
5)仿真结果
3、实验 心得
通过以上得实验,对 DAC 得转换原理有了比较深刻得了解,也对 D/A 转换器有了一定得了解,DAC得基本原理就是把数字量得每一位按照权重转换成相应得模拟分量,然后根据叠加定理将每一位对应得模拟分量相加,输出对应得电流或电压。根据 DAC内部结构得不同,DAC 可以分成权电阻网络与 T 型网络等结构;根据输出结构得不同,DAC 也可以分成电压输出与电流输出两类。
第二篇:杭电单片机实验报告一
单片机原理与应用技术实验报告
实验题目:
Keil软件使用及汇编语言编程
姓名:
*
*
*
学号:
********
实验日期:
2017
指导教师:
1.Keil软件的简介和使用
1.1
Keil
uVision4的简介
最新的Keil
uVision4
IDE,旨在提高开发人员的生产力,实现更快,更有效的程序开发。
uVision4引入了灵活的窗口管理系统,能够拖放到视图内的任何地方,包括支持多显示器窗口。
uVision4在μVision3
IDE的基础上,增加了更多大众化的功能:
·
多显示器和灵活的窗口管理系统
·
系统浏览器窗口的显示设备外设寄存器信息
·
调试还原视图创建并保存多个调试窗口布局
·
多项目工作区简化与众多的项目
1.2
Keil
uVision4的使用
①,打开Keil
4应用软件,其初始界面如下:
②、点击菜单项“Project”下的“New
uVisionProject”,如下图所示。
③、选择文件夹,并输入工程名。
④、输入工程名并保存后会弹出选择芯片界面
⑤、这里我们选择Atmel公司的AT89S51单片机,选择后,点击“OK”,即创建完工程。
⑥、单击点击下图所示圆圈圈起的部分建立一个文件。也可以点击菜单“File”下面的“NEW”来新建一个文件。
⑦、之后输入程序的代码后,单击File—Save
as,根据代码语言的格类型,可保存为后缀为.asm(汇编语言)和.c(C语言)的文件。
⑧、单击“Target1”前面的“+”号,并用鼠标右键点击“SourceGroup1”,界面如图10所示。在用鼠标左键点击“Add
Files
to
Group
Source
Group1...”即可把刚刚的代码文件添加到工程。最后点击左上角的编译按钮即可完成编译。之后即可进行程序的调试了。
2.实验内容
使用汇编语言完成课本P95的(2)、(5)、(8)三道题以及一个跑马灯程序。
2.1
P95-(2)
设内部RAM
5AH单元中有一个变量X,请编写计算下述函数式的程序,结果存入5BH。
设计思路:显然本题要使用分支语句,不妨使用JZ,JNB等,并通过X-10,X-15综合判断X处于哪个区间。
代码如下:
ORG
0000H
JMP
START
ORG
1000H
START:
MOV
A,5AH
;直接寻址,将5AH地址上的数据X存入寄存器A
MOV
B,5AH
;直接寻址,将5AH地址上的数据X再一次存入寄存器B
SUBB
A,#0FH
;将A中数据X先减去15,初步判断X所属区间
JNB
ACC.7,DO3
;若A的第7位不为1(X>=15)则程序跳到DO3,否则顺序执行
MOV
A,5AH
;若X比15小,再次将X存入累加器A中
CLR
C
;清零进位C
SUBB
A,#0AH
;将X减去10
JNB
ACC.7,DO1
;若A的第7位不为1,(X>=10),跳到DO1
JMP
DO2
;剩下的情况就是:X<10,跳到DO2
DO1:MOV
A,5AH
;10<=X<=15
MUL
AB
;相当于X*X,结果的低八位存入A
ADD
A,#08H
;即X*X+8→A
MOV
5BH,A
;即X*X+8→B
JMP
DONE
;跳到程序结束段
DO2:MOV
A,5AH
;X<10
MUL
AB
;X*X→A
CLR
C
;进位C清零
SUBB
A,#01H
;
X*X-1→A
MOV
5BH,A
;
X*X-1→B
JMP
DONE
;跳到程序结束段
DO3:MOV
A,#29H
;41→A
MOV
5BH,A
;41→B
JMP
DONE
;跳到程序结束段
DONE:SJMP
$
END
程序截图:
程序结果:
①、当X=12时,Y=12*12+8=152
②、当X=8时,Y=8*8-1=63
③、当X=18时,Y=41
2.2
P95-(5)
设有两个长度均为15的数组,分别存放在以2000H和2100H为首的存储区中,试编程求其对应项之和,结果存放到以2200H为首的存储区中。
设计思路:本题需要用到LOOP进行15次的求和及存放。并且由于地址过高,应采用DPTR进行访问。
代码如下:
ORG
0000H
JMP
START
ORG
1000H
START:
MOV
R1,#00H
;求和寄存器,初始清零
MOV
R2,#0FH
;循环次数为15次
MOV
DPL,#00H
;类似段内偏移地址地址
LOOP:
MOV
DPH,#20H
;DPTR的高八位,可理解为段地址,这里先指向第一个数组的首
;地址2000H
MOVX
A,@DPTR
;A←((DPTR))
MOV
R1,A
;R1←(A)
INC
DPH
;DPH改成指向高8位是21H的存储区
MOVX
A,@DPTR
;A←((DPTR))
ADD
A,R1
;两数组对应项求和
INC
DPH
;DPH改成指向高8位是22H的存储区
MOVX
@DPTR,A
;求和结果送入上述地址区
INC
DPL
;低8位地址自增
DJNZ
R2,LOOP
;若循环次数-1后不为0,则跳转到LOOP处进行循环
END
程序截图:
程序结果:
首先分别在2000H和2100H存入15数,这里我都存入了1,2,3,…,14,15。
结果得到:
2.3
P95-(8)
将片外数据存储器地址为1000H~1030H的数据块,全部搬迁到片内RAM
30H~60H中,并将原数据块区域全部清零。
设计思路:显然还是得用LOOP进行搬迁,且每搬完一个就得清零原地址数据,并用DPTR访问片外存储器。
代码如下:
ORG
0000H
JMP
START
ORG
1000H
START:
MOV
R1,#30
;用R1保存循环次数
30次
MOV
R0,#30H
;将地址30H存入R0中
MOV
DPTR,#1000H
;将1000H这个地址存入DPTR中
LOOP:
MOVX
A,@DPTR
;寄存器间接寻址。A←((DPTR))
MOV
@R0,A
;(R0)←A
CLR
A
;A←0
MOVX
@DPTR,A
;原地址数据清零
INC
R0
;数据的写入地址
自增
INC
DPTR
;数据的读取地址
自增
DJNZ
R1,LOOP
;若循环次数-1不为0,则跳转到LOOP处进行循环
END
程序截图:
程序结果:
先在片外存储器1000H开始存入数据
接下来开始将数据搬迁到片内30H开始的区域中
且原地址数据依次被清零
2.4
P95-(8)
题目:设计一个6+50=56ms跑马灯,并在P1端口显示。
设计思路:首先我得设计一个56ms的延迟。这里已知当单片机系统的振荡频率为fosc=12MHz时,一个机器周期为1T=1us;执行一条DJNZ指令需要2个机器周期,执行一条NOP需要一个机器周期,执行一条MOV也是一个机器周期。
接着,再通过循环左移指令RL
A实现跑马等效果。
代码如下:
ORG
0000H
JMP
START
ORG
0800H
START:MOV
A,#01H
;即将0000
0001存入A,后面会将最右边1循环左移。
SJMP
DELAY
;进入延时段起点
LOOP:
RL
A
;从此处开始跑马灯模块。先将A循环左移
MOV
P1,A
;将A的值赋给端口P1的8位
SJMP
DELAY
;从56ms的延迟程序段再跑一遍
DELAY:
MOV
R7,#224
;设置外循环次数224次
DLY1:
MOV
R6,#123
;设置内循环次数123次
DLY2:
DJNZ
R6,DLY2
NOP
DJNZ
R7,DLY1
;延时程序段结束,总用时(123*2+2+1+1)T*224T+2T+1T=56ms
SJMP
LOOP
SJMP
END
程序截图:
程序结果:
初始状态
执行一次56ms延迟后左移
再一次56ms延迟后左移
Proteus仿真截图:
3.实验心得
通过以上4个实验,我学会了KEIL软件的使用,即创建工程,创建并添加项目,编译与调试等等。更重要的是学习了很多单片机编程方面的只是。比如用汇编语言实现数据的传送、运算、移位等,同时还有一些简单的程序设计,如分支程序、循环程序等等。
这些实验使我更好的从底层了解单片机系统的运行机制,尤其的汇编语言的使用更是提高了我对各类端口、存储器的运用水平。另一方面我也感受到汇编语言虽然十分直接,但面对大型的程序项目就显得力不从心,所以这就体现了后期实验使用C语言编写的简便性。
我想,通过更多的运用各类指令及对更多端口、元件的综合使用,我会对变得越来越熟练,且能不断地提升自己的逻辑思维。
第三篇:单片机实验报告
目录
第一章单片机简介....................................................2 第二章
实验要求..................................................3 第三章实验设备......................................................3 第四章实验安排......................................................4 第五章实验内容......................................................4
LED灯实验.......................................................4 步进马达试验....................................................5 独立按键控制LED实验............................................7 矩阵键盘实验....................................................9 静态数码管实验.................................................12 动态数码管实验.................................................14 NE555脉冲发生器实验(定时/计数器).............................16 RS232串口通信实验(接收与发送)..................................21 第六章收获体会.....................................................25
单片机实验报告
第一章单片机简介
单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性!
单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。
1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。
2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。
Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。
3.单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求
单片机实验报告
应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。
MCS51系列微控制器应用广泛,在家电、汽车甚至航空等领域都有其活跃的身影。然而,普通51系列微控制器内部资源有限,像我用Proteus构建微控制器虚拟实验室选用的AT89C52只有三个定时器、一个全双工的串行口和中断控制,并且其数据处理能力有限,不适合对大量数据进行复杂分析和运算。
因此,在不重新选型(可选用SoC)的前提下,为实现我们所需要的功能,就需要进行外围扩展。针对微控制器的特点,我们首先考虑串行扩展,因为微控制器的I/O引脚有限,并行扩展一则外围芯片面积比较大,二则对抑制EMI不利。
第二章 实验要求
1.学习Keil C51集成开发工具的操作及调试程序的方法,包括:仿真调试与脱机运行间的切换方法
2.熟悉TD-51单片机系统板及实验系统的结构及使用
3.进行MCS51单片机指令系统软件编程设计与硬件接口功能设
4. 学习并掌握Keil C51软件联机进行单片机接口电路的设计与编程调试
5.完成指定MCS51单片机综合设计题
第三章实验设备
1.HC600S-51单片机开发板 2.Keil C51 3.普中自动下载软件
第四章 实验安排
1.LED灯实验
单片机实验报告
2.步进马达试验
3.独立按键控制LED实验 4.矩阵键盘实验 5.静态数码管实验 6.动态数码管实验
7.NE555脉冲发生器实验(定时/计数器)8.RS232串口通信实验(接收与发送)
第五章 实验内容
一、LED灯实验
1.基本要求
利用位移循环指令实现LED灯的闪烁 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
单片机实验报告
5.程序
#include
main(){unsigned int i;while(1)
{for(i=0,P0=1;i<4;i++){d(500);P0=(P0<<2);}}}
二、步进马达试验
1.基本要求
编程实现马达的正反转,调速等功能 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
单片机实验报告
图一 图二
4.电路原理图
上图图二 5.程序
#include “reg52.h” #define speed 2 sbit PH1 = P1^0;
//定义管脚 sbit PH2 = P1^1;sbit I01 = P1^2;sbit I11 = P1^3;sbit I02 = P1^4;sbit I12 = P1^5;
void delay(int time);
void Go(){ //A
PH1 = 0;//PH1为0 则A线圈为反向电流
I01 = 0;I11 = 0;
//以最大电流输出
PH2 = 0;//PH2为0 则B线圈为反向电流
I02 = 1;I12 = 1;
//输出0 delay(speed);//圈为反向电流
I01 = 1;//输出0 I11 = 1;
PH2 = 1;//PH2为1 则B线圈为正向电流
I02 = 0;//以最大电流输出
I12 = 0;
delay(speed);//B PH1 = 1;
//PH1为1 则A线圈为
正向电流
I01 = 0;
//以最大电流输出
I11 = 0;
PH2 = 1;//PH2为1 则B线圈为正
向电流
I02 = 1;//输出0 I12 = 1;
delay(speed);
PH1 = 1;
//PH1为1 则A线圈为正向电流
I01 = 1;I11 = 1;
PH2 = 0;
//PH2为0 则B线圈为反向电流
I02 = 0;I12 = 0;delay(speed);}
void delay(int time){
int i,j;
for(j=0;j <= time;j++)
for(i =0;i <= 120;i++);}
void main(){
while(1)
{
Go();//步进电机运行
} }
单片机实验报告
三、独立按键控制LED实验
1.基本要求
通过编程控制8个独立按键分别控制8个LED灯的开关 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
4.电路原理图 上图图二 5.程序
#include
P1口
#define uchar unsigned char #define uint unsigned int
void Delayms(unsigned int c);
//延时10ms uchar Key_Scan();void main(void){
unsigned char ledValue, keyNum;
ledValue = 0x01;
while(1)
{
keyNum = Key_Scan();//扫描键
盘
switch(keyNum)
{
case(0xFE):
//返回按
键K1的数据
ledValue = 0x01;
break;
单片机实验报告
case(0xFD):
ledValue = 0x02;
break;case(0xFB):
ledValue = 0x04;
break;case(0xF7):
ledValue = 0x08;
break;case(0xEF):
ledValue = 0x10;
break;case(0xDF):
ledValue = 0x20;
break;case(0xBF):
ledValue = 0x40;
break;case(0x7F):
ledValue = 0x80;
//返回按键K2的数据
//返回按键K3的数据
//返回按键K4的数据
//返回按键K5的数据
//返回按键K6的数据
//返回按键K7的数据
//返回按键K8的数据
break;default:
break;
}
GPIO_LED = ledValue;//点亮LED灯
}
}
uchar Key_Scan(void)//键盘扫描函数 { uchar i,n=0xff;
if(P1==0xff)goto Scan_r;//无键按
下,返回
goto Scan_r;Scan_1:
while(P1!=0xff);//等待键释放
Delayms(10);Scan_r:
return n;}
void Delayms(uint x){
uint n;
for(;x>0;x--)
{
for(n=0;n<123;n++)
{;}
} }
四、矩阵键盘实验
1.基本要求
编程由16个矩阵按键控制数码管显示相应的数值 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。
3.接线图
单片机实验报告
见下图图一
图一 图二
4.电路原理图
见上图图二 5.程序
#include
uchar ScanKey(void);void Delayms(uint x);main(){ unsigned char ledValue;uchar i;ledValue = 0x01;loop: i = ScanKey();
switch(i)
{ case 0xee:
ledValue = ~0x3F;
break;
case 0xde:
ledValue = ~0x06;
break;
case 0xbe:
ledValue = ~0x5B;
break;
case 0x7e:
ledValue = ~0x4F;
break;
case 0xed:
ledValue = ~0x66;
break;
case 0xdd:
ledValue = ~0x6D;
break;
单片机实验报告
case 0xbd:
ledValue = ~0x7D;
break;
case 0x7d:
ledValue = ~0x07;
break;
case 0xeb:
ledValue = ~0x7F;
break;
case 0xdb:
ledValue = ~0x6F;
break;
case 0xbb:
ledValue = ~0x77;
break;
case 0x7b:
ledValue = ~0x7C;
break;
case 0xe7:
ledValue = ~0x39;
break;
case 0xd7:
ledValue = ~0x5E;
break;
case 0xb7:
ledValue = ~0x79;
break;
case 0x77:
ledValue = ~0x71;
break;
}
GPIO_LED = ledValue;i=0;goto loop;}
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
uchar ScanKey(void)//键盘扫描函数 { uchar i,n=0xff;
P1=0xf0;
if(P1==0xf0)goto Scan_r;//无键按下,返回
for(i=0,P1=0xfe;i<4;i++)
{ if((P1&0xf0)!=0xf0)
{ Delayms(10);
if((P1&0xf0)!=0xf0)
{ n=
P1;
goto
Scan_1;}
}
P1=(P1<<1)+1;
//扫描下
一行
} goto Scan_r;Scan_1:
单片机实验报告
P1=0xf0;while((P1&0xf0)!=0xf0);//等待键
释放
Delayms(10);
Scan_r:
P1=0xff;return n;} }
五、静态数码管实验
1.基本要求
编程使数码管显示字符0-F 2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线框图(图一)
图一
单片机实验报告
图二
4.电路原理图
见上图图二 5.程序
#include
{~0x3F,~0x06,~0x5B,~0x4F,~0x66,~0x6D, ~0x7D,~0x07,~0x7F,~0x6F,~0x77,~0x7C,~0x39,~0x5E,~0x79,~0x71};main(){
unsigned int LedNumVal;//定义变量 while(1)
{
// 将字模送到P0口显示
LedNumVal++;
P0 = LED7Code[LedNumVal%16];
Delayms(1000);
//调用延时程序
}
}
单片机实验报告
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
六、动态数码管实验
1.基本要求
编程实现8个数码管的动态扫描。通过P22、P23、P24控制3-8译码器来对数码管进行位选,通过P0口经过573的驱动控制数码管的段选,通过P13控制573的使能端,为低电平时573才会有输出。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图(图一)
图一 图二
单片机实验报告
图三
4.电路原理图
见上图图
二、图三 5.程序
#define uint unsigned int void Dsplay();void Delayms(uint x);uchar mDS[6];uchar code cDsCode[]=
{0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90};
void main(){ uchar i;
for(i=0;i<6;i++)mDS[i]=i+1;
loop:
Dsplay();
goto loop;}
void Dsplay()//动态扫描显示
{uchar i;
for(i=0,P2=0x01;i<6;i++)
{ P1=cDsCode[mDS[i]];//输出段
Delayms(1000);
P2=P2<<1;
//选通下一位
}
P2=0x00;
//关闭位选通 }
void Delayms(uint x){uint n;for(;x > 0;x--)
{ for(n=0;n<123;n++)
{;}
} }
七、NE555脉冲发生器实验(定时/计数器)
1.基本要求
2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
4.电路原理图
5.程序
#include
CYMOMETER
”};uchar code EN_CHAR2[16]={“FREQ:
HZ”};
单片机实验报告
void TIMER_Configuration();//初始化定时器 ulong Freq;
//用来存放要显示的频率值 ulong TimeCount;//用于计算1S钟的
void main(){ uchar i, freqValue[6];
LcdInit();TIMER_Configuration();for(i=0;i<16;i++){
LcdWriteData(EN_CHAR1[i]);}
LcdWriteCom(0xc0);//第二行显示
for(i=0;i<16;i++){
LcdWriteData(EN_CHAR2[i]);}
while(1){
if(TR0==0)
//当计数器停下的时候,表明计数完毕
{
Freq = Freq + TL1;
//读取TL的值
Freq = Freq +(TH1 * 256);//读取TH的值
LcdWriteCom(0xc8);
//--求频率的个十百千万十万位--//
freqValue[0]='0'+Freq%1000000/100000;
freqValue[1]='0'+Freq%100000/10000;
freqValue[2]='0'+Freq%10000/1000;
freqValue[3]='0'+Freq%1000/100;
freqValue[4]='0'+Freq%100/10;
freqValue[5]='0'+Freq%10;
for(i=0;i<5;i++)//从最高位开始查找不为0的数开始显示(最低位为0显示0)
{
if(freqValue[i]==0x30)
{
freqValue[i]=0x20;//若为0则赋值空格键
}
else
单片机实验报告
{
break;
}
}
for(i=0;i<6;i++)
{
LcdWriteData(freqValue[i]);
}
Freq=0;//将计算的频率清零
TH1=0;//将计数器的值清零
TL1=0;
TR0=1;//开启定时器
TR1=1;//开启计数器
} } }
void TIMER_Configuration(){ TMOD=0x51;TH0=0x3C;TL0=0xB0;ET0=1;ET1=1;EA=1;TR0=1;TR1=1;} void Timer0()interrupt 1 { TimeCount++;if(TimeCount==20)//计时到1S {
TR0=0;
TR1=0;
TimeCount=0;
}
//--12MHZ设置定时50ms的初值--// TH0=0x3C;TL0=0xB0;} void Timer1()interrupt 3 {
单片机实验报告
//--进入一次中断,表明计数到了65536--// Freq=Freq+65536;
}
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;// Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);
单片机实验报告
LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);
LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);
LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif #ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
单片机实验报告
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
八、RS232串口通信实验(接收与发送)
1.基本要求
a.通过实验了解串口的基本原理及使用,理解并掌握对串口进行初始化; b.使用串口调试助手(Baud 9600、数据位
8、停止位
1、效验位无)做为上位机来做收发试验;
c.利用串口调试助手中字符串输入进行数据发送,接受窗口显示收到的数据。2.实验内容
在Keil C51中进行程序的编写设计并生成.HEX文件,按照下图连接电路后将HC600S-51单片机开发板接通电源,按下开关,录入。打开普中录入生成.HEX文件,加载程序,观察实验结果,如果不正确对程序进行改进后重复此操作。实验结束后先断电源再拆线,将元器件归位后离开。3.接线图
单片机实验报告
4.电路原理图
5.程序
#include
LcdWriteData(ChCode[i]);} UsartConfiguration();while(1){
if(RI == 1)
//查看是否接收到数据
{
receiveData = SBUF;//读取数据
单片机实验报告
RI = 0;
//清除标志位
LcdWriteCom(0xC0);
LcdWriteData('0' +(receiveData / 100));
// 百位
LcdWriteData('0' +(receiveData % 100 / 10));// 十位
LcdWriteData('0' +(receiveData % 10));
// 个位
} } } void UsartConfiguration(){ SCON=0X50;
//设置为工作方式1 TMOD=0X20;//设置计数器工作方式2 PCON=0X80;
//波特率加倍
TH1=0XF3;
//计数器初始值设置,注意波特率是4800的TL1=0XF3;TR1=1;
//打开计数器 }
#include“lcd.h”
void Lcd1602_Delay1ms(uint c)
//误差 0us {
uchar a,b;for(;c>0;c--){
for(b=199;b>0;b--)
{
for(a=1;a>0;a--);
}
}
} #ifndef LCD1602_4PINS //当没有定义这个LCD1602_4PINS时 void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;
//使能
LCD1602_RS = 0;
//选择发送命令
LCD1602_RW = 0;
//选择写入
LCD1602_DATAPINS = com;
//放入命令
Lcd1602_Delay1ms(1);//等待数据稳定
LCD1602_E = 1;
//写入时序
单片机实验报告
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else
void LcdWriteCom(uchar com)
//写入命令 { LCD1602_E = 0;//使能清零
LCD1602_RS = 0;//选择写入命令
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = com;Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;Lcd1602_Delay1ms(1);LCD1602_DATAPINS = com << 4;//发送低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS
void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;//使能清零
LCD1602_RS = 1;//选择输入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;//写入数据
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
//保持时间
LCD1602_E = 0;} #else void LcdWriteData(uchar dat)
//写入数据 { LCD1602_E = 0;
//使能清零
LCD1602_RS = 1;
//选择写入数据
LCD1602_RW = 0;//选择写入
LCD1602_DATAPINS = dat;
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);
单片机实验报告
LCD1602_E = 0;LCD1602_DATAPINS = dat << 4;//写入低四位
Lcd1602_Delay1ms(1);LCD1602_E = 1;
//写入时序
Lcd1602_Delay1ms(5);LCD1602_E = 0;} #endif
#ifndef LCD1602_4PINS void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x38);//开显示
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #else void LcdInit()
//LCD初始化子程序 { LcdWriteCom(0x32);//将8位总线转为4位总线
LcdWriteCom(0x28);//在四位线下的初始化
LcdWriteCom(0x0c);//开显示不显示光标
LcdWriteCom(0x06);//写一个指针加1 LcdWriteCom(0x01);//清屏
LcdWriteCom(0x80);//设置数据指针起点 } #endif
单片机实验报告
第六章 收获体会
本次微控制器综合设计基本上使用了所选微控制器的所有资源,进一步熟悉和加深了对中断、定时器和串行通信的理解和使用。我觉得软件实验就是让我们初学者熟悉keil的使用,然后复习下汇编的思想和掌握程序的流程,所以软件实验可以很快的完成,并且慢慢熟悉调试的强大功能。硬件设计中,仿真让我很有感触,感觉蛮好玩的,可以摒弃麻烦的实验硬件自己在寝室玩而且不受硬件状态的限制,即便出错了也不会损坏。当然更重要的是这种好习惯,仿真完后再去在实验板上验证会比直接要来的确切而且便捷,至少不要老是去插拔线。在做实验中在同学指导下我试用C语言来编写程序,确实发现比汇编语言容易编写也容易理解,以前的实验还是有参考资料的习惯,现在什么都开始自己写感觉还是很有成就感的,当然这是基于程序本身就那么几行很容易编写,也不是说参考不好。总而言之,这学期的单片机实验还是收获颇丰的。相信在以后的实验学习实践工作中都会有个潜移默化的作用的。
第四篇:单片机实验报告
单片机实验报告
一、实验目的
1.熟练使用Keil、Protues两款软件 2.通过上机操作,增强个人动手实践能力 3.加深对理论知识的理解
4.培养运用汇编语言进行初步编写程序的能力
二、实验内容
1.将片外RAM3050-306FH中数据转移至片内70-8FH中。
要求:可以从Keil或Protues上看到RAM的数据转移结果。2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮。
要求:开发板或Prrotues演示
3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术。
要求:在Keil或Protues上看到数据转换结果。
4.各使用中断方式和查询方式设计一个方波发生器,频率为50HZ。
要求:Protues使软件间示波器显示方波。
三、实验程序
1.将片外RAM3050-306FH中数据转移至片内70-8FH中
ORG 0000H AJMP MAIN 上电,转向主程序
ORG 0030H 主程序入口
MAIN: MOV DPTR,#3050H 数据指针指向地址3050H MOV A,#04H 将立即数04H送A寄存器
MOV R0,#20H NEXT: MOVX @DPTR,A INC DPTR 数据指针DPTR自加一
DJNZ R0,NEXT 判断是否跳转到NEXT或继续向下执行
MOV DPTR,#3050H MOV R0,#70H MOV R2,#20H NEXT1: MOVX A,@DPTR MOV @R0,A INC DPTR INC R0 DJNZ R2,NEXT1
SJMP $ 等待
END 2.设计一个外部中断触发流水灯系统:当外部中断来临时,启动流水灯,即令P2口的LED轮流循环点亮 ORG 0000H SJMP MAIN 上电,转向主程序
ORG 0003H 外部中断0向量入口
AJMP INSER ORG 0030H 主程序入口
MAIN: SETB EX0 SETB IT0
SETB EA CPUHERE: SJMP HERE ORG 0200H INSER: MOV R2,#08H MOV A,#01H NEXT: MOV P2,A LCALL DELAY RL A DJNZ R2,NEXT NEXT或继续向下执行
RETI DELAY: MOV R3,#0FFH DEL2: MOV R4,#0FFH DEL1: NOP
允许外部中断0中断 选择边沿触发方式 开中断 等待中断 设置循环次数 赋初值,设置高电平亮 将初值送往P2口 延时 左移一位
判断循环次数,是否跳转到中断返回 延时程序 DJNZ R4,DEL1 DJNZ R3,DEL2 RET END 3.将片内存储器80H中存放的BCD码转换为ASCII码,要求使用表格查询技术 ORG 0000H LJMP MAIN ORG 0030H主程序起始地址 MAIN: MOV 80H,#05H 将立即数50H转送内存单元80H MOV A,80H 将内存单元80H中的内容送寄存器A MOV DPTR,#TAB MOVC A,@A+DPTR A寄存器内容加指针偏移量后送A寄存器 MOV 80H,A RET TAB: DB 30H,31H,32H,33H,34H DB 35H,36H,37H,38H,39H 4.1中断方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口 MAIN: MOV TMOD,#10H 设置定时器工作模式为模式1 MOV TH1,#0D8H 装入T1计数初值
MOV TL1,#0F0H
SETB ET1 开中断
SETB EA CPU开中断
SETB TR1 启动定时器T1 HERE: SJMP HERE 等待中断 ORG 001BH T1中断向量地址
CLR TF1 将TF1清零
CPL P2.0 P2.0取反输出
MOV TH1,#0D8H 重装初值
MOV TH0,#0F0H
RETI;中断返回
END 4.2 查询方式产生50HZ方波
ORG 0000H
AJMP MAIN
ORG 0030H 主程序入口
MAIN: MOV TMOD,#10H 设置定时器的工作模式为模式1 SETB TR1 启动定时器T1 LOOP: MOV TH1,#0D8H 装入T1计数初值
MOV TH0,#0F0H JNB TF1,$ T1没有溢出则等待
CLR TF1
产生溢出,清标志位
CPL P2.0 P2.0取反输出
SJMP LOOP 循环
END
四、实验结果截图
1.2
3.4.1
4.2
第五篇:单片机实验报告
实验
四、中断交通灯实验
林立强
1000850116
一、实验目的
1、了解MCS-51单片机的组成、中断原理,中断处理过程、外部中断的中断方式。
2、掌握中断响应及处理的编程方法。
二、实验原理
MCS-51的中断系统中有5个中断源:外部中断INTO,INT1,定时器/计数器TO、T1中断和串口UART中断,它们对应不同的中断矢量。如表:
IE是中断允许寄存器,其中EXO,ETO,EX1,ET1,ES分别是上述5个中断的允许控制位,EA位是中断总允许位,每个中断只有在相应中断允许且总中断也允许的情况下,才能得到中断响应。80XX51的5个中断都可以设为高低2个优先级,IP是中断优先级寄存器,其中PXO,PTO,PX1,PT1,PS位分别对应5个中断的优先级设置,置“1”时设为高优先级中断,为“0”时是低优先级中断。在有中断嵌套要求时,低优先级中断可被高优先级所中断。当同一级的中断同时到来时,先响应中断矢量排在前面的中断。
三、实验电路
电路原理图如下,所需元件为:AT89C51、SW-SPDT、LED-RED、LED-GREEN、LED-YELLOW、RES、TRAFFICLIGHTS
四、实验内容
参照实验电路,设计交通灯控制系统。模拟交通信号灯控制:一般情况下正常显示,东西-南北交替放行,各方向通行时间为30秒。有救护车或警车到达时,两个方向交通信号灯全为红色,以便让急救车或警车通过,设通行时间为10秒,之后交通恢复正常。用单次脉冲模拟急救车或警车申请外部中断。
1、在生成HEX文件后,用Proteus软件对电路图进行计算机仿真;
2、程序下载到单片机实验板上验证;(实验板数码管的驱动程序见附件)。
五、程序流程图
仿真图:
紧急情况:
源程序:
ORG 0000H
AJMP START
ORG 0023H //串口中断地址
AJMP SBR1
START:MOV TMOD,#00100000B
//定时器方式2
MOV TL1,#0FDH //9600bps/11.0592MHz
MOV TH1,#0FDH
SETB TR1
MOV SCON,#01100000B //方式1
MOV R0,#20H
MOV R1,#40H
ACALL SOUT
SJMP $
SBR1: JNB RI,SEND
ACALL SIN
SJMP NEXT SEND: ACALL SOUT NEXT: RETI
SOUT: MOV A,@R0
MOV C,P
CPL C
MOV ACC.7,C
INC R0
MOV SBUF,A
CLR TI
RET
SIN: MOV A,SBUF
MOV C,P
CPL C
ANL A,#7FH
MOV @R1,A
INC R1
CLR RI
RET
PLAY: MOV A,R7
MOV B,#10
RET
TAB: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH,77H,7CH,39H,5EH,79H,71H
// 0
A B C D E F
END