第一篇:TSC无功补偿控制系统的设计论文
摘 要:本文论述了电力系统无功功率的产生及影响。从电路结构上分析了晶闸管投切电容器(TSC)的工作原理,设计并建立了TSC的主电路和控制触发系统。在TSC控制策略方面,采用初始脉冲和后续脉冲叠加的控制方法。实验系统运行结果表明,电容器投入无涌流,无暂态过程。
关键词:无功补偿;晶闸管投切电容器(TSC);复杂可编程逻辑器件(CPLD);零电压触发
1.引言
在工业和生活用电负载中,阻感负载占有很大的比例。对于较普遍的阻感性负载,电阻消耗有功功率,而电感则在一周期的一部分时间把从电网吸收的能量存储起来,另一部分时间再把储存的能量向电源和负载释放,其本身并不消耗能量[1]。
电力系统网络元件的阻抗主要是电感性的,负荷也以阻感性负荷为主,因而补偿以并联电容器为主要手段,通常将电容器分为若干组投切。固定并联电容器补偿方式的优点在于不产生谐波、运行维护简单、可靠性高,但无法解决过补偿和欠补偿的问题。
自动投切电容器装置根据控制开关的不同,可分为断路器、接触器投切电容器装置和晶闸管投切电容器装置。断路器、接触器投切电容器装置的结构简单、控制方便、性能稳定等优点,但其响应速度慢、不能频繁投切,主要应用于性能要求不高的场合。晶闸管是无触点开关,其使用寿命可以很长,而且晶闸管的投入时刻可以精确控制,能做到快速无冲击的将补偿电容器接入电网,大大降低了对电网的冲击,保护了电容器,可以频繁投切。
2.TSC装置基本原理
TSC的基本原理如图1所示,其中的两个晶闸管只是起将电容器并入电网或从电网断开的作用,而串联的小电感只是用来抑制电容器投入电网时可能造成的冲击电流。当电容器投入时,TSC的电压—电流特性曲线就是该电容器的伏安特性,一般将电容器分成几组,可根据电网无功需求量来投切这些电容器,其电压—电流特性曲线按照投入电容器组数的不同而变化。当TSC用于三相电路时,可以三角形联结,也可以星形联结,每一相都可以设计成分组投切。
第二篇:电力系统无功补偿论文
毕业论文(设计)
题 目 电力系统的无功优化、补偿及无功补
偿技术对低压电网功率因数的影响
2007年8月30日
电力系统的无功优化、补偿及
无功补偿技术对低压电网功率因数的影响
电气工程及其自动化专业 学生: 指导教师:
摘要:电力系统的无功优化和无功补偿是提高系统运行电压,减小网损,提高系统稳定水平的有效手段。本文对当前常用的无功优化和无功补偿进行了总结,对目前无功补偿和优化存在的问题进行了一定的探讨和研究。电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、工农业安全生产、产品质量、用电单耗和人民生活用电都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,电压问题本质上就是一个无功问题。解决好无功补偿问题,具有十分重要的意义。
关键词:无功优化 无功补偿 网损电压质量功率因数
Reactive power system optimization, compensation and Reactive power compensation of low voltage network
of power factor
Electrical Engineering and Automation
Student:Luobifeng
Supervisor:Qingyuanjiu
Abstract:Reactive optimization and reactive compensation of power system is a valid way to increse the system’s operating voltage and maintenance level.It’s also the way to reduce the internet loss.This essay summarize what Reactive optimization and reactive compensation are in our daily life.It also discusses and studies some problems existing in reactive optimization and reactive compensation.Voltage is one of the important targets of Quality of power supply, whose quality will affect stabilization of power grids and electric equipment functioning well directly.Lin loss and safety in
production in industry and agriculture ,the production’s quality , electrical energy depth loss ,and electrical energy used by common people every day will be infulenced directly by it too.voltage qualit is an important factor to affect voltage quality.so voltage qualit and voltage qualit are closely related to each other.The problems about voltage is the problem of reactive energy in nature.All in all,to solve the problem of reactive compensation well is very meaningful and necessary.Keywords: Reactive Optimization Reactive Compensation Internet loss of voltage qulity Power Factor
目 录
一、前言………………………………………………………………6
二、无功优化和补偿的原则和类型…………………………………6
1、无功优化和补偿的原则 ………………………………………6
2、无功优化和补偿的类型 ………………………………………7
三、输配电网络的无功优化…………………………………………7
1、无功优化的目标函数 …………………………………………7
2、优化算法………………………………………………………8
四、配电线路上的无功补偿及用户的无功补偿……………………8
1、配电线路上的无功补偿 ………………………………………8
2、用户的无功补偿 ………………………………………………10
五、影响功率因数的主要因素………………………………………12
1、异步电动机和变压器 …………………………………………12
2、供电电压超出额定范围 ………………………………………12
3、电网频率的波动 ………………………………………………12
六、低压配电网无功补偿的方法 ……………………………………12
1、随机补偿 ………………………………………………………12
2、随器补偿 ………………………………………………………13
3、跟踪补偿 ………………………………………………………13
七、无功补偿容量的选择方法 ………………………………………13
1、单负荷就地补偿 ………………………………………………13
2、多负荷补偿 ……………………………………………………14
八、无功补偿的效益…………………………………………………14
1、节省企业电费开支 ……………………………………………14
2、提高设备的利用率 ……………………………………………14
3、降低系统的能耗………………………………………………15
4、改善电压质量…………………………………………………15
5、增加变压器容量 ………………………………………………15
九、结束语……………………………………………………………15
十、参考文献 …………………………………………………………16
电力系统的无功优化、补偿及
无功补偿技术对低压电网功率因数的影响
一 前言
随着国民经济的迅速发展,用电量的增加,电网的经济运行日益受到重视。降低网损,提高电力系统输电效率和电力系统运行的经济性是电力系统运行部门面临的实际问题,也是电力系统研究的主要方向之一。特别是随着电力市场的实行,输电公司(电网公司)通过有效的手段,降低网损,提高系统运行的经济性,可给输电公司带来更高的效益和利润。电力系统无功功率优化和无功功率补偿是电力系统安全经济运行研究的一个重要组成部分。通过对电力系统无功电源的合理配置和对无功负荷的最佳补偿,不仅可以维持电压水平和提高电力系统运行的稳定性, 而且可以降低有功网损和无功网损,使电力系统能够安全经济运行。
无功优化计算是在系统网络结构和系统负荷给定的情况下,通过调节控制变量(发电机的无功出力和机端电压水平、电容器组的安装及投切和变压器分接头的调节)使系统在满足各种约束条件下网损达到最小。通过无功优化不仅使全网电压在额定值附近运行,而且能取得可观的经济效益,使电能质量、系统运行的安全性和经济性完美的结合在一起,因而无功优化的前景十分广阔。无功补偿可看作是无功优化的一个子部分,即它通过调节电容器的安装位置和电容器的容量,使系统在满足各种约束条件下网损达到最小。
无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。
无功补偿的合理配置原则
从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。
(1)总体平衡与局部平衡相结合,以局部为主。(2)电力部门补偿与用户补偿相结合。
在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。
(3)分散补偿与集中补偿相结合,以分散为主。
集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功
通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。(4)降损与调压相结合,以降损为主。
二
无功优化和补偿的原则和类型
1、无功优化和补偿的原则
在无功优化和无功补偿中,首先要确定合适的补偿点。无功负荷补偿点一般按以下原则进行确定:
1)根据网络结构的特点,选择几个中枢点以实现对其他节点电压的控制; 2)根据无功就地平衡原则,选择无功负荷较大的节点。 3)无功分层平衡,即避免不同电压等级的无功相互流动,以提高系统运行的经济性。4)网络中无功补偿度不应低于部颁标准0.7的规定。
2、无功优化和补偿的类型
电力系统的无功补偿不仅包括容性无功功率的补偿而且包括感性无功功率的补偿。在超高压输电线路中(500kV及以上),由于线路的容性充电功率很大,据统计在500kV每公里的容性充电功率达1.2Mvar/km。这样就必须对系统进行感性无功功率补偿以抵消线路的容性功率。如实际上,电网在500kV的变电所都进行了感性无功补偿,并联了高压电抗和低压电抗,使无功在500kV电网平衡。
三
输配电网络的无功优化(闭式网)
电力系统的无功补偿从优化方面可从两个方面说起,即输配电网络(闭式网)和配电线路及用户的无功优化和补偿(开式网)。
1、无功优化的目标函数
参考文献[3]中著名的等网损微增率定律指出,当全网网损微增率相等时,此时的网损最小。无功的补偿点应设置在网损微增率较小的点(网损微增率通常为负值时进行无功补偿),这样通过与最优网损微增率相结合进行反复迭代求解得到优化的最佳点。一方面,该方法没有计及其它控制变量的调节作用,同时在实际运行中也不可能通过反复迭代使全网网损微增率相等,这样做的计算量太大且费时。与此同时,国内外学者对无功优化进行了大量研究,提出了大量的无功优化的数学模型的优化算法。无功优化的数学模型主要有两种,其一为不计无功补偿设备的费用,以系统网损最小为主要目的。即优化状态时无功优化的目标函数可用下式表达:
其二,以系统运行最优为目标函数,它计及了系统由于补偿后减小的网损费用和添加补偿设备的费用,可用下式表达:
式中,β为每度电价,τmax为年最大负荷损耗小时数,α、γ分别表示为无功补偿设备折旧维护率和投资回收率,KC为单位无功补偿设备的价格,QC∑为无功补偿总容量。
模型二考虑了投资问题,可认为是一种比较理想的模型。特别是随着电力市场的实行,各部门都追求经济效益,显然考虑了无功投资问题更合理一些。
2、优化算法
由于电力系统的非线性、约束的多样性、连续变量和离散变量混合性和计算规模较大使电力系统的无功优化存在着一定的难度。将非线性无功优化模型线性化求解,是一些算法的出发点,如基于灵敏度分析的无功优化潮流、无功综合优化的线性规划内点法、带惩罚项的无功优化潮流和内点法等等,以上均是通过将非线性规划运用泰勒级数展开,忽略二阶及以上的项,建立线性化模型求得优化解。这些方法由于在线性化的过程中,忽略了二阶及以上的项,其计算的收敛性得不到保证。为了提高优化计算的收敛性,又提出了将罚函数的思想引入线性规划,提出了带惩罚项的无功优化潮流模型与算法,使依从变量的越限消除或减小到最低限度。但它不能从根本上结局线性化后的不收敛问题。
针对线性算法方法的不足,又提出了一些运用非线性算法,混合整数规划、约束多面体法和非线性原-对偶算法等等。尽管这些方法能在理论上找到最优解,但由于无功优化本身的特性,使计算复杂、费时,且不能保证可靠收敛。
为了提高收敛性和非线性的对于无功优化中的离散变量(变压器分接头的调节,电容器组的投切)的处理,基于人工智能的新方法,相继提出了遗传算法,Tabu搜索法,启发式算法,改进的遗传算法,分布计算的遗传算法和摸似退火算法等等,这些算法在一定的程度上提高了无功优化的收敛性和计算速度,并且有些方法已经投入实际应用并取得了较好的效果。
但在无功优化仍有以下一些问题需要解决:
1)由于无功优化是非线性问题,而非线性规划常常收敛在局部最优解,如何求出其全局最优解仍需进一步研究和探讨。
2)由于以网损为最小的目标函数,它本身是电压平方的函数,在求解无功优化时,最终求得的解可能有不少母线电压接近于电压的上限,而在实际运行部门又不希望电压
接近于上限运行。如果将电压约束范围变小,可能造成无功优化的不收敛或者要经过反复修正、迭代才能求出解(需人为的改变局部约束条件)。如何将电压质量和经济运行指标相统一仍需进一步研究。
3)无功优化的实时性问题。伴随着电力系统自动化水平的提高,对无功优化的实时性提出了很高的要求,如何在很短的时间内避免不收敛,求出最优解仍需进一步研究。
四 配电线路上的无功补偿及用户的无功补偿
1、配电线路上的无功补偿
由于35kV、10kV及一些低压配电线路的电阻相对较大,无功潮流在线路上流动时引起的功率损耗较大且电压损耗较大,故其无功补偿理论建立在其上。经典的线路补偿理论认为电容器安装的位置可见下表。
其原理可简述如下:
当线路输送的无功功率Q,线路长度L,每组补偿距离为x时,每组补偿容量为Qx
Qx=Qx/L
当认为电容器安装在补偿区间中心时,降低的线损最大。无功潮流图可见图1所示:
当
对任一组电容器安装位置离末端的位置为: xi=L(2i-1)/(2n+1) 其最佳补偿容量为:
nQx=2nQ/(2n+1) 这样即可求得表1的数据。
对于配电线路的无功补偿可有效降低网损,但它的效果不如在低压侧补偿。这个结论是假定无功潮流是均匀分布的,如果线路上的无功潮流为非均匀分布的,得出的结论将不同;同时在线路上安装电容器组时,其维护、操作比较不便,且也没有考虑补偿设备的投资问题。因此,建议采用下述方式。
2、用户的无功补偿
对于企业及大负荷用电单位,按照无功补偿的种类又分为高压集中补偿、低压集中补偿和低压就地补偿。文献[8]指出在补偿容量相等的情况下,低压就地补偿减低的线损最大,因而经济效益最佳。这是可以理解的。由于低压就地补偿了负荷的感性部分,使流经线路和变压器上的无功电流大大减小,显然此种方法所取得的经济效益最佳。但是上述并没有指出最佳补偿容量应为多少?同时也没有计及无功设备的投资。文献[6]指出了对于开式网的最佳补偿容量,三种常见的开式网可见图2所示。
(1)放射式开式网的最佳无功补偿
对于用户或经配变出线的开式网络,针对开式网的接线的最佳无功补偿容量,参考文献[6]进行了详细的推导。其目标函数采用 了简单的推导:
对于网络为放射式网络,此时网络年计算支出费用与无功补偿的关系可表达为:
由于主要研究的是无功功率对有功网损的影响,因此有功功率对网损的影响可不考虑,(4)式可简化为下式:
在其余节点的补偿QCn,op均于上式相同。(2)干线式和链式开式网的最佳无功补偿
对于干线式及链式接线开式网,在 上述公式简单明了,且将著名的等网损微增率和最优网损微增率结合在一起,通过计算公式一次性能得出最佳补偿容量,避免了计算的迭代过程,具体算例可见参考文献[3]例6-2,在6-2例中,求解最佳补偿容量是通过求解5组方程,6次迭代所得,而利用上述的推导公式可一次性计算出。
五 影响功率因数的主要因素
功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。
1、异步电动机和电力变压器是耗用无功功率的主要设备
异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。
2、供电电压超出规定范围也会对功率因数造成很大的影响
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
3、电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响
以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。
六 低压配电网无功补偿的方法
提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。
1、随机补偿
随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。
随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。
2、随器补偿
随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。
随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。
3、跟踪补偿
跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。
跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。
七 无功功率补偿容量的选择方法
无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。
1、单负荷就地补偿容量的选择的几种方法
(1)、美国资料推荐:Qc=(1/3)Pe [额定容量的1/3](2)、日本方法:从电气计算日文杂志中查到:1/4~1/2容量计算
考虑负载率及极对数等因素,按式(5)选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,对一般情况都可行,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。
(3)、经验系数法:由于电机极数不同,按极数大小确定经验系数选择容量 比较接近实际需要的电容器,采用这种方法一般在70%负荷时,补后功率因数可在0.95~0.97 之间
经验系数表
电机类型 一般电机 起重电机 冶金电机 极数 2 4 6 8 10 8 10 补偿容量(kvar/kw)0.2 0.2~0.25 0.25~0.3 0.35~0.4 0.5 0.6 0.75 电机容量大时选下限,小时选上限 ;电压高时选下限,小时选上限4 Qc=P[√1/COS2φ1-1-√1/COS2φ2-1] 实际测试比较准确方法此法适用于任何一般感性负荷需要精确补偿的就地补偿容量的计算。
(4)、如果测试比较麻烦,可以按下式 Qc≤ √3UeIo×10-3(kvar)Io-空载电流=2Ie(1-COSφe)瑞典电气公司推荐公式
Qo
若电动机带额定负载运行,即负载率β=1,则:Qo 根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。(5)、按电动机额定数据计算:
Q= k(1-cos2φe)3UeIe×10-3(kvar)K为与电动机极数有关的一个系数 极数: 2 4 6 8 10 K值: 0.7 0.8 0.85 0.9
2、多负荷补偿容量的选择
多负荷补偿容量的选择是根据补偿前后的功率因数来确定。
(1)对已生产企业欲提高功率因数,其补偿容量Qc按下式选择: Qe=KmKj(tgφ1-tgφ2)/Tm
式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ
1、tgφ2意义同前,tgφ1由有功和无功电能表读数求得。
(2)对处于设计阶段的企业,无功补偿容量Qc按下式选择: Qc=KnPn(tgφ1-tgφ2)
式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ
1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。
多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。但电气设备不连续运转或轻负荷运行时,会造成过补偿,使运行电压抬高,电压质量变坏。因此这种方法选择的容量,对于低压来说最好采用电容器组自动控制补偿,即根据负荷大小自动投入无功补偿容量的多少,对高压来说应考虑采取防过补偿措施。
八 无功补偿的效益
在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。由于减少了电网无功功率的输入,会给用电企业带来效益。
1、节省企业电费开支
提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。可见,提高功率因数对企业有着重要的经济意义。
2、提高设备的利用率
对于原有供电设备来讲,在同样有功功率下,因功率因数的提高,负荷电流减少,因此向负荷传送功率所经过的变压器、开关和导线等供配电设备都增加了功率储备,从而满足了负荷增长的需要;如果原网络已趋于过载,由于功率因数的提高,输送无功电
流的减少,使系统不致于过载运行,从而发挥原有设备的潜力;对尚处于设计阶段的新建企业来说则能降低设备容量,减少投资费用,在一定条件下,改善后的功率因数可以使所选变压器容量降低。因此,使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。
3、降低系统的能耗
补偿前后线路传送的有功功率不变,P= IUCOSφ,由于COSφ提高,补偿后的电压U2稍大于补偿前电压U1,为分析问题方便,可认为U2≈U1从而导出I1COSφ1=I2COSφ2。即I1/I2= COSφ2/ COSφ1,这样线损 P减少的百分数为:
ΔP%=(1-I22/I12)×100%=(1-COS2φ1/ COS2φ2)× 100%
当功率因数从0.70~0.85提高到0.95时,由(2)式可求得有功损耗将降低20%~45%。
4、改善电压质量
以线路末端只有一个集中负荷为例,假设线路电阻和电抗为R、X,有功和无功为P、Q,则电压损失ΔU为:
△U=(PR+QX)/Ue×10-3(KV)两部分损失:PR/ Ue→输送有功负荷P产生的;QX/Ue→输送无功负荷Q产生的;
配电线路:X=(2~4)R,△U大部分为输送无功负荷Q产生的
变压器:X=(5~10)R QX/Ue=(5~10)PR/ Ue 变压器△U几乎全为输送无功负荷Q产生的
可以看出,若减少无功功率Q,则有利于线路末端电压的稳定,有利于大电动机的起动。因此,无功补偿能改善电压质量(一般电压稳定不宜超过3%)。但是如果只追求改善电压质量来装设电容器是很不经济的,对于无功补偿应用的主要目的是改善功率因数,减少线损,调压只是一个辅助作用。
5、增加变压器容量
三相异步电动机通过就地补偿后,由于电流的下降,功率因数的提高,从而增加了变压器的容量,计算公式如下:
△S=P/ COSφ1×[(COSφ 2/ COSφ1)-1] 如一台额定功率为155KW水泵的电机,补前功率因数为0.857,补偿后功率因数为0.967,根据上面公式计算其增容量为:
(155÷0.857)×[(0.967 ÷0.857)-1]=24KVA
九 结束语
电力系统的无功优化和无功补偿需要比较精确的负荷数据、发电机数据、变压器参数等等。同时在电力系统的实际运行中,电力系统的状态是连续变化的,因此无功优化和无功补偿应根据实际情况灵活运用。随着调度自动化、配网自动化和无人变电站的进一步实现,需要计算快,收敛性良好的算法,同时伴随着电力市场的实行,无功定价理论的逐渐成熟,无功优化的理论也将相应改变并进一步完善。
文中集中探讨了无功补偿技术对用电单位的低压配电网的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素和提高功率因数的方法,讨论了如何确定无功功率的补偿容量,确保补偿技术经济、合理、安全可靠,达到节约电能的目的。
十 参考文献
1、靳龙章、丁毓山著:《电网无功补偿实用技术》,中国水利水电出版社,1997年
2、孙成宝、李广泽著:《配电网实用技术》,中国水利水电出版社,1997年
3、陈珩著:《电力系统稳态分析》,水利电力出版社,1995年
4、徐先勇、王正风著:《电力系统无功功率负荷的最佳补偿容量》,华东电力,1999年
第三篇:电网建设中的无功补偿
电网建设中的无功补偿
1功率因数和无功功率补偿的基本概念
1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电感性负载,电感性负载的电压和电流的相量间存在着一个相位差,相位角的余弦cosφ即是功率因数,它是有功功率与视在功率之比即cosφ=P/S。功率因数是反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要指标。
1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功功率中得到补偿。
2无功补偿的目的与效果
2.1补偿无功功率,提高功率因数
2.2提高设备的供电能力
由P=S·cosφ可看出,当设备的视在功率S一定时,如果功率因数cosφ提高,上式中的P也随之增大,电气设备的有功出力也就提高了。
2.3降低电网中的功率损耗和电能损失
由公式I=P/(·U·cosφ)可知当有功功率P为定值时,负荷电流I与cosφ成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从而使功率损耗降低:ΔP=I2R,降低电网中的功率损耗是安装无功补偿设备的主要目的。
2.4改善电压质量
在线路中电压损失ΔU的计算公式如下:
ΔU=
×10
-3
式中
ΔU——线路中的电压损失
kV
P——有功功率MW
Q——无功功率Mvar
Ue——额定电压kV
R——线路总电阻Ω
XL——线路感抗Ω
由上式可见,当线路中的无功功率Q减少以后,电压损失ΔU也就减少了。
2.5减少用户电费开支,降低生产成本。
2.6减小设备容量,节省投资。
3无功补偿容量的选择
3.1按提高功率因数值确定补偿容量Q
c
Qc=P[
](kvar)
式中P——最大负荷月的平均有功功率kW
cosφ1cosφ2——补偿前后功率因数值
例如:某加工厂最大负荷月的平均有功功率为300kW,功率因数cosφ=0.6,拟将功率因数提高到0.9,则所选的电容器容量为:
QC=300×[
]=300×(1.33—0.48)=255
(kvar)
3.2按提高电压值确定补偿容量QC
QC=
(kvar)
式中
ΔU——需要提高的电压值V
U——需要提高的电压值V
U2——需要达到的电压值kV
X——线路电抗Ω
3.3按感应电动机空载电流值确定补偿容量
电动机的无功补偿一般采用就地补偿方式,电容器随电动机的运行和停止投退,容量以不超过电动机空载时的无功损耗为宜,计算公式:
QC≤
Ue
I0
(kvar)
式中
Ue——电动机额定电压kV
IO——电动机空载电流可用钳形电流表测出,若粗略估算,也可用下式:
QC=(1/4~1/2)Pn
式中
Pn——电动机额定功率kW
3.4按配电变压器容量确定补偿容量
配电变压器低压侧安装电容器时,应考虑以下原则:在轻负荷时,防止向10kV配电网倒送无功;取得最大的节能效果,根据配变容量按下式计算:
QC=(0.10~0.15)Sn(kvar)
Sn——配变容量kVA
总之,无功补偿设备的配置,应按照“全面规划,合理布局,分级补偿,就地平衡”的原则,要把降损与调压相结合,以降损为主;又要把集中补偿与分散补偿相结合,以分散补偿为主;同时,供电部门补偿与用户补偿相结合,以就地平衡为主,共同搞好无功补偿的配置和管理,从而取得无功补偿的最大经济效益。
[摘要]
对广大供电企业来说,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约用电和整个供电区域的供电质量,这是众所周知的道理。因此,提高电力系统的功率因数,已成为电力工业中一个重要课题,而提高电力系统的功率因数,首先就要提高各用户的功率因数。文中简要集中探讨了影响电网功率因数的主要因素以及低压无功补偿的几种使用方法,以及确定无功补偿容量从而提高电力系统功率因数的一般方法。
[关键词]
功率因数
影响因素
补偿方法
容量确定
许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的“无功“并不是“无用“的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。
在功率三角形中,有功功率P与视在功率S的比值,称为功率因数COSφ,其计算公式为:
COSφ=P/S=P/(P2+Q2)1/2
在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。
用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。
影响功率因数的主要因素
1.1
电感性设备和电力变压器是耗用无功功率的主要设备
大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。电力变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。
1.2
供电电压超出规定范围也会对功率因数造成很大影响
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
1.3
电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响
综上所述,我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。
低压网的无功补偿
2.1
低压网无功补偿的一般方法
低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿和跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。
2.1.1
随机补偿
随机补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。此种方式可较好地限制农网无功峰荷。
随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,不会造成无功倒送,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。
2.1.2
随器补偿
随器补偿是指将低压电容器通过低压开关接在配电变压器二次侧,以无功补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。
随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前无功补偿中常用的手段之一。
2.1.3
跟踪补偿
跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4KV母线上的补偿方式。适用于100KVA以上的专用配电用户,可以替代随机、随器两种补偿方式,补偿效果好。
跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。
2.2
采用适当措施,设法提高系统自然功率因数
提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。下面将对提高自然功率因数的措施做一些简要的介绍。
2.2.1合理选用电动机
合理选择电动机,使其尽可能在高负荷率状态下运行。在选择电动机时,既要注意它们的机械特性,又要考虑它们的电气指标。举例说,三相异步电动机(100KW)在空载时功率因数仅为0.11,1/2负载时约为0.72,而满负载时可达0.86。所以核算负荷小于40%的感应电动机,应换以较小容量的电动机,并合理安排和调整工艺流程,改善运行方式,限制空载运转。故从节约电能和提高功率因数的观点出发,必须正确合理的选择电动机的容量。
2.2.2
提高异步电动机的检修质量
实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动是对异步电动机无功功率的大小有很大影响。因此检修时要特别注意不使电动机的气隙增大,以免使功率因数降低。
2.2.3
采用同步电动机或异步电动机同步运行补偿
由电机原理可知,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行状态,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即可以向电网输出无功,从而达到提高低压网功率因数的目的。
2.2.4
正确选择变压器容量提高运行效益
对于负载率比较低的变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。如:对平均负荷小于30%的变压器宜从电网上断开,通过联络线提高负荷率。
通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。知道了功率因数的提高对电力企业的深远影响,下面我们将简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。
功率因数的人工补偿
功率因数是工厂电气设备使用状况和利用程度的具有代表性的重要指标,也是保证电网安全、经济运行的一项主要指标。供电企业仅仅依靠提高自然功率因数的办法已经不能满足工厂对功率因数的要求,工厂自身还需要装设补偿装置,对功率因数进行人工补偿。
3.1
静电电容器补偿
静电电容器既电力电容器。利用电容器进行补偿,具有投资省、有功功率损耗小、运行维护方便、故障范围小等优点。但当通风不良、运行温度过高时,油介质电容器易发生漏油、鼓肚、爆炸等故障。因此,建议使用粉状介质电容器。
当企业感性负载比较多时,它们从供电系统吸取的无功是滞后(负值)功率,如果用一组电容器和感性负载并联,电容需要的无功功率是超前(正值)功率,如果电容器选的合适,令Qc+Ql=0,这时企业已不需要向供电系统吸取无功功率,功率因数为1,达到最佳值。
3.1.1
电容器补偿容量的确定
电力电容器的补偿容量Qc可按下式计算:
Qc=α·Pjs(tgφ1-tgφ2)
式中
Pjs——最大有功计算负荷,KW
tgφ1、tgφ2——补偿前、后功率因数角的正切值
α——平均负荷系数,一般取0.7~1,视Pjs的计算情况而定。如果在计算时已采用了较小系数值,α可取1。
某些已进行生产的工矿企业,可由下式确定其有功电能消耗量:
Ap=Pjs·Tmax·p
(KW·H)
式中
Ap——有功电能消耗量
Pjs——有功计算负荷
Tmax·p——最大有功计算负荷年利用小时数
3.1.2
并联补偿移相电容器,应满足以下电压和容量的要求
Ue·c≥Ug·c
nQg·c≥Qc
式中
Ue·c——电容器的额定电压(KV)
Ug·c——电容器的工作电压(KV)
n——并联的电容器总数
Qg·c——电容器的工作容量(Kvar)
Qc——电容器的补偿容量(Kvar)
3.2
动态无功功率补偿
动态无功功率补偿一般应用于用电容量大、生产过程其负载急剧变化且具有重复冲击性的大型钢铁企业。这种波动频繁、急剧、幅值很大的动态无功功率,采用调相机或固定电容器进行补偿已远远满足不了要求,目前一般采用的新型动态无功功率补偿设备是静止无功补偿器。它具有稳定系统电压、改善电网运行性能、动态补偿反应迅速、调节性能优越等优点。但最明显的缺点是投资大、设备体积大、占地面积大。
3.3
分相补偿
在民用建筑中大量使用的是单相负荷,照明、空调等由于负荷变化的随机性大,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。由于调节补偿无功功率的采样信号取自三相中的任意一相,造成未检测的两相要么过补偿,要么欠补偿。如果过补偿,则过补偿相的电压升高,造成控制、保护元件等用电设备因过电压而损坏;如果欠补偿,则补偿相的回路电流增大,线路及断路器等设备由于电流的增加而导致发热被烧坏。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。
据有关资料介绍,某地综合楼是集商场、银行、办公、车库、宾馆为一体的一类高层建筑,总建筑面积3.2万m2。主要用电设备有空调机组、水泵、风机及照明灯具等,其中照明灯具均为单相负荷,功率因数在0.45~0.75之间。低压有功计算负荷2815KW,其中,照明用电有功负荷1086.5KW,其它负荷基本为空调、风机、水泵、电梯等三相负荷。补偿前无功功率31872Kvar,若整体功率因数补偿到0.92,需补偿1982Kvar,补偿后无功功率1200Kvar。原设计采用低压配电室并联电容器组三相集中自动补偿,工程竣工投入使用后,经常出现仪器、灯具等用电设备烧坏或不能正常使用等情况,影响正常经营和工作。经现场测试,发现低压馈线回路三相负荷不平衡,差距很大,电流差异大,最大相电流差为900A;检测母线电压,三相母线电压有的高达260V,有的低到190V。通过分析是三相电容自动补偿造成的结果。
对于三相不平衡及单相配电系统采用分相电容自动补偿是解决上述问题的一种较好的办法,其原理是通过调节无功功率参数的信号取自三相中的每一相,根据每相感性负载的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。
结束语
文中浅谈了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素以及提高功率因数的一般方法,还阐述了如何确定无功功率的补偿容量及无功功率的三种人工补偿的具体方式。
1 无功功率
在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。
有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。
无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。
无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。为了形象地说明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢?
在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。
无功功率对供、用电产生一定的不良影响,主要表现在:
(1)降低发电机有功功率的输出。
(2)降低输、变电设备的供电能力。
(3)造成线路电压损失增大和电能损耗的增加。
(4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。
从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是电网需要装设无功补偿装置的道理。
2 功率因数
电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。三相功率因数的计算公式为:
式中cosφ——功率因数;
P——有功功率,kW;
Q——无功功率,kVar;
S——视在功率,kV。A;
U——用电设备的额定电压,V;
I——用电设备的运行电流,A。
功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。
(1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。
(2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。
(3)加权平均功率因数:是指在一定时间段内功率因数的平均值,其计算公式为:
提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。
第四篇:受无功补偿柜投切申请
受无功补偿柜投切申请
首钢水钢有限责任公司炼扎钢指挥部:
首钢水钢棒材无功补偿柜已具备调试条件,并经监理、总包、建设单位检查,为保证调试无功补偿正常进行,现申请棒材无功补偿投切。
无功补偿投切时间:
2011年6月18日上午9点:棒材7套无功补偿投切
调试 投切 联系人:陈涛电话:***
东方博沃(北京)科技有限公司2011年6月18日
第五篇:关于提高无功补偿的工作方法(范文)
关于提高无功功率因素的方法 经过参加经信局和供电局举办的关于无功补偿不达标的企业座谈会后,加深了对在当前用电、供电相当紧张的大环境下提高无功补偿意义的认识,所以,针对本企业的生产设备性质、使用状况和无功补偿的现状(0.89),采取了以下的措施:
1、对所有的无功功率补偿设备进行全面的检修,更换损坏的电容器、接触器等元件,排除设备故障隐患。
2、建立设备定期检查、循查制度,保证设备稳定可靠运行,发挥正常功能。
3、针对不同时段、不同设备的使用状况所产生的无功损耗,对所有无功功率补偿控制柜的自动控制器参数进行适当调整,使控制器工作在最佳状态。
4、对所有的用电设备操作人员进行相关的教育,要求其必须做到人离关机,尽量减小电动机的空载运行,既可以减小电能、电费的浪费,又能减小因电动机的空载轻载运行所产生的无功损耗。
5、在采购、改造设备的时候,对设备所需要的使用功率等参数进行合理的设计选型,采购功率因素较高的用电器,尽量减小大马拉小车的情况出现,提高设备的使用效率。
经采取以上的几项措施,并没有投入过多的人力、物力,无功功率因素就从原来的0.89提高到现在的0.94以上,效果较明显。
设备部