AVC系统电压无功控制策略资料

时间:2019-05-15 02:14:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《AVC系统电压无功控制策略资料》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《AVC系统电压无功控制策略资料》。

第一篇:AVC系统电压无功控制策略资料

第四部分 AVC电压控制

概述:

电压控制策略目的是即时调节区域电网中低压侧电压以及控制区域整体电压水平,使得电压稳定在一定的区间内。针对AVC系统各个功能来说,电压控制是优先级最高,保证电压稳定在合格范围内也是AVC系统最重要的目标。AVC系统的电压控制分为两部分即区域电压控制和单个变电站的电压校正。通过两部分调节即可以保证所有母线电压稳定在合格范围内,又有效的减少了设备控制震荡。

区域电压控制:

区域即电气分区,所谓区域控制就是整体调节每一个电气分区(以下称作区域)的电压水平,使之处在一个合理范围内。首先以AVC建模结果为基础,分别扫描每个区域中压侧母线电压水平,通过取当前母线电压和设定的母线电压上下限作比较,分别统计每个区域中压侧母线的电压合格率(s%)。然后用此合格率和设定的合格率限值(-d%)比较,如果s>=d,说明对应区域整体电压水平相对合理,不需要调整。如果s

单个变电站电压校正类似于VQC设备的控制原理。通过调节主变分头和投切电容器来调节低压侧母线电压,使得母线电压稳定在合理范围之内。在调节分头和投切电容器两种调节手段取舍上我们的做法是有限投入电容器来调节电压。

综上所述,两种电压控制手段不是孤立的,两者之间有先后轻重之分。通常做法是载入电网模型之后,首先进入区域电压调整程序。分别判断每个区域的整体电压水平,对需要调节的区域启动区域电压调整程序,只有当区域电压水平达到一个合理水平时,再依次对每个变电站进行电压校正,最后达到母线电压全部合格的目的。

两种手段结合可以避免单一的调节区域低压侧母线带来的弊端,例如220Kv变电站110Kv侧电压越限导致下级110Kv变电站10Kv侧越限无调节手段。另外在抑制设备控制震荡方面也有很好的效果,例如220Kv变电站和下级110Kv变电站同时越限同时调节,调节之后导致下级110Kv变电站低压侧母线相反方向越限再次调节。

四、就地电压控制

就地控制主要策略如下:

1、10kV电压低,且220kV电压偏高,则优先上调主变档位,然后投入电容器; 2、10kV电压低,且220kV电压正常,则优先投入电容器,然后上调主变档位; 3、10kV电压高,且220kV电压高,则优先切除电容器,然后下调主变档位; 4、10kV电压高,且该时段处于负荷下坡段,则优先切除电容器,然后下调主变档位; 5、10kV电压高,且220kV电压正常、负荷处于平稳阶段,则优先下调主变档位,然后切除电容器;

6、投入电容器时进行预判,如果下列条件成立则不投入电容器,上述电容器优先投入动作被过滤;

 投入电容器时主变无功倒流;  投入电容器时关口倒送;  该时段电容器动作次数越限;  该电容器已投入;

 该电容器被切除后时间小于5分钟(可设);

 该电容器退出自动控制(在闭环模式下有效,开环模式下无效)

7、调整主变档位时也进行预判,如果下列条件成立则不进行档位调节,上述主变档位优先动作被过滤:

 主变并列运行档位相差大;  主变档位动作次数越限;

 主变处于极限档位(最高档/最低档);  主变上次调整时间小于2分钟;

 该主变退出自动控制在闭环模式下有效,开环模式下无效)

8、并列电容器投切考虑如下策略:

 如果不允许并列投切,则该母线上当某电容器投入时,其余电容器自动禁止再投入;

 动作次数少的电容器优先动作;

9、并列主变调节时考虑如下策略:  根据拓扑判断是否并列运行;

 档位调整时交替调节,调整过程中减少档位不一致时间;

 对于7档、17档并列运行主变,人工设置并列运行档位,调节时自动对齐使变比一致

控制结构: bus_control否220kV电压高?是10/35kV母线电压低?10/35kV母线电压低?220母线电压高否否220kV电压低或正常?10/35kV母线电压高?regul_bsxf(上调主变档位),成功?否regul_bscp(投电容),成功?是regul_bscp(投电容),成功?否220kv正常?regul_bscp(切电容),成功?否regul_bsxf(下调主变),成功?regul_bsxf(上调主变档位),成功?是是退出regul_bsxf(下调主变),成功?是regul_bscp(切电容),成功?退出退出退出

第五部分 AVC无功控制

一.概述

1.控制目标

地区电网AVC的无功控制以尽可能满足无功就地平衡,减少无功长距离输送,从而降低系统网损为目标。

2.控制对象

地区电网AVC的无功控制对象可以有:有载调压变压器分接头、容抗器、地方电厂发电机的可调无功出力以及其它柔性输电的无功调整装置等。其中,有载调压主变和容抗器是最常用和最普遍的无功调节手段,前者用来改变无功分布,后者可补偿或吸收无功。

3.约束条件

地区电网AVC以保持电网安全稳定即保证电压水平合格为首要目标,因此无功控制始终以各等级母线电压为约束条件,无功调整时不得导致母线电压越限。

另外,无功控制时还要考虑设备动作次数和动作时间间隔等约束条件。

二.实现方案

地区电网中,无功负荷分布广泛且随着有功负荷的持续增减而连续变化,而作为无功来源的无功补偿装置则相对集中,且补偿容量具有一定的离散性,因此在实际工程中,难以做到真正的无功就地平衡和无功优化,可行且易于实现的是无功的次优化分布,即在尽可能小的范围内实现无功按分区平衡。

1.分区

在110kV及以下电压等级电网解环运行后,220kV等级以下配网呈树状分布(如图1所示)。在这种情况下,可对地区电网以220kV母线为根结点进行区域划分,从而形成多个分别包含一个220kV变电站及其下属一个或几个110kV变电站的分区,各分区之间的联络点为位于分区关口的220kV母线,彼此耦合性大大降低,从而为无功分区平衡创造了便利条件。

图1.典型地区电网接线图

2.无功控制

如图2所示,在分区形成后,可得到若干区域,每个区域包含一个220kV变电站及若干110kV变电站的大区域A及以单个110kV站为单位的B、C等区域。对于A区域,其控制点为关口220KV母线,控制对象为其区域内的所有容抗器;对于B、C区域,其控制点为本站的110kV母线,控制对象为各自站内的容抗器。

区域A线路B区域B线路C区域CA站C站B站

图2

地区电网分区结构图

分区形成后,即可分别按区域进行无功控制。但在实际电网中,由于负荷变化的连续性及波动性,将各区域关口母线的注入或流出无功值始终控制为零也是不现实的。一种工程上成熟、可靠的方法是将该值尽量控制为一较小值,即将关口母线的功率因数控制在一较高水平上。另外,由于各区域内无功储备容量存在差异,而且B、C等区域内容抗器需同时参与A区域与本区域的无功调节,实际中很难使 A、B、C等区域同时达到无功分区就地平衡,区域B、C的控制目标与位于其上级的区域A关口存在一定的矛盾。因此,A、B、C各区域存在控制顺序上的先后关系,A区域优先级高于B、C区域,B、C等区域地位等同。

第二篇:桥湾风电场智能无功电压控制策略

第38卷 增刊1 2013年6月 电

术 Power System Technology Vol.37 Supplement 1

Jun.2013 文章编号:1000-3673(2013)S1-0000-00

中图分类号:TM 76

文献标志码:A

学科代码:470·40

桥湾风电场智能无功电压控制策略

张丽坤,郭宁明,董志猛,栾福明

(国网电力科学研究院,北京市 昌平区 102200)

A Reactive Power Control Strategy of Qiaowan Wind Farm ZHANG Likun, GUO Ningming, DONG Zhimeng, LUAN Fuming(State Grid Electric Power Research Institute, Changping District, Beijing 102200, China)摘要:风电场智能无功电压自动控制(auto voltage control,AVC)对风电场的无功电压调节,降低电网损耗、保持电压稳定性有着重要的作用。文章介绍了桥湾风电场自动电压控制的原理、算法、控制方法、系统规模及及安全控制策略。结合系统整体的电压调节能力、风机无功出力、静止无功补偿系统(static var compensator,SVC)无功出力调节、风场间的无功调节试验,总结了AVC系统在桥湾风电场的调节效果。结果表明AVC系统可以合理地分配无功目标给风机及SVC等无功补偿设备,将风电场高低压侧母线电压控制在调度要求的范围之内,使各无功源运行在较优电气点。关键词:无功电压控制;无功目标分配;无功优化

机。场站规模大,场内设备种类复杂,固有的间歇性给电网运行带来了极大的挑战,风电场智能无功电压控制系统的建设对该厂站整体的无功电压控制起到了积极地作用。本文总结了桥湾风电场自动电压控制工程实施的内容及经验,希望能对实施该系统的电厂的运行及管理有所裨益。压控制原理及算法

1.1 控制原理

风电场AVC是根据调度的指令和风电场并网点的信号,调节风电场的无功补偿设备及风电机组本身的控制系统。其输入信号有调度的指令、并网点的有功功率、无功功率、电压等,控制目标为保持风电场的无功/电压在调度要求的范围内;控制对象包括风电场并网点电容器、电抗器的投切、静止无功补偿系统(static var compensator,SVC)的控制、静止式无功发生器(static var generator,SVG)的控制、风场机组的控制,通过对离散/连续的风电场无功设备出力的协调,提高对风场电压/无功的支撑。其中,风场机组的控制通过风场能量监控平台,无功电压自动控制(auto voltage control,AVC)通过风场能量监控平台,下达风电机组无功目标,由风场能量监控平台来协调风场内各机组的无功,从而实现对整个风电场的无功优化控制,控制原理如图1所示。1.2 控制策略

对风电场无功的控制可以通过对母线电压及风机机端电压的控制来实现。

风场无功电压稳定是通过风电场建模,综合考虑升压变、箱变、馈线、风机等设备的无功需求,实时计算风场整体无功裕度,协调利用SVC、风机以及分接头的无功调节能力,保持风电场无功平衡 0 引言

目前,风电以前所未有的速度迅猛发展。由于风电本身固有的间歇性给电网运行带来了极大的挑战,其引起的无功电压问题日益受到关注[1-3],目前风电接入电网主要的无功调节问题表现在2个方面。首先风电场目前缺乏统一的无功/电压控制设备,风电场高压侧母线(并网点)电压波动大,难以满足电网电压考核要求;其次风电场无功调节设备间缺乏协调控制,当出力变化严重时,机端电压波动,容易导致风机机端电压越限脱网事故[4-6]。

风电场电压/无功的水平影响到风电场有功出力的稳定及系统的安全稳定,保持风电场的电压稳定具有十分重要的意义[7]。风电场智能无功电压控制系统按照选定的智能化控制策略,协调风电场各无功源的无功出力,将风电场高低压侧母线电压控制在调度要求的范围之内,使各无功源运行在较优电气点,是提高风电场的电压/无功支撑能力,实现风电场可观测、可调度、可控制的重要手段。

桥湾330 kV升压站由华能酒泉风电有限责任公司、华润电力风能有限公司、甘肃中电酒泉第四风力发电有限公司3家共同出资建设,共193台风 2 许纯信等:居民用电设备智能电源线的设计与应用 Vol.37 Supplement 1 图

1风电场无功电压控制原理

及电压稳定,并保留足够裕度以应对异常情况,实现风险控制。

风机机端电压稳定是通过风电场状态估计,实现风电场全面监测,同时避免无效采样数据对计算的影响,保证系统的整体可靠性,避免由于电压波动导致风机脱网[8-10]。

2风电场无功电压控制算法流程

1.3 算法流程

为系统调控的安全稳定,系统数据库中设定了一些调控相关的控制参数,如调控目标值上限、下限、调节步长等,各参数即规定了调控目标值的调节死区。风电场AVC接收主站下达的电压/无功目标后,会将该目标值和现有的参数进行比对,只有调节目标值偏移死区,才会启动调控算法,进行无功分配。启动无功调节模块,进行无功调节灵敏度计算,算出调节动作对象。将调度下发给风电场高压侧母线电压目标折算为无功目标值,选择不同的控制模式决定风机、SVC各调节装置无功分配量。具体分配算法参考风电场的等值图(见图3)。图3中:U、P、Q分别为当前高压侧母线电压、有功功率、无功功率;Pm、Qm为m侧主变的有功功率、无功功率;Pn、Qn为n侧主变的有功功率、无功功率;W1、Wn、Wi、Wj为风场当前接入的风机组;

TCR(thyristor controlled reactor)为m侧主变下接入晶闸管控制电抗器。设当前高压侧母线电压为Ui,母线上所有机组送入系统的总无功为Qi。要求调节的高压侧母线电压目标值为Uj,需向系统送出的总无功为Qj。系统电抗用X值表示,则机组送入系统的总无功调节目标为

jjUjUiQiQU(XUi)

其中

QinQ(i)g

g1式中:g为母线上机组的台数;Q(i)g为每个风电机组送入系统的当前无功值。

因此,根据Ui、Qi、Uj、Qj、X即可以确定送入系统的总无功调节目标值。

3风电场等值图

在保证总调节量的基础上,依据调节欲度和约束条件,本系统分情况采用3种控制方式,将全场的无功目标合理的分配给风机、SVC。实际运行经验表明:自动控制发电厂无功时,充分考虑SVC、风机在系统电压无功支撑中的作用是十分重要的,调解中需要充分考虑SVC对暂态、动态无功的支撑作用并留出一部分作为备用;考虑每台机组的运行工况,并保持相同的功率因素或调节裕度。1.4 控制方式

计算过程受多重约束条件限制,包括母线电压约束、变压器分接头动作次数约束、风场有功出力约束等。

1)当目标缺额大于动作定值时,采用平衡模式的优化控制方式。此方式在接收到电压目标时,先启动优化算法,计算出风机、SVC各自承担的无功量,然后同时启动风机、SVC的调节,直至达到调节目标。调节完成后,由SVC承担电压目标的 第37卷 增刊1 电

术 3 跟踪和保持。

2)当目标缺额小于动作定值而高于优化定值时,采用SVC优先调节的优化控制方式,此方式优先控制SVC,当SVC的无功调节能力用尽时,调节风机无功,当风机无功调节达到最大但还是没有达到电压目标时,启动分接头调节提示。

3)当目标缺额低于优化定值时,采用风机无功优先调节的优化控制方式,优先控制风机的无功,当风机的无功调节能力用尽时,调节SVC,当SVC调节达到最大但还是没有达到电压目标时,启动分接头调节提示。

当控制目标达到时,优化控制系统将当前母线目标值保持在死区范围内,并等待接收新的调节目标[11-13]。桥湾风电场无功电压控制系统配置

2.1 桥湾风电场规模

桥湾330 kV升压站电压等级为330/35 kV,330 kV母线采用双母线接线,两回330 kV出线接入330 kV玉门镇变至750 kV敦煌变的330 kV母线侧。桥湾330 kV升压站共安装主变4台,容量为2240 MVA+2120 MVA;35 kV采用单母线(2段)分段接线,进线共36回,每段母线均配置磁阀式可控电抗器(magnetic valve controllable reactor,MCR)型动态无功补偿装置,容量为235 Mvar+ 218 Mvar。此外,本变电站配置2台630 kVA站用变压器及1台315 kVA备用站用变。桥湾风电场共193台风机,每10到11台风机为1个回路,共18个回路。

4桥湾风电场通讯工况图

2.2 AVC子站配置

AVC子站配置主备服务器,一台后台工作站,以及8台监控工作站,参见图4通讯工况图。主备服务器互为冗余,同步更新数据库,正常情况下,备系统处于侦听状态,接收来自主系统的广播数据和心跳信号。当主系统故障退出时,备系统接替主系统功能,直至主系统恢复。后台工作站同升压站监控系统和 4套 SVC装置的监控系统均安装在升压站通讯机房内,用于调度员查看风场的运行工况,监控工作站分别放置在各风场的风机监控系统安装在各风场的自动化机房内。2.3 系统软件结构

系统软件包含软件平台及数据库模块、人机接口模块、通讯模块、算法模块、闭锁及限制模块5部分。系统软件平台基于Unix/Linux架构,配置Oracle数据库;人机接口模块负责界面及数据的浏览,定值的整定及下载,数据的统计分析及打印等功能;通讯模块负责通讯接口的配置,通讯数据的预处理,通讯数据及调控目标报文的存储;算法模块按照现场选定的算法执行调控功能,当算法目标达到时,执行目标的跟踪功能;闭锁及限制模块负责闭锁工况下系统的功能及系统各种状态切换下的平滑过渡。

从实现方式来分,又可以分为网络子系统、前置机子系统、数据库子系统、人机接口模块。前置机采集并解析前置数据,得到遥测、遥信、电度等生数据。这些生数据通过网络子系统进行监控和管理,实现客户/服务器数据库访问的数据传输功能,实时刷新数据库。人机界面只是跟实时数据库进行数据交换,按照调度员的需求在人机界面中展示数据、事件、曲线等统计结果。无功电压控制系统特色

3.1 通讯接口丰富

由于无功电压控制系统要与多个风机和SVC厂家通讯,该系统配置了多种通讯接口,规约处理功能很强大,可以支持目前电力系统中基本的通信规约。如支持以太网RJ45或以太网光纤接口,CAN2.0B、RS232/485、E1/G703;支持TCP/IP、IEC 60870-5-103/104、MODBUS-TCP、部颁CDT规约、DNP3.0、SC1801数据通讯协议,也可根据用户要

求自定义数据通讯协议,方便系统的接入和转出。3.2 调节模式灵活

AVC子站投入运行时,默认运行在远方全厂电压控制模式。当电厂15 min没有收到中调的电压目4 许纯信等:居民用电设备智能电源线的设计与应用 Vol.37 Supplement 1 标,与中调的远动通道中断或者中调AVC 主站发生故障时,AVC子站自动切换到就地电压曲线控制方式。AVC后台可以设定就地控制方式,目前有电压曲线控制和人工优化曲线控制方式两种。采用以上策略,可以使得在电厂AVC子站投退和控制模式切换期间,不会对电网运行造成波动。3.3 安全控制策略

1)系统自动根据上下限制,在满足电网及无功设备安全运行条件下,对电压/无功进行调节。

2)系统自动检测SVC、风机的运行状态,当电气量不满足控制条件或系统运行工况发生变化时,系统能够及时修改或调整无功的分配方案。

3)系统设置了多种闭锁条件,如风场母线电压扰动、波动,风场母线高、低压侧电压越限,风场升压低压侧变母线电压越限等。当满足条件时,闭锁相关元件并发出告警信号。3.4 风电场状态评估

由于风电场风机监控系统可能难以提供全部风机信息;同时遥测数据中难免存在一些坏数据,这些因素都会影响到最终调控效果。系统利用最小二乘法估计及卡尔曼滤波等手段实现状态信息的平滑、预计、滤波,根据35 kV馈线量测信息,计算沿馈线各风机电量信息,保障调控的的稳定性和可靠性。桥湾风电场调节效果

目前,桥湾风电场AVC系统具备基本调压、无功优化功能,AVC系统与远动、SVC通讯联调完成,处于正常运行状态。在SVC系统和风机服务器的配合下,较好地完成了风电场整体调压及电压维持功能,下面从5个角度对该AVC系统的调节能力进行分析。363.0 瞬时电压调节测试: 高压侧母线电压 目标值360 kV 目标值359 kV 360.5 Vk/压358.0 电355.5 瞬时电压调节测试: 瞬时电压调节测试: 目标值356 kV 目标值353 kV 353.0 0 2 4 6 8 10 12 14 16 18 20 22 24 t/min

5330 kV高压侧母线电压曲线

1)系统整体电压调节及维持能力。

分析某一日的系统数据,330 kV高压侧母线电压曲线见图5。母线电压目标值控制在359 kV,图

5显示330 kV高压侧母线电压维持在额定范围内,上下死区1 kV;测试过程中,分别设定瞬时目标值356、360、353 kV,变化范围2 kV以内可在3 min内调节到位,并稳定维持在该水平。AVC系统表现出较好的电压调节及维持能力。

2)风机出力及外部系统电压情况。

日常风场有功出力维持在50 MW以下,接近于0出力。3月26日12时起,出力急剧爬升,下午16时左右达到480 MW左右,接近该风场历史最高水平。图6为3月26日桥湾升压站2号主变有功出力变化情况,其他风场有功出力与之类似。图7显示在同一时间段内风场高出力情况下,AVC则通过调节SVC及风机提供了较高的无功出力保证风场内部无功平衡及母线电压水平。

W90 M/功60 有30 0 2 4 6 8 10 12 14 16 18 20 22 24 t/min

图6

桥湾升压站2号主变有功出力曲线

 ra vM/功1.0 无5.5 10.0 0 2 4 6 8 10 12 14 16 18 20 22 24 t/min

图7

桥湾升压站2号主变无功出力曲线

3)风机机端电压运行情况。

3月26日测试中参与调压的海装风机机端电压曲线如图8所示,直驱风机的机端电压曲线与之类似,在母线电压维持稳定的基础上,机端电压也维持了相对稳定。

4)SVC出力控制测试。

3月26日运行测试中,AVC系统对SVC电容自动投切功能进行了测试,测试中较好实现预定目标,SVC电容投切基本接近手动控制效果,1号SVC无功出力曲线如图9所示,其中无功突变位置(尖峰 第37卷 增刊1 电

术   Vk/压电   0 2 4 6 8 10 12 14 16 18 20 22 24 t/min

图8

海装风机机端电压曲线

 r av/功无   0 2 4 6 8 10 12 14 16 18 20 22 24 t/min

图9

SVC无功出力曲线

部分)即为电容投切时刻。

5)风场间无功优化。

长时间运行测试中AVC系统较好的实现无功优化目标:1)风场间无功平衡,平衡风场间无功出力,维持35 k母线电压稳定;2)风场无功平衡基础上,慢速调节SVC及风机出力,控制SVC电容不投切状态下,SVC具备足够上下调节余量(约单组电容实际容量一半)。总结

从桥湾风电AVC系统运行测试情况看,在给出合理电压目标值情况下,风电场AVC系统已经实现了调压、无功优化、数据采集、记录、安全控制等基本功能,桥湾风电场的试验案例可以充分的论证该无功电压控制系统控制策略的有效性。

参考文献

[1] 席晶,李海燕,孔庆东.风电场投切对地区电网电压的影响[J].电网技术,2008,32(10):58-62.

[2] 吴义纯,丁明.风电引起的电压波动与闪变的仿真研究[J].电网

技术,2009,33(20):126-130.

[3] 李海峰,黄维新,王亮,等.风电场无功电压控制分析[J].电力

科技,2012:249-250.

[4] 王松岩,朱凌志,陈宁,等.基于分层原则的风电场无功控制策

略[J].电力系统自动化,2009,33(13):83-87.

[5] 赵利刚,房大中,孔祥玉,等.综合利用SVC和风力发电机的风

电场无功控制策略[J].电力系统保护与控制,2012,40(2):45-55. [6] 王亮,张磊.风电场升压站无功控制策略研究[J].沈阳工程学院

学报:自然科学版,2013,9(1):7-10.

[7] 侯佑华,房大中,齐军,等.大规模风电入网的有功功率波动特

性分析及发电计划仿真[J].电网技术,2010,34(5):60-66. [8] 乔颖,鲁宗相,徐飞.双馈风电场自动电压协调控制策略[J].电

力系统自动化,2010,34(5):96-101.

[9] 杨桦,梁海峰,李庚银.含双馈感应电机的风电场电压协调控制

策略[J].电网技术,2011,35(2):121-126.

[10] 丁明,李宾宾,韩平平.双馈风电机组运行方式对系统电压稳定

性的影响[J].电网技术,2010,34(10):26-31.

[11] 任普春,石文辉,许晓艳,等.应用SVC提高风电场接入电网的电压稳定性[J].中国电力,2007,40(11):97-101.

[12] 王成福,梁军,张利,等.基于静止同步补偿器的风电场无功电

压控制策略[J].中国电机工程学报,2010,30(25):23-28. [13] 张平,刘国频,曾祥君,等.风电场无功电源的优化配置方法[J].电

力系统保护与控制,2008,36(20):33-37.

收稿日期:2013-00-00。作者简介:

张丽坤(1982),女,中级工程师,主要从事电力系统稳定控制及自动装置研究,E-mail:zhanglikun@sgepri.sgcc.com.cn;

郭宁明(1980),男,中级工程师,主要从事电力系统自动化; 董志猛(1983),男,中级工程师,主要从事电力系统稳定控制及自动装置研究;

栾福明(1980),男,中级工程师,主要从事电力系统稳定控制及自动装置研究。

(责任编辑

徐梅)

第三篇:浅谈变电站电压、无功综合控制

浅谈变电站电压、无功综合控制

摘要:计改革开放以来,随着我国国民经济的快速增长,电力系统也获得了前所未有的发展。传统的变电站已经远远不能满足现代电力系统管理模式的需求。因此变电站综合自动化技术在电力行业引起了越来越多的重视,电压、无功综合控制也是变电站综合自动化的一个重要研究方向。本文以电力系统调压措施、调压措施合理选用及控制方法、微机电压、无功综合控制装置等方面进行分析讨论。

关键词:变电站;电压;无功;综合控制装置

改革开放以来,随着我国国民经济的快速增长,电力系统也获得了前所未有的发展。传统的变电站已经远远不能满足现代电力系统管理模式的需求。因此变电站综合自动化技术在电力行业引起了越来越多的重视,并逐渐得到了广泛的应用。现就以变电站综合自动化电压、无功控制子系统进行讨论分析。变电站综合自动化系统,必须具备保证安全、可靠供电和提高电能质量的自动控制功能。电压和频率是衡量电能质量的重要指标。因此,电压、无功综合控制也是变电站综合自动化的一个重要研究方向。

一、电力系统调压的措施

1.利用发电机调压

发电机的端电压可以通过改变发电机励磁电流的办法进行调整,这是一种经济,简单的调压方式。在负荷增大时,电网的电压损耗增加,用户端电压降低,这时增加发电机励磁电流,提高发电机的端电压;在负荷减小时,电力网的电压损耗减少,用户端电压升高,这时减少发电机励磁电流,降低发电机的端电压。按规定,发电机运行电压的变化范围在发电机额定电压的-5%~+5%以内。

2.改变变压器变比调压

改变变压器的变比可以升高或降低变压器次级绕组的电压。为了实现调压,在变压器的高压绕组上设有若干分接头以供选择。变压器的低压绕组不设分接头。变压器选择不同的分接头时,原、副方绕组的匝数比不同,从而使变压器变比不同。因此,合理地选择变压器分接头,可以调整电压。

3.利用无功功率补偿调压

改变变压器分接头调压虽然是一种简单而经济的调压手段,但改变分接头位置不能增减无功功率。当整个系统无功功率不足引起电压下降时,要从根本改变系统电压水平问题,就必须增设新的无功电源。无功功率补偿调压就是通过在负荷侧安装同步调相机、并联电容器或静止补偿器,以减少通过网络传输的无功功率,降低网络的电压损耗而达到调压的目的。

4.改变输电线路的参数调压

从电压损耗的计算公式可知改变网络元件的电阻R和电抗X都可以改变电压损耗,从而达到调压的目的。变压器的电阻和电抗已经由变压器的结构固定,不宜改变。一般考虑改变输电线路的电阻和电抗参数以满足调压要求。但减少输电线路的电阻意味着增加导线截面。多消耗有色金属。所以一般不采用此方法。

二、调压措施合理选用及控制

实际电网中的调压问题,不可能只利用单一的措施解决。而是根据实际情况将可能选用的措施进行技术经济比较确定合理的综合调压方案。一般情况对上述调压措施合理选用可概括如下:

发电机调压简单、经济,应优先考虑。在电力系统中电源无功充裕时,有载条件下改变变压器变比调压其效果明显,实为有效调压措施,应按《电力系统电压和无功电力技术导则》规定尽可能选用。并联补偿无功设备则需要增加设备投资费用高,但这类措施往往针对无功平衡所需,且还能降低网损,特别适用于电压波动频繁、负荷功率因数低的场合,所以也是常用的调压措施。实际电力系统的调压,是将可行的措施按技术经济最优原则,进行合理组合,分散调整。

全国很多110kV及以下的供配电变电站中都装设有载调压变压器和并联电容器组,通过合理地调节变压器的分接头和投切电容器组,就能够在很大程度上改善变电站的电压质量,实现无功潮流合理平衡。在变电站自动化系统中加入电压无功综合控制功能,已经成为一个现实的问题。传统的控制方式是,运行人员根据调度部门下达的电压无功控制计划和实际运行情况,由运行人员手工操作进行调整的,这不仅增加运行人员的劳动强度,而且难以达到最优的控制效果。随着无人值班变电站的建设和计算机技术在变电站综合控制系统中的应用,为了提高电压合格率和降低能耗,目前各种电压等级的变电站中普遍采用了电压无功综合控制装置,就是在变电站中利用有载调压变压器和并联电容器组,根据运行实际情况自动进行本站的无功和电压调整,以保证负荷侧母线电压在规定范围内及进线功率因数尽可能高的一种装置。这种装置一般以计算机核心,具有体积小功能强、灵活可靠等优点,同时具有通信、打印等功能,便于实现网的无功优化。

三、微机电压、无功综合控制装置

1.微机电压、无功综合控制的选择

随着社会的发展和进步,市场上的电压、无功控制装置种类很多,用户应根据变电站的实际情况及要求合理地选择,选择装置时应注意它的基本性能,比如:性能稳定、抗干扰性能好、运行可靠性;软件、硬件是否有保护措施,能自检、自诊断;操作简单、使用维护方便;有闭锁装置;失压后电源恢复时能自动启动运行。

2.电压、无功综合控制装置举例

目前,国内许多公司、厂家和科研院所已推出了电压无功综合控制装置。这些装置大多采用九区图来进行运行状态的划分和控制策略的确定。本文以MVR-Ⅲ型微机电压、无功综合控制系统进行简单介绍。

MVR-Ⅲ型微机电压、无功综合控制系统,可应用于35kV~500kV各种电压等级的变电站,可分别控制1~3台两绕组或3绕组的主变和1~3×4组无功补偿电容器或电抗器组。应用该系统,可使受控变电站的电压合格率提高至100%,同时使无功补偿合理,可降低网损,节约电能。MVR系列产品控制规律先进合理,并具有完善的闭锁措施,确保受控变电站和受控设备的安全。现已在国内近百个变电站投入运行。

装置主机采用工业控制工作站,升级、扩展方便;具有谐波监视、谐波越限报警和控制功能,可分析1,2,3,5…19次谐波,满足部颁对谐波监视的要求;电压测量精度≤±0.5%;电流测量精度≤±2%;无功测量精度≤±2%;具有80列打印机,具有6种打印功能;具有电压合格率计算,统计功能;具有故障诊断和故障记忆功能。

MVR-III型微机电压无功综合控制系统(简称?MVR-III)可用于35kv~500kv电压等级的枢纽变电站,可同时分别控制三台及以下有载调压变压器(两绕组或三绕组)的分接头位置和1~12组无功补偿电容器的投切。不论变电站采用何种接线方式和运行方式,MVR-III均能自动判断,并正确执行控制命令。

MVR-III把调压和无功补偿综合考虑,进行控制,使调压效果更好。其控制规律先进、合理,做到:在保证电压质量的前提下,使变电站高压供电网络的线路损耗尽量减少,有利于节能。

第四篇:电压无功管理工作总结

电压无功管理工作总结

我工区所辖九个变电站,除站外,其余8座变电站装有电容器补偿装置。35KV母线装有电容器13组,容量172600kvar;站35KV侧还装有低压电抗器一组,容量45000kvar。10KV母线装有电容器8组,容量30000kvar,电容器总装设容量202600kvar。截止年底,电容器组可用率达99.99%。10KV母线设有电压监测点8个,截止年底,全工区电压总合格率为99.78%,电压合格率和电容器可用率均达到一流标准。

为了搞好电压无功管理工作,工区成立了以主任为组长的电压无功管理领导组,运行、修试股各设专责人一名,成员由各站站长组成。建立、健全了电压无功设备台帐。并制订了相应的管理制度及考核办法。同时要求各站加强对无功设备的运行维护和管理工作,根据调度部门下达的电压曲线,结合本站实际情况及时投切电容器和调整有载分接开关。

目前尚有变电站3000kvar电容器组急待更换为密集型电容器,另外需更换为有载调压变压器,以利于系统电压的调整。

第五篇:电压无功工作自查报告

xx供电公司电压无功工作自查报告

电压无功管理工作是一项技术性、综合性较强的工作,电压无功管理与电网的稳定及设备的安全运行有着重大的关系,与社会生产、百姓生活密切相关。历年来,在襄阳供电公司的正确指导下,xx供电公司对该项工作非常重视,制定了一系列办法、制度来规范和提高对该项工作的管理。现从指标完成情况、专业工作开展情况等五个方面对该项工作进行自查汇报,请领导专家多提宝贵意见。

一、指标完成情况

2011年1-10月综合电压合格率完成了99.90%,比2010年综合电压合格率

99.89%同期增长0.01个百分点,与襄阳供电公司下达的99.85%的计划值相比高出0.05个百分点。

指标完成情况

2008年1-4月综合电压合格率完成了99.73%,比2007年1-4月综合电压合格率99.43%同期增长0.33个百分点,与襄樊公司下达的99.60%的计划值相比高出0.13个百分点。其中D类电压合格率完成99.33%,比2007年1-4月D类电压合格率98.64%同期增长0.69%。

指标完成情况

二、电压监测点安装情况

xx供电公司现有电压监测点20个,其中B类1个,C类点7个,D类点1

2个。2007年平均负荷为68MW,按照C类用户每10MW负荷至少应设一个电压质量监测点的要求,C类电压监测点应安装7个,现已安装7个,其中有2块是镇江泰利峰的表,需更换为短信电压监测仪。现有公用变压器585台,按照D类每百台配电变压器至少设2个电压质量监测点的要求,现已安装12个电压监测点。

三、开展的专业工作

1.1电压管理

1.1.1加强管理

(1)健全电压无功管理网络,明确分级管理职责范围和工作内容,确保网

络畅通。成立以公司总经理为组长,公司副总经理为副组长,相关部门负责人为小组成员的领导小组,生产和用电部门各设一名专职或兼职电压无功专责,负责日常运行维护工作。

(2)制定相关制度,严格考核。严格执行襄樊供电公司生技部下达的“综

合电压合格率考核办法”和“无功界面功率因数考核办法”,我公司结合具体情况,把指标分解到各个部门,按月考核,年底兑现。

(3)加强对基础台账的统计与分析工作。按月保存真实有效的电压数据,从数据中掌握电压的现状,分析电压管理存在不足,不断持续改进。

(4)加强学习。电压工作涉及生产运行的方方面面,要求管理人员不断学习,提高专业素质,实现更有效的管理。

(5)定期开展校验工作。对电压监测仪坚持一年一校,确保监测的电压数

据准确无误。

1.1.2采取的具体措施

(1)对公变档位进行调整。将档位由二档调到一档。配合无功自动补偿装置使用,在负荷高峰投入无功进行功率调整。通过以上调整后效果很显著,合格率能持续达到99%以上。以后依据负荷、功率因数的变化情况,出现电压超高限或超低限现象,及时调整配变分接开关至合适的挡位,使全年电压基本保持合格。

(2)针对电压监测仪普遍接收不到的信号情况下,2007年10月份联系豪迈亿力厂家,对18块短信电压监测仪进行全部检查,发现在2003年-2004年期间购买的电压监测仪都存在一个通病,就是当移动网出现故障时,电压监测仪的状态会处在一个虚网状态,会出现电压监测仪能接收信号,但不能发回信号的情况,旧的电压监测仪针对这种情况不能自已纠正,只能靠重启电源解决。对12台同类型的电压监测仪经过重启后故障能暂时排除。

(3)有个别电压监测点持续出现电压偏高或偏低现象,经分析是由于公变所带负荷过大或过小。针对此种情况,我们采取的措施是转移公变负荷,使负荷与公变容量配套。

2.1无功管理

配网的无功管理工作主要体现在对公变及用户无功补偿装置的管理。我公司历来重视低压无功补偿装置管理维护工作,对低压无功补偿装置的运行现状作过多次统计分析。

2007年9月份对城区内所有公变无功补偿装置进行了全面检查,对装置出现的问题作了分类汇总,对需更换的无功补偿装置的费用作了估算并经过襄樊供电公司上报到省公司,作为下一步无功规划的参考。

2.1.1 无功管理中存在的问题

(1)无功补偿装置自身质量问题

针对无功补偿装置自身存在设计不合理、元器件质量不合格等问题,2005年我公司以此作为QC课题,专门进行攻关。后与厂家合作,对现有的无功补偿装置从五个方面进行了成功改造。改造后的2台无功补偿装置正常运行至今,效果良好。

(2)居民用户区存在的问题

较早的公用配电房中无功补偿柜多为手动投切操作,由于操作人员有限,基

本不投运。新建公用配电房中安装有带自动控制器的无功补偿柜,但是自动控制器质量有缺陷,故障较多。这两种情况均不利于小区自动无功补偿,既增加了线损,又对电压合格率有一定影响。给公用变无功补偿带来困难。

(3)非居民用户存在的问题

非居民用户中存在向系统倒送无功电量的情况,对系统无功平衡造成很不利的影响。根据功率因数考核的要求,这些用户基本都安装了无功补偿柜,但是在管理上存在较多问题。仅依靠用电上的力率奖惩无法控制无功补偿柜在低谷时段向系统倒送无功的情况。部分用户由于无功知识缺乏或自动控制装置失效,任由电容器投运而向系统倒送无功的现象不可避免地存在。一些用户判断电容器是否应投切的依据就是无功电度表是否已停止转动,而根本不顾及是否因投入过多的电容器会向系统倒送无功。

(4)安装、运行维护中存在的问题

安装方法不正确,出现安装接线错误导致无功装置存在假运行状况。维护工作不细致,无功补偿装置能否持续正常投入运行与运行人员的正确维护有很大的关系。一线生产人员由于缺少无功补偿设备方面的运行维护知识,出现故障后不知如何处理,导致无功装置停运。

2.1.2 解决办法及建议:

(1)对部分非居民用户向系统倒送无功的问题,供电部门有责任对其做好正确用电的培训教育工作,同时应制定和落实相应的考核措施以及设置合适的计量器具。从技术手段来讲,要合理配置电容器的组数和容量。

(2)购买质量合格的无功补偿装置,或购买一批无功装置备品备件,由维护人员自已更换。将已损坏无法修复的无功补偿装置退出运行。

(3)请专家到现场对一线生产人员讲解相关知识,并把正确的安装方法和维护要点纳入到日常管理中,确保新无功设备接线正确,运行维护中出现问题能、会处理。

四、专业管理存在的问题

(1)、电压监测仪存在信号接收不及时,或接收不到信号的情况。需到现场长进行调整,一是耗损费时间,二是耗损费人力物力。

(2)、对用户的无功补偿的管理力度不大,虽查找出原因,但对用户无功补

偿的管理需要用户的积极配合,目前没有形成对用户无功补偿装置的管理制度。

(3)、需加强对无功设备巡视,加强对无功补偿设备运行、投运情况进行详细记录。

五、下一步工作安排

(1)采取调整公变档位和提高无功补偿装置投运率相结合的办法提高D类电压合格率。

(2)加强对台区无功补偿装置的巡视和维护,联合用电部门,加大对用户无功补偿装置的监控力度。

(3)加强对无功补偿装置的统计与分析工作。把台区功率因数与台区线损结合起来,对能正常投运无功补偿装置的公变,对其每月的功率因数与线损,作跟踪统计,通过数据比较分析新装无功装置的投入产出比,为下一步提高台区无功补偿装置投运率,提供决策依据。

(4)与人力资源部配合,做好技术培训工作。

下载AVC系统电压无功控制策略资料word格式文档
下载AVC系统电压无功控制策略资料.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    无功电压控制将是发展动向(共五篇)

    风电并网技术 无功电压控制将是发展动向 北极星电力网新闻中心2011-5-6 15:20:11我要投稿 所属频道: 电网风力发电输配电关键词: 风力发电风电机组风电场北极星风力发电网讯......

    变电站内电压无功自动调节和控制

    变电站内电压无功自动调节和控制 变电站内电压无功自动调节和控制,是通过站内智能设备实时采集电网各类模拟量和状态量参数,采用计算机自动控制技术、通信技术和数字信号处理......

    AVQC电压无功自动调节系统技术说明

    AVQC电压无功自动调节系统技术说明 1. 意义 电压的稳定对于保证国民经济的生产,延长生产设备的使用寿命有着重要的意义,而减少无 功在线路上的流动,降低网损经济供电又是每一......

    地区电网电压无功控制方案研究开题报告

    西安科技大学高新学院毕业设计(论文)题开 题 报 告 目_____地区电网电压无功控制的方案研究____院(系、部)____西安科技大学高新学院毕业设计(论文)开题报告......

    无功电压管理典型经验

    无功电压管理典型经验 专业名称:无功电压管理 日期:2006年12月 填报单位: 榆林供电公司 [摘要] 电力系统的无功补偿与无功平衡,是保证电网稳定、经济运行和电压质量的基本条件......

    电压质量与无功管理办法

    电压质量与无功电力管理办法 第一章总 则 1.1提高电压质量、保持无功电力平衡是保证电网稳定、经济运行和供用电设备正常运行的重要手段。各职能部室要加强对所辖电网电压质......

    风电并网技术 无功电压控制将是发展动向

    风力发电作为目前世界上可再生能源开发利用中技术最成熟、最具规模开发和商业化发展前景的发电方式之一,由于其在减轻环境污染、调整能源结构、解决偏远地区居民用电问题等方......

    电力调度自动化AVC系统安全控制策略浅析范文

    电网调度自动化AVC系统安全控制策略浅 析 [摘要]电网调度自动化系统的完善构建、广泛应用与快速发展令自动电压控制系统,即AVC的科学研究逐步深入。本文基于电网调度自动化发......