第一篇:供电系统无功补偿节能技术的新发展
供电系统无功补偿节能技术的新发展
郑学超
摘要: 本文主要介绍一种提高用电功率因数及消除谐波的新型低压配电装置。该装置可实施三相对称、分相动态无功补偿和滤波。在结构上一方面采用电容自动投切无触点化,解决了传统装置的合闸涌流及断电弧光等问题;二方面采用微电脑全数字控制,由电压、电流、功率因数等数字显示代替传统的指针式仪表,有通讯接口,与智能化电器设备配套,实现远程监控或遥控。
关键词: 无功动态补偿 滤波 无触点化 微电脑远程监
控随着我国经济发展和人民生活水平的提高,各产业和民用用电量大幅度增加,新增用电负荷中,整流和变频设备所占的比例增加,无功负荷电流和谐波电流增大供电系统损耗,谐波电流还可能引起通讯系统和计算机系统故障。在供电系统中,装设动态无功补偿和适当的滤波装置,是减少系统损耗,提高电能质量的有效措施。
传统的低压动态无功补偿装置(又称功率因数自动补偿装置)是采用模拟量或微电脑功率因数检测,通过中间继电器(或固态继电器)接通接触器、控制补偿电容器投入或切除。存在的主要问题:
(1)合闸涌流大,可达到100In(In为补偿电容器额定电流);
(2)断开弧光大;
(3)补偿电容器及接触器易损坏;
(4)对供电系统及周围电气设备干扰大。因此,传统的低压无功动态补偿装置,只适用于无功负荷较稳定的变电所使用。经实际调查,无功负荷经常变化的各个产业及民用变电所,使用的传统的低压动态无功补偿装置,一年后90%以上不好用,改为手动控制接触器固定补偿。使供电系统损耗增加。另外,传统的低压动态无功补偿装置,不能滤波,也不能分相补偿,不能适应多种用电负荷对无功补偿的要求。新型低压无功动态补偿装置,采用微电脑全数字控制,通过交流无触点电子开关投切补偿电容器,全部无触点化。无合闸涌流、无断电弧光。可实现低压滤波和分相补偿。电压、电流、功率因数数字显示,代替传统指针式仪表。有通讯接口,与智能化低压电器设备配套,可实现远程监控或遥控。有保护和报警功能,调试、维护方便。
新型的与传统的低压无功动态补偿装置性能与价格比较。
从以上比较表可知,新型低压无功动态补偿装置的各项技术性能,都优于传统的补偿装置。相同的功能价格只差20%。但使用寿命长、维护工作量小、长期节能效果好。因此,新型补偿装置是传统低压无功动态补偿装置的更新换代产品。而且技术上已经成熟,有5年以上的实际运行经验。在高压(10KV、6KV)无功补偿方面,我国目前普遍采用高压电容器固定补偿。很多变电所,为了解决无功负荷变化时,补偿容量也能变化的问题,将高压补偿电容器分为2-3组,用真空断路器人工控制。原来设想:重负荷时,补偿电容器全部投入;轻负荷时,切除1-2组补偿电容器。实际使用证明,用人工控制真空断路器,投切高压补偿电容器,会产生很大的合闸涌流和电压闪变,甚至引起系统振荡。不敢经常操作。实际还是固定补偿,常出现重负荷时欠补偿,轻负荷时过补偿,增加了供电系统损耗,增大了电压波动范围。新型高压无功动态补偿装置,采用微电脑全数字控制,全部无接点化,不产生谐波,无合闸涌流,可有效减小电压闪变和防止系统振荡,并可实现分相补偿。可与高压滤波装置组成滤波和动态补偿成套装置。有通讯接口,便于实现远程监控或遥控。可靠性高、维护工作量小,适合中、小型变电所使用(补偿容量数百至数万KVAR)。能减少电网电能损耗,提高供电质量。
第二篇:风电节能技术监督制度
风电节能技术监督制度
1.总 则
1.1节能技术监督是为了贯彻我国“资源开发和节约并举、把节约放在首位”的能源方针。为了加强本公司,以下简称公司的节能监督管理促进节能降耗,提高经济效益,根据原电力部颁发的《电力工业节能技术监督规定》、《火力发电厂节约能源规定》及《总公司技术监控管理办法》制定本制度。
1.2业耗能设备及系统在设计制造、安装调试、运行检修、技术改造等实行全过程的技术监督。
1.3节能技术监督是一项综合性的技术管理工作,各级领导要把它作为经常性的重要基础工作来抓。要组织协调基建、生产及试验研究单位和各部门、各专业之间的工作,分工负责,密切配合,共同搞好节能技术监督工作。
1.4节能技术监督的主要目的和任务是,认真贯彻《中华人民共和国节约能源法》及国家、行业有关节能技术监督和节约能源的规程、规定、条例,建立健全以质量为中心、以标准为依据、以计量为手段的节能技术监督体系,实行技术责任制对影响发电设备经济运行的重要参数、性能和指标进行监督、检查、调整及评价。使电、煤、油、汽、水的消耗率达到最佳水平,保证集团公司节能工作持续、高效、健
康的发展。
1.5节能技术监督要依靠科学进步,推广采用先进的节能技术、工艺、设备和材料,降低发电设备和系统的能源消耗。
1.6本制度适用于公司风电场 2.监督机构与职责
2.1 公司技术监督工作实行三级管理,的岗位培训,组织交流推广节能新技术、新设备、新的检测和诊断手段,不断提高节能技术监督人员水平。
2.8技术监控管理领导小组职责为:
2.8.1贯彻执行《中华人民共和国节约能源法》和国家、行业、集团公司颁布的节能规程、规范、标准、条例、制度等。指导公司节能技术监督的执行。
2.8.2贯彻执行公司节能技术监督的方针、政策、条例、制度、办法及计划,审查批复各有关节能技术监督请示报告,采取对策并组织实施。
2.8.3对新建、扩建和技改工程中设计、安装、调试进行节能技术监督,对发电企业的供电煤耗及能源利用状况进行调查,研究、制定节能整改措施并颁布实施2.8.4定期组织召开公司节能监督工作会议,总结工作、交流经验、表彰先进,部署节能监督工作;
2.8.5建立健全节能技术监督网,加强节能监督工作人员的岗位培训,组织交流推广节能新技术、新设备、新的检测和诊断手段,不断提高节能技术监督人员水平。
2.8.6各技术监控管理服务单位根据与各电场签订的技术监督服务合同,行使节能技术监督的管理职能。应成立以场长为组长的技术监督领导小组。
2.9公司所属各发电企业必须建立健全由场长领导下的节能技术监督网,并在生风电场设立节能技术专责,负责开
展本风电场的节能技术监督工作。其职责如下:
2.9.1贯彻执行国家、行业、公司颁发的有关节能技术监督的方针、政策、规章制度等;
2.9.2制定本风电场节能技术监督的实施细则、岗位职责、各项管理制度及技术措施等;
2.9.3制定本风电场的节能规划、节能计划、节能考核办法、各项能耗指标定额并组织实施;
2.9.4按期完成本企业能耗指标报表;做好本企业季度、节能工作总结;
2.9.5积极参加公司和技术监控管理服务单位组织的节能技术监督网活动同时积极组织本企业节能监督网活动;
2.9.6定期组织召开本风电场的节能降耗分析例会,提出本企业节能技术指标完成情况的分析报告、节能工作存在的问题,组织制定改进措施,并按计划实施。2.9.7对影响本风电场经济运行的重大耗能设备,及时提出改进措施并组织解决;
2.9.8参加本企业新建、扩建、技术改造工程的设计审查,并对安装调试、运行检修进行全过程节能技术监督。
2.9.9积极配合电测专业做好节能计量装置和仪器仪表的检定工作;
2.9.10积极参加和组织开展节能降耗的科技攻关,新技术推广和人员培训工作。
监督范围与内容
3.1 生产运行及检修节能监督
3.1.1以经济合理的运行方式和通过对发电厂按机组的热力特性、主辅机的最佳
组合进行经济调度。
3.1.2加强燃料管理,做好燃料品种的检测。3.1.3发电场主要系统及设备在试生产、大修或重大技术改造前后,必须参照国标或有关标准进行相应试验和验收,掌握设备及机组性能;
3.1.4对影响机组和设备经济性能的问题要制定消缺方案,结合大小修进行消缺。同时要讲究检修工艺,比如要调整好发电机组动静部分间隙,保持受热面清洁,消除热力系统内、外部泄漏等。
3.2 节能监督的日常技术管理
3.2.1建立健全本单位的节能技术监督实施细则、节能技术监督岗位责任制度、节能监督网、节能经济指标考核制度、定期试验项目管理制度、汽机凝汽器胶球清洗管理制度、节油、节水管理等制度。
3.2.2节能技术监督工作实行监督请示报告制和岗位责任制。各单位节能技术监督工作总结报告、监督指标和月、季、报表按规定及时上报给公司技术监控办公室和技术监控管理服务单位。重要问题要专题报告。必要时上级监督
部门派节能技术监督人员到现场测试分析,研究商定技术措施和解决办法;
3.2.3节能技术监督实行考核奖励制度,各单位要制定考核检查方法,并定期组织检查、抽查和互查,认真进行各项节能技术监督指标的考核评比,对在节能工作中做出突出贡献的单位、部门和个人以及优秀节能技术项目给予表彰和奖励。对监督不利、指标超标、设备异常严重影响电网安全经济运行的要追究当事者及有关领导责任。
3.2.4建立健全电力生产建设全过程的节能技术监督档案和资料管理,保证检
测、试验、更新改造报告及有关原始资料、记录的准确、完整和实效;
3.2.5节能监督指标由发电企业定期检测和计算,并按时上报技术监控管理服务单位。由各技术监控管理服务单位汇总分析后上报公司技术监督中心;
3.2.6公司技术监控实行月、季报告制度,报送要求按《乌鲁木齐粤水电能源有限公司技术监控管理办法》。
第三篇:低压配电系统无功补偿在提钒炼钢厂应用
低压配电系统无功补偿在提钒炼钢厂应用
游洪
(新钢钒提钒炼钢厂 维点车间)概况:
无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。目前,许多地方电力系统的无功补偿和电压调节依然采用传统的调节方式,有载调压变压器、静电电容器等只能手动调节和投切,不能实现实时电压调节或无功补偿。前言
针对我们厂的工艺要求和设备具体情况对电源质量要求较高,电压是电能质量的重要指标之一,电压质量对电网稳定及电力设备安全运行、线路损失、安全生产、产品质量和用电单耗都有直接影响。无功电力是影响电压质量的一个重要因素,电压质量与无功是密不可分的,可以说,电压问题本质上就是无功问题。解决好无功补偿问题,具有十分重要的意义。
目前我厂高压变电站为了平衡输电网的无功功率,也在变电站进行集中补偿,但这种补偿是静止补偿,其主要目的是改善输电网的功率因素,提高终端变电所的电压,补偿主变压器的无功损耗。这些补偿装置一般连接在变电站的高压母线上,优点是管理容易、维护方便,缺点是对配电网的降损起吧到什么作用。
我厂普遍采用的还有另一种低压无功补偿方式,是在配电变压器380V侧进行集中补偿,在这种方式下,补偿装置通常采用微机控制的低压并联电容器柜,容量在几百至上千千乏不等,它是根据负荷水平的波动,投入相应数量的电容器进行跟踪补偿。主要目的是提高专用变压器的功率因数,实现无功功率的就得平衡,对配电网和配电变压器的降损有一定作用,也保证该用户的电压水平。
特别是我厂180吨以上吊车对电网电压的变化一般不允许超过±10%。吊车负荷变化极为快速,并且引发大量的无功功率,高的无功电流损耗可以在变压器的高压侧和低压侧导致明显的电压降落,特别在吊车起升下降的经常产生较大的电压波动、电压闪变,导致设备损坏,影响生产效率,所以无功功率补偿装置的响应时间是补偿装置最重要的指标之一。
2无功补偿的合理配置原则
从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。
2.1总体平衡与局部平衡相结合,以局部为主。
2.2电力部门补偿与用户补偿相结合。
在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。
2.3分散补偿与集中补偿相结合,以分散为主。
集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。
2.4降损与调压相结合,以降损为主。影响功率因数的主要因素
功率因 数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。
3.1、异步电动机和电力变压器是耗用无功功率的主要设备
异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。
3.2、供电电压超出规定范围也会对功率因数造成很大的影响
当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。
3.3、电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响
3.4、以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。低压配电网无功补偿的方法
提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。
4.1、随机补偿
随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。
随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。
4.2、随器补偿
随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。
随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。
4.3、跟踪补偿
跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。
跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。无功功率补偿容量的选择方法
无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。
5.1 单负荷就地补偿容量的选择的几种方法
(1)美国资料推荐:Qc=(1/3)Pe [额定容量的1/3]
(2)日本方法:1/4~1/2容量计算
考虑负载率及极对数等因素,选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,对一般情况都可行,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。
(3)经验系数法:由于电机极数不同,按极数大小确定经验系数选择容量 比较接近实际需要的电容器,采用这种方法一般在70%负荷时,补后功率因数可在0.95~0.97 之间。
(4)Qc=P[√1/COS2φ1-1-√1/COS2φ2-1]
实际测试比较准确可用此法,适用于任何一般感性负荷需要精确补偿的就地
补偿容量的计算。如果测试比较麻烦,可以按下式:
Qc≤ √3UeIo×10-3(kvar)
Io-空载电流=2Ie(1-COSφe)瑞典电气公司推荐公式
若电动机带额定负载运行,即负载率β=1,则:Qo 根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。 (5)按电动机额定数据计算: Q= k(1-cos2φe)3UeIe×10-3(kvar) K为与电动机极数有关的一个系数 极数:2468 K值: 0.70.80.850.9 5.2 多负荷补偿容量的选择 多负荷补偿容量的选择是根据补偿前后的功率因数来确定。 (1)对已生产企业欲提高功率因数,其补偿容量Qc按下式选择: Qe=KmKj(tgφ1-tgφ2)/Tm 式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ 1、tgφ2意义同前,tgφ1由有功和无功电能表读数求得。 (2)对处于设计阶段的企业,无功补偿容量Qc按下式选择: Qc=KnPn(tgφ1-tgφ2) 式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ 1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。 多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。但电气设备不连续运转或轻负荷运行时,会造成过补偿,使运行电压抬高,电压质量变坏。因此这种方法选择的容量,对于低压来说最好采用电容器组自动控制补偿,即根据负荷大小自动投入无功补偿容量的多少,对高压来说应考虑采取防过补偿措施。 输电及配电系统设计运行再频率恒定的正弦波电压和电流下。然而有大量的非线性负荷如晶闸管整流器传动、变频器会产生大量的谐波电流注入电网,引起电压及电流的波形畸变。 电容器的电容和电网的电感形成并联谐振回路,其调谐频率可能与电网中存在的谐波频率接近,如果电网中存在该特定频率的谐波电流源,则该频率的谐波电流可以被放大到正常的20倍。谐波电路引起的谐波放大使电压和电流波形畸变更为严重,这就是为什么受谐 波影响的电网不可能采用常规的电容器来做功率因数补偿的原因。 在电网中为了 避免上述谐振现象受谐波的影响,电力电容器必须与电抗器串接,这样设计的结果是可以补偿基波无功功率又不放大谐波。其谐振频率调谐低于电网中存在的最低次谐波通常是5次(250Hz)。 电网建设中的无功补偿 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备如电动机变压器等属于既有电感又有电阻的电感性负载,电感性负载的电压和电流的相量间存在着一个相位差,相位角的余弦cosφ即是功率因数,它是有功功率与视在功率之比即cosφ=P/S。功率因数是反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置却在吸收能量,能量在相互转换,感性负荷所吸收的无功功率可由容性装置输出的无功功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 2.2提高设备的供电能力 由P=S·cosφ可看出,当设备的视在功率S一定时,如果功率因数cosφ提高,上式中的P也随之增大,电气设备的有功出力也就提高了。 2.3降低电网中的功率损耗和电能损失 由公式I=P/(·U·cosφ)可知当有功功率P为定值时,负荷电流I与cosφ成反比,安装无功补偿装置后,功率因数提高,使线路中的电流减小,从而使功率损耗降低:ΔP=I2R,降低电网中的功率损耗是安装无功补偿设备的主要目的。 2.4改善电压质量 在线路中电压损失ΔU的计算公式如下: ΔU= ×10 -3 式中 ΔU——线路中的电压损失 kV P——有功功率MW Q——无功功率Mvar Ue——额定电压kV R——线路总电阻Ω XL——线路感抗Ω 由上式可见,当线路中的无功功率Q减少以后,电压损失ΔU也就减少了。 2.5减少用户电费开支,降低生产成本。 2.6减小设备容量,节省投资。 3无功补偿容量的选择 3.1按提高功率因数值确定补偿容量Q c Qc=P[ ](kvar) 式中P——最大负荷月的平均有功功率kW cosφ1cosφ2——补偿前后功率因数值 例如:某加工厂最大负荷月的平均有功功率为300kW,功率因数cosφ=0.6,拟将功率因数提高到0.9,则所选的电容器容量为: QC=300×[ ]=300×(1.33—0.48)=255 (kvar) 3.2按提高电压值确定补偿容量QC QC= (kvar) 式中 ΔU——需要提高的电压值V U——需要提高的电压值V U2——需要达到的电压值kV X——线路电抗Ω 3.3按感应电动机空载电流值确定补偿容量 电动机的无功补偿一般采用就地补偿方式,电容器随电动机的运行和停止投退,容量以不超过电动机空载时的无功损耗为宜,计算公式: QC≤ Ue I0 (kvar) 式中 Ue——电动机额定电压kV IO——电动机空载电流可用钳形电流表测出,若粗略估算,也可用下式: QC=(1/4~1/2)Pn 式中 Pn——电动机额定功率kW 3.4按配电变压器容量确定补偿容量 配电变压器低压侧安装电容器时,应考虑以下原则:在轻负荷时,防止向10kV配电网倒送无功;取得最大的节能效果,根据配变容量按下式计算: QC=(0.10~0.15)Sn(kvar) Sn——配变容量kVA 总之,无功补偿设备的配置,应按照“全面规划,合理布局,分级补偿,就地平衡”的原则,要把降损与调压相结合,以降损为主;又要把集中补偿与分散补偿相结合,以分散补偿为主;同时,供电部门补偿与用户补偿相结合,以就地平衡为主,共同搞好无功补偿的配置和管理,从而取得无功补偿的最大经济效益。 [摘要] 对广大供电企业来说,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约用电和整个供电区域的供电质量,这是众所周知的道理。因此,提高电力系统的功率因数,已成为电力工业中一个重要课题,而提高电力系统的功率因数,首先就要提高各用户的功率因数。文中简要集中探讨了影响电网功率因数的主要因素以及低压无功补偿的几种使用方法,以及确定无功补偿容量从而提高电力系统功率因数的一般方法。 [关键词] 功率因数 影响因素 补偿方法 容量确定 许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的“无功“并不是“无用“的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。 在功率三角形中,有功功率P与视在功率S的比值,称为功率因数COSφ,其计算公式为: COSφ=P/S=P/(P2+Q2)1/2 在电力网的运行中,功率因数反映了电源输出的视在功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。 用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。 影响功率因数的主要因素 1.1 电感性设备和电力变压器是耗用无功功率的主要设备 大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。据有关的统计,在工矿企业所消耗的全部无功功率中,异步电动机的无功消耗占了60%~70%;而在异步电动机空载时所消耗的无功又占到电动机总无功消耗的60%~70%。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。电力变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。 1.2 供电电压超出规定范围也会对功率因数造成很大影响 当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。 1.3 电网频率的波动也会对异步电动机和变压器的磁化无功功率造成一定的影响 综上所述,我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。 低压网的无功补偿 2.1 低压网无功补偿的一般方法 低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿和跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。 2.1.1 随机补偿 随机补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地与用电设备并接,它与用电设备共用一套断路器。通过控制、保护装置与电机同时投切。随机补偿适用于补偿个别大容量且连续运行(如大中型异步电动机)的无功消耗,以补励磁无功为主。此种方式可较好地限制农网无功峰荷。 随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,不会造成无功倒送,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等优点。 2.1.2 随器补偿 随器补偿是指将低压电容器通过低压开关接在配电变压器二次侧,以无功补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。 随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 2.1.3 跟踪补偿 跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4KV母线上的补偿方式。适用于100KVA以上的专用配电用户,可以替代随机、随器两种补偿方式,补偿效果好。 跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。 2.2 采用适当措施,设法提高系统自然功率因数 提高自然功率因数是不需要任何补偿设备投资,仅采取各种管理上或技术上的手段来减少各种用电设备所消耗的无功功率,这是一种最经济的提高功率因数的方法。下面将对提高自然功率因数的措施做一些简要的介绍。 2.2.1合理选用电动机 合理选择电动机,使其尽可能在高负荷率状态下运行。在选择电动机时,既要注意它们的机械特性,又要考虑它们的电气指标。举例说,三相异步电动机(100KW)在空载时功率因数仅为0.11,1/2负载时约为0.72,而满负载时可达0.86。所以核算负荷小于40%的感应电动机,应换以较小容量的电动机,并合理安排和调整工艺流程,改善运行方式,限制空载运转。故从节约电能和提高功率因数的观点出发,必须正确合理的选择电动机的容量。 2.2.2 提高异步电动机的检修质量 实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动是对异步电动机无功功率的大小有很大影响。因此检修时要特别注意不使电动机的气隙增大,以免使功率因数降低。 2.2.3 采用同步电动机或异步电动机同步运行补偿 由电机原理可知,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行状态,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即可以向电网输出无功,从而达到提高低压网功率因数的目的。 2.2.4 正确选择变压器容量提高运行效益 对于负载率比较低的变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。如:对平均负荷小于30%的变压器宜从电网上断开,通过联络线提高负荷率。 通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。知道了功率因数的提高对电力企业的深远影响,下面我们将简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。 功率因数的人工补偿 功率因数是工厂电气设备使用状况和利用程度的具有代表性的重要指标,也是保证电网安全、经济运行的一项主要指标。供电企业仅仅依靠提高自然功率因数的办法已经不能满足工厂对功率因数的要求,工厂自身还需要装设补偿装置,对功率因数进行人工补偿。 3.1 静电电容器补偿 静电电容器既电力电容器。利用电容器进行补偿,具有投资省、有功功率损耗小、运行维护方便、故障范围小等优点。但当通风不良、运行温度过高时,油介质电容器易发生漏油、鼓肚、爆炸等故障。因此,建议使用粉状介质电容器。 当企业感性负载比较多时,它们从供电系统吸取的无功是滞后(负值)功率,如果用一组电容器和感性负载并联,电容需要的无功功率是超前(正值)功率,如果电容器选的合适,令Qc+Ql=0,这时企业已不需要向供电系统吸取无功功率,功率因数为1,达到最佳值。 3.1.1 电容器补偿容量的确定 电力电容器的补偿容量Qc可按下式计算: Qc=α·Pjs(tgφ1-tgφ2) 式中 Pjs——最大有功计算负荷,KW tgφ1、tgφ2——补偿前、后功率因数角的正切值 α——平均负荷系数,一般取0.7~1,视Pjs的计算情况而定。如果在计算时已采用了较小系数值,α可取1。 某些已进行生产的工矿企业,可由下式确定其有功电能消耗量: Ap=Pjs·Tmax·p (KW·H) 式中 Ap——有功电能消耗量 Pjs——有功计算负荷 Tmax·p——最大有功计算负荷年利用小时数 3.1.2 并联补偿移相电容器,应满足以下电压和容量的要求 Ue·c≥Ug·c nQg·c≥Qc 式中 Ue·c——电容器的额定电压(KV) Ug·c——电容器的工作电压(KV) n——并联的电容器总数 Qg·c——电容器的工作容量(Kvar) Qc——电容器的补偿容量(Kvar) 3.2 动态无功功率补偿 动态无功功率补偿一般应用于用电容量大、生产过程其负载急剧变化且具有重复冲击性的大型钢铁企业。这种波动频繁、急剧、幅值很大的动态无功功率,采用调相机或固定电容器进行补偿已远远满足不了要求,目前一般采用的新型动态无功功率补偿设备是静止无功补偿器。它具有稳定系统电压、改善电网运行性能、动态补偿反应迅速、调节性能优越等优点。但最明显的缺点是投资大、设备体积大、占地面积大。 3.3 分相补偿 在民用建筑中大量使用的是单相负荷,照明、空调等由于负荷变化的随机性大,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。由于调节补偿无功功率的采样信号取自三相中的任意一相,造成未检测的两相要么过补偿,要么欠补偿。如果过补偿,则过补偿相的电压升高,造成控制、保护元件等用电设备因过电压而损坏;如果欠补偿,则补偿相的回路电流增大,线路及断路器等设备由于电流的增加而导致发热被烧坏。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。 据有关资料介绍,某地综合楼是集商场、银行、办公、车库、宾馆为一体的一类高层建筑,总建筑面积3.2万m2。主要用电设备有空调机组、水泵、风机及照明灯具等,其中照明灯具均为单相负荷,功率因数在0.45~0.75之间。低压有功计算负荷2815KW,其中,照明用电有功负荷1086.5KW,其它负荷基本为空调、风机、水泵、电梯等三相负荷。补偿前无功功率31872Kvar,若整体功率因数补偿到0.92,需补偿1982Kvar,补偿后无功功率1200Kvar。原设计采用低压配电室并联电容器组三相集中自动补偿,工程竣工投入使用后,经常出现仪器、灯具等用电设备烧坏或不能正常使用等情况,影响正常经营和工作。经现场测试,发现低压馈线回路三相负荷不平衡,差距很大,电流差异大,最大相电流差为900A;检测母线电压,三相母线电压有的高达260V,有的低到190V。通过分析是三相电容自动补偿造成的结果。 对于三相不平衡及单相配电系统采用分相电容自动补偿是解决上述问题的一种较好的办法,其原理是通过调节无功功率参数的信号取自三相中的每一相,根据每相感性负载的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。 结束语 文中浅谈了功率因数对广大供电企业的影响以及提高功率因数所带来的经济效益和社会效益,介绍了影响功率因数的主要因素以及提高功率因数的一般方法,还阐述了如何确定无功功率的补偿容量及无功功率的三种人工补偿的具体方式。 1 无功功率 在交流电路中,由电源供给负载的电功率有两种;一种是有功功率,一种是无功功率。 有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒;各种照明设备将电能转换为光能,供人们生活和工作照明。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。 无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。 无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。为了形象地说明这个问题,现举一个例子:农村修水利需要开挖土方运土,运土时用竹筐装满土,挑走的土好比是有功功率,挑空竹筐就好比是无功功率,竹筐并不是没用,没有竹筐泥土怎么运到堤上呢? 在正常情况下,用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。 无功功率对供、用电产生一定的不良影响,主要表现在: (1)降低发电机有功功率的输出。 (2)降低输、变电设备的供电能力。 (3)造成线路电压损失增大和电能损耗的增加。 (4)造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。 从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。这就是电网需要装设无功补偿装置的道理。 2 功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。三相功率因数的计算公式为: 式中cosφ——功率因数; P——有功功率,kW; Q——无功功率,kVar; S——视在功率,kV。A; U——用电设备的额定电压,V; I——用电设备的运行电流,A。 功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。 (1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。 (2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。 (3)加权平均功率因数:是指在一定时间段内功率因数的平均值,其计算公式为: 提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。 2014年中国无功补偿装置行业发展技术分析 智研数据研究中心网讯: 内容提要:研制开发兼有无功补偿与电力滤波器双重优点的晶闸管开关滤波器,将成为改善系统功率因数、抑制谐波、稳定系统电压、改善电能质量的有效手段。 随着电力电子技术,特别是大功率可关断器件技术的发展和日益完善,国内外还在研制、开发一种更为先进的静止无功补偿装置静止无功功率发生装置(SVG),虽然它们尚处在开发及试运行阶段,目前尚未形成商品化,但SVG凭借着其优越的性能特点,在电力系统中的应用将越来越广泛。 随着电力电子技术的发展和电力电子产品的推广应用,供电系统或负荷中含有大量谐波。 煤矿工业是我国目前最主要的能源行业。由于井下机械化设备不断增加,已成为工业系统耗能大户,电力消耗在煤矿生产成本中占有很大比例。 随着煤炭产量增加,巷道延伸,负荷增加,井下电能损耗相当严重,这种状况在全国煤炭系统带有普遍性,而且大部分矿井没有采取任何节电措施。目前煤矿井下大量使用变频设备、整流设备,以及广泛应用电力电子设备,这些电器设备产生谐波电流、谐波电压,正在严重污染井下电网。 针对煤炭行业的电力负荷特点,国内外对动态无功补偿技术都进行研究,主要类型分为如下几种: 1、静止型动态无功补偿装置(SVC)。 该装置为晶闸管控制电抗器+滤波装置(TCR+FC)方式或者晶闸管投切电容器(TSC)。其功能具有平滑调节无功补偿容量、系统响应速度快,并能综合治理谐波,普遍应用在煤矿系统、冶金行业、电力系统和电气化铁路等。 2、磁阀式补偿方式。 装置由补偿电容器和并联可调电抗器组成,通过高阻抗电抗器磁通的调节,使其与并联电容器中多余的容性无功容量平衡。这是自饱和电抗器补偿方式的一种变型产品,因其损耗大,运行成本高,调节速度慢,补偿范围有一定的限制,属于淘汰技术。 3、分组投切电容器方式。 真空接触器(或断路器)投切方式,投切时开关触头间会产生电弧,因电容回路的通断过程中会产生较高的操作过电压和冲击电流。所以往往在回路中串联电抗器来抑制投切涌流,并能治理相应谐波。原理简单,成本低是其特点。第四篇:电网建设中的无功补偿
第五篇:2014年中国无功补偿装置行业发展技术分析