第一篇:圆的周长教案集合
圆的周长教案集合九篇
作为一名教学工作者,通常需要用到教案来辅助教学,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?以下是小编为大家收集的圆的周长教案9篇,仅供参考,希望能够帮助到大家。
圆的周长教案 篇1教学目标:
1、通过教学使学生理解并掌握圆的周长和面积计算方法。
2、培养学生分析问题和解决问题的能力,发展学生的空间观念。
3、灵活解答几何图形问题。
教学重点:认真审题,分辨求周长或求面积。
教学过程:
一、复习。
1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。
C=r2
3.1473.1432
=21.98(厘米)=3.149
=28.26(平方厘米)
2、分辨面积与周长有什么不同?
(1)概念
圆的周长是指圆一周的长度
圆的面积是指圆所围成的平面部分的大小。
(2)计算公式
求圆的周长公式:C=d或C=2r
求圆的面积公式:S=r2
(3)使用单位
计算圆的周长用长度单位
计算圆的面积用面积单位
二、练习。
1、判断下面各题是否正确,对的打,错的打3。
(1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()
(2)半径为2厘米的圆的周长和面积相等。()
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()
(4)面积:3.1462=3.1412=37.68()
2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。
⑴半圆的周长是多少厘米?(2)半圆的面积:
3.14223.142+22
r=2cm=3.144=6.28+4
=12.56(平方厘米)=10.28(cm)
3、一个圆的周长是25.12米,它的面积是多少:
已知:C=25.12米求:S=?
r=25.12(23.14)S=r2
=4(米)=3.1442
=50.24(平方米)
4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?
已知:R=7厘米=0.7分米r=0.5分米求:S=?
S环=(R2-r2)
3.14(0.72-0.52)
=3.140.24
=0.7536(平方分米)
1、思考题p71(8)
一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)
(1)围成长方形:31.42=15.7(m)(长和宽的和)
长宽=面积
当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.(2)围成圆形
直径:31.43.14=10(m)
半径:102=5(m)
面积:3.1452=78.5(m2)
(3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2
围成圆的面积最大。
2、思考题p71(9)、(10)
四、作业。
课本P71第6、7题。
教学追记:
学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。
圆的周长教案 篇2教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用“几何画板”《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示“几何画板”《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。()
②大圆的圆周率小于小圆圆周率。()
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
1、你学到了什么? 2、你是怎么学到的?
圆的周长教案 篇3一、教学目标
【知识与技能】
掌握圆的周长计算公式,知道周长与直径的关系,并能够利用圆的周长公式解决实际问题。
【过程与方法】
通过探究圆的周长公式的过程,培养学生观察、比较的能力,提高逻辑推理能力。
【情感态度与价值观】
积极参与数学活动,培养学习数学的兴趣。
二、教学重难点
【重点】圆的周长的计算公式。
【难点】圆的周长公式的推导过程。
三、教学过程
(一)导入新课
创设情境:多媒体展示大头儿子家的圆桌开裂,爸爸想用铁皮将圆桌固定起来的情境,请同学帮忙计算需要多长的铁皮。
学生根据问题情境不难想到计算需要的铁皮实际是计算圆一圈的长度。
教师明确,圆一圈的长度即为圆的周长。
引入课题——圆的周长。
(二)探索新知
1.探索发现
学生活动:同桌之间利用手中的圆形教具,测量圆形教具的周长。
学生汇报测量结果及测量方法。
教师引导学生思考,圆的周长大小与什么有关。
学生根据圆的特征,不难发现圆的周长与圆的大小有关,圆的大小与圆的半径、直径有关。
教师明确直径是半径的2倍,可看其中一项即可。
2.探索圆的周长与圆的直径关系
小组活动:以小组为单位,8分钟时间,利用手中不同大小的圆形教具,测量其周长及直径,并做好数据记录。观察测量结果,计算数据间的特殊关系。教师巡视,对有困难的小组及时给予指导。
小组汇报分享测量结果,教师板书。
学生分享计算结果,其中和、差、积无规律,商值在3.1左右。教师鼓励学生再多测量几组数据,并计算圆的周长与直径的比值。
学生汇报通过多次测量计算比值总在3.1左右。
教师讲解:实际圆的周长与圆的直径的比值是一个固定的数,命名为圆周率。用字母π表示,并向学生展示其写法和读法。
给出圆周率的特点:
(1)是一个无限不循环的小数;
(2)我国伟大的数学家祖冲之将其精确到小数点后七位;
(3)现在为了方便只要取小数点后两位即可。
(三)应用新知
问题:大头儿子家圆桌直径为1米,求需要买多长的铁丝?3.1米够吗?
教师强调:根据公式需要3.14米,不可四舍五入到3.1米,通过进一法,要买3.2米的铁丝。
(四)小结作业
提问:通过本节课,你有什么收获?
课后作业:回家找一个圆形,借助直尺测量,计算出周长。
四、板书设计
略
圆的周长教案 篇4教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:求圆的直径和半径。
教学难点:灵活运用公式求圆的直径和半径。
教学过程:
一、复习。
1、口答。4582、求出下面各圆的周长。
C=r3.14223.144=6.28(厘米)=83.14=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=r
(3)根据上两个公式,你能知道:
直径=周长圆周率半径=周长(圆周率2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m求:d=?
解:设直径是x米。
3.773.143.14x=3.77
1.2(米)x=3.773.14
x1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米R=c(2)求:r=?
解:设半径为x米。
3.142x=1.21.223.14
6.28x=1.2=0.191
x=0.1910.19(米)
x0.19
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
⑴3.148
⑵3.1482
⑶3.1482+83、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的,也就是走了整个圆的。而钟面一圈的周长是多少?20xx.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的,也就是走了整个圆的。则:钟面一圈的周长是多少?20xx.14=125.6(厘米)
45分钟走了多少厘米?125.6=94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
四、作业。P65-66第3、6、7、9题
教学追记:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对的含义就理解得特别透彻,也学得有兴趣。
圆的周长教案 篇5教学内容
人教版《义务教育课程标准实验教科书数学》六年级上册
教学目标
1.使学生通过绕一绕、滚一滚等活动,自主探索圆的周长与直径的倍数关系。知道圆周率的含义,并能推导出圆的周长公式,学会运用公式解决简单的求圆周长的实际问题。
2.使学生在活动中培养初步的动手操作能力和空间观念。
3.结合圆周率的教学,使学生感受数学的文化价值,激发学习数学的兴趣。
教学过程
一、复习导入
师:这一节课我们来研究有关周长的问题。
出示正方形
师:看屏幕,认识吗?
师:这是一个(正方形)
师:谁来指一指它的周长
生上台指。
师完整指:正方形4条边的总长就是它的周长。
出示圆
师:继续看,这是。。
生:圆
师:圆 的周长你能指一指吗?
生上台指
师:我们一起来指一指!从一点开始,绕一圈,回到这一点里结束。看清楚了吗?(出示动画)
师:围成圆一周曲线的长度就是圆 的周长
【板书:圆的周长】
二、感知化曲为直
1、师:2个图形,分别为1号和2号。(给图形标号。)
师:给你 一把直尺,(慢慢的拿出来)。让你通过测量得到它们的周长,【板书:量】你愿意测量几号?
师: 想想,用手势1 或者2 告诉老师……怎么想的?
……
师:对,正方形是由线段围成的,可以用直尺直接测量。
而围成圆的——是一条曲线【板书:曲】,直接量确实不太方便。
师:不过呢,老师今天就是要为难一下你们,要求用直尺直接量出圆的周 长,这可是要想办法的哦!敢不敢挑战?
2、用直尺测量圆的周长
(1)荧光圈
师:看,什么?(圆形的荧光圈)怎样量 它的周长?
生:把接头拔下来,拉直了量。
师:像这样!断开,拉直测量!
把接头部分去掉,这一段的长就是荧光圈的周长。
这个方法很不错哦!
(2)飞镖盘
师:继续 挑战!第二样,什么?(圆形的飞镖盘)能拉直量吗?
怎么办呢?
生:用线绕。
课件演示:线贴紧圆绕一周,多余部分 去掉 或者做上记号,然后把线 拉直测量,这一段线的长就是圆的周长。
师:还有其他办法吗?
生:滚
圆的周长教案 篇6教学目标:
用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。
教学过程:
一、探究解决问题的方法。
⑴出示情境图。
⑵介绍解决方法。
1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。
2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。
⑶沟通两种方法间的联系。
师生一起解方程:x=251.2÷3.14,x=80。
观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。
⑷联想。
想:算出圆的直径有什么价值。
可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。
二、多种练习,内化知识。
⑴独立完成试一试和练一练。
⑵解答练习十八第6题。
独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。
⑶解答练习十八第8题。
学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。
三、作业,练习十八第7题。
圆的周长教案 篇7教学内容:
教学目标:
1、经历探究圆的周长与直径的商为定值的过程,理解圆周率。体会化曲为直的转化思想,增强合作意识,体验成就感。
2、掌握圆的周长的计算方法,能正确计算圆的周长,并解决简单的实际问题,增强应用意识。
3、感受圆周率的探索历史,增强爱国主义情感和探究数学的欲望。
教学重点:理解圆周率,能计算圆的周长。
教学难点:探索并理解圆的周长与直径的商为定值。
教学准备:大小不同的圆形纸板、计算器、多媒体课件、20厘米长的绳子、直尺、硬币、画有圆而且标出直径的正方形。
教学策略:自主探索、讨论交流、点拨与练习
教学程序:
一、激活目标
出示主题图花坛,花坛的周长指什么?出示自行车,车轮的周长指什么?出示画有圆而且标出直径的正方形,这个圆的周长指什么?你能想出几种办法测量圆的周长?
二、活动建构
1、测量大小不同的四个圆的周长与直径,填表并计算。探究与发现:周长与直径的关系。(借助计算器)
2、介绍圆周率的由来。
任意一个圆的周长与它的直径的商都是一个固定的数,我们把它叫做圆周率,用字母π来表示。圆周率=周长÷直径,即π=c÷d。“π”的由来:π是第十六个希腊字母,是希腊文圆周率的第一个字母,大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。
组织学生阅读资料,谈感受。
3、推导出:c=πd或c=2πr4、计算花坛的周长,解决相关问题。
圆形花坛的直径是20米,它的周长是多少米?自行车车轮的直径是50厘米,绕花坛一周车轮大约转动多少周?
三、解释应用
一种铲车的前轮半径0.4米,后轮直径1.6米。行驶时,后轮转一周,前轮转几周?
四、反馈测评
1、一个圆形喷水池的半径是5米,绕着它走一周,要走多少米?
15厘米
A
B2、小蚂蚁从A点沿着这条曲线爬到B点,大约要爬多远的距离?
3、公园内有一个圆形人工湖,绕湖一周要走1570米,湖中心有一个小岛,从湖边到小岛架一座桥,桥长大约多少米?
五、课堂小结
我的最大收获是什么?我有什么遗憾?我有什么疑问?
希望同学们在探索数学奥秘的过程中体验快乐,经历成长,创造成功!同学们,再见。
圆的周长教案 篇8教学内容:
义务教育课程标准实验教科书数学六年级上册第62~64页的内容。
教学目标:
1、知识与技能目标:使学生直观认识圆的周长,知道圆的周长的含义,通过对圆周长的测量方法和圆周率的探索、圆的周长计算公式的推导等教学活动,培养学生观察、猜测、分析、抽象、概括、动手操作的能力和解决简单的实际问题的能力。
2、过程与方法目标:通过摸一摸,动手操作,猜想验证等方法使学生亲历整个探寻知识的过程,从而掌握圆周长计算的由来和相关知识。
3、情感态度与价值观:通过介绍我国古代数学家祖冲之在圆周率方面的伟大成就,对学生进行爱国主义教育,激发民族自豪感,培养创新精神以及团结合作精神。
教学重难点:
教学重点:通过测量、计算、猜测、验证等过程,理解圆的周长计算公式的推导过程及其实践运用。
教学难点:理解圆周率的意义。
教具准备:圆形纸片、直尺、计算器、记录单
教学过程:
一 课始预习,初步了解
看书完成前置作业:
1、什么叫圆的周长?并举例说明。圆的周长可以怎样测量?
2、什么叫圆的半径和直径?二者之间有什么关系?
3、你认为圆的周长的大小跟什么有关?为什么?你能想出办法证明圆的周长跟它有什么样的关系吗?
4、哪个数学家对圆的周长有关的知识做出了卓越的贡献
(设计意图:学生通过看书自学,对本课知识点有个初步了解,在完成前置作业的过程中对本课知识的重难点进行思考,带着问题和疑惑走进课堂,使学生产生学习的动力和积极性)
二、互动交流,探究新知
1、认识圆的周长
⑴让学生根据自己的理解说说什么叫圆的`周长
⑵学生通过摸一摸圆形学具,感受围成圆的线是曲线,完善圆的周长的概念。⑶谁能用一句话来概括一下圆的周长?
⑷课件演示圆的周长,并出示圆的周长概念。
围成圆的曲线的长,叫做圆的周长。
(设计意图:学生通过看书自学,对圆的周长概念有了初步认识,再通过摸一摸的感知活动对圆周长的曲线特点有了深刻体会,课件演示让学生对圆的周长的直观形象进行感知,从而对圆周长概念有了深刻理解)
2、实验、探究圆的周长与直径的关系
⑴认识圆的半径和直径
学生通过折圆纸片,找出半径和直径,通过观察,测量明确d﹦2r
⑵猜测圆的周长与什么有关系
师:长方形的周长和什么有关系正方形呢?那么圆的周长究竟与什么有关系呢?谁来说一说?你觉得可以用什么办法来证明?
预设:
学生1出示大小不一的圆,分别比较它们的直径和周长,得出直径大的周长就大。
引导小结:①圆的直径越长,它的周长也就越长,圆的直径越短,它的周长也就越短。
②我们发现了圆的周长与直径的比值都是三点几,也就是说圆的周长都是直径的3倍多一些。
(设计意图:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情。)
3、学习圆周率的有关知识
⑴引入圆周率
师:其实,很早就有人研究了圆的周长与直径的关系,发现任意一个圆的周长与它的直径的比值都是一个固定的数,我们把它叫做圆周率。(板书: =圆周率)
⑵介绍圆周率的资料,并对学生进行爱国主义教育
师:关于圆周率的知识,你知道哪个数学家在这方面做出了什么样的卓越贡献?(学生通过预习有一些初步的印象。)
课件播放圆周率的资料完善学生的记忆。
在当时,祖冲之所算的圆周率的值要比外国科学家早多少年?听完刚才的这些资料介绍,你有什么感想?
师:我们真为我们国家能出现这样一伟大的数学家感到骄傲和自豪,老师也希望同学们长大以后,能成为一个了不起的人,对国家有用的人。
⑶教学圆周率的读写法及数值
师:对于圆周率,我们用希腊字母л来表示。(板书л)
①让学生跟老师读,并用手指在桌子上边写边读。
②经过数学家们研究发现圆周率是一个什么样的小数呢?
学生回忆预习的内容,师提醒学生明确圆周率是一个无限不循环小数它的数值是л=3.1415926……(板书:л=3.1415926……)圆的周长是它直径的∏倍,是一个固定不变的数。③圆周率的近似值。
师:随着现代科技的发展,借助超级计算机,人们算出的圆周率,小数点后面已经达到了万亿位。但是在实际生活中,我们并不需要这么多的小数,一般保留两位小数。(板书:л≈3.14)
④学生看书,再次阅读圆周率的知识点介绍
(设计意图:圆周率是新出现的一个概念,让学生从预习的初步感知,到探索中对圆周率的理解,到再次的看书完善对圆周率概念的陈述,了解近似值的大小取值,让学生对圆周率有了深刻的认识,为圆周长的公式推导打下了基础,学生在这个过程中体会到攻破难关的喜悦。)
4、圆周长计算公式的推导
提问:圆的周长一般用字母什么来表示?圆的直径呢?
那么根据周长与直径的关系我们可以得到一个什么样的公式
引导学生回答并板书:C÷d=Л,那么C=?(板书:C=лd)
让学生互相说说出公式所代表的意义,并汇报。
想一想,直径和半径的关系,已知半径r,圆的周长C又等于什么?学生推导教师板书:C=2лr
三、解决实际问题
1计算下面各圆的周长
圆的周长教案 篇9教学内容:
圆的周长的综合练习
教学目标:
通过练习,使学生加深对圆的认识,能正确计算圆的周长,并能根据圆的周长求这个圆的半径或直径。
教学重点:
理解圆的半径、直径、周长之间的关系
教学难点:
能运用知识解决一些实际问题
教学过程:
今天这节课,我们把学习圆的有关知识进行整理一下,并通过一些练习来巩固这方面的知识。
板书课题:圆的周长
基本练习(口答)
⑴在同一个圆内,所有的半径(),所有的直径(),直径是半径的(),半径是直径的()。
⑵()决定圆的位置,()决定圆的大小。
⑶什么是半径?什么是圆的直径?
⑷圆的周长总是它直径的()倍,它是一个固定不变的数,用字母()表示。
练习指导
1、求下面各圆的周长
d=2米 d=1.5厘米 r=6分米
2、求下面各圆的直径
C=28.26厘米 C=50.24米
3、求下面各圆的半径
C=12.56米 C=314厘米
以上几题均由学生板演,其余齐练
全班讲评,订正
1、一根绳子长6.28米,在一根圆木上,正好绕了5圈,这根圆木的直径是多少?
2、一面钟的分针长14厘米,经过一小时,分钟针尖可划过多少厘米?
3、小明的自行车轮胎的直径是0.6米,小明骑一分钟车轮转动了100圈。
①他一分钟可行驶多少米?
②他要通过2180米长的大桥,大约需要几分钟?
今天我们练习了什么?你有什么收获?
第二篇:圆的周长教案
圆的周长教案 篇1
篇一:六年级圆的周长数学教案
【教学目标】
1、 让学生知道什么是圆的周长。
2、 理解并掌握圆周率的意义和近似值。
3、 初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、 培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、 通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、 培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、 学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、 教师准备图片。
【教学过程】
一、激情导入
1、 动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、 一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。
1、 由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、 (生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、 圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、 猜想:你觉得圆的周长可能和什么有关系?
(二) 测量验证
1、 教师提问:你能不能想出一个好办法来测量它的周长呢?
① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、 比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三) 介绍圆周率
1、 师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、 圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、 小结:早在15前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母 “∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四) 推导公式
1、 到现在,你会计算圆的周长吗?怎样算?
2、 如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、 知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、 一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、 花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、 钟面直径40厘米,钟面的周长是多少厘米?
4、 钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、 喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。(作者:山东省临清市唐园镇中心小学 张延平)
篇二:苏教版数学六年级上册教案 《圆的周长》教案(一)
教学目标
1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆周率。推导出圆的周长公式,并会运用公式进行简单的计算。
2.初步渗透转化思想,教给学生一些学习方法。培养学生的动手动脑能力。
3.对学生进行爱国主义教育,培养学生民族自豪感。
教学重点和难点
学生通过自己动手找出圆的周长与直径的倍数关系。
教学过程设计
(一)复习导入
出示图(投影)
两名运动员分别沿着边长为100米的正方形和直径为100米的圆的路线骑车比赛。问:
1.沿着正方形路线跑实际就是沿着正方形的什么跑?正方形的周长指的是什么?
2.正方形的周长怎么求?用字母怎样表示?
板书:C=4a
3.正方形的周长与谁有关?有什么关系?
生:正方形的周长与边长有关。周长是边长的4倍。
4.沿着圆形的路线跑实际上是沿着圆的什么跑?
质疑:如果正方形的边长是100米,圆的直径是100米,两名运动员同时、同速从一点出发,谁先回到原出发的一点呢?
生:同时到。或跑圆形的先回来……
这只是一种猜测,到底什么是圆的周长,怎样求圆的周长?这节课我们就一起来研究这一新的知识。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)
(二)教学新课
1.认识圆的周长。
(1)学生拿出学具中最大的圆用手摸一摸圆的周长。指一名到前面摸一摸。注意起点、终点。
(2)同桌互相说一说:什么是圆的周长?
生:围成圆的曲线的长叫做圆的周长。
2.化曲为直,创设情景,引发求知欲。
(1)我们想知道你课桌的周长怎么办?
生:用直尺量出课桌的长和宽。
(2)圆的周长用直尺测量方便吗?为什么?
生:不方便,因为直尺是直的,而圆的周长是曲线围成的。
(3)用什么办法化曲为直测量出圆的周长呢?学生讨论。谁来说一说?
①用围的方法。指名演示。(板书:围)
问:要注意什么?
②用滚的方法。指名演示。(板书:滚)
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。
师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是所有圆的周长都可以用这两种方法解决吗?
(4)谁能用围的方法量一量黑板上圆的周长?
两名学生量。说一说自己的感觉。
(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。
问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明围、滚的办法不是什么样的圆都试用。因此我们需要探讨出一种计算圆的周长的方法。
3.找关系,推导公式,探求新知(重点和难点)。
(1)正方形的周长与边长有关。周长是边长的4倍。圆的周长与谁有关呢?
出示两个大小不同的圆。问:①哪个圆的直径长,哪个圆的直径短?拉开周长,你发现了什么?②圆的周长与什么有关?(与直径有关。)
板书:圆的周长 直径
(2)是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现规律,能发现什么规律。
①拿出你们的学具圆,汇报一下,直径分别是几厘米?(1厘米、3厘米、5厘米、10厘米。)
②同学们动手利用手中学具用围或滚的方法量一量圆的周长,并算一算,找出周长与直径的关系。同桌合作测量,看哪一组量得准,算得快。结果填在表格中。
生:直径不同,周长也不同,但周长总是直径的三倍多一些。
③电脑或实物验证。
问:是所有的圆的周长都是直径的3倍多一些吗?
电脑出示2个大小不等的圆,让学生边看边数一数。
师:刚才是老师给你的圆,现在谁愿意自己在电脑上任选一个圆,大小由你决定。
指名填到黑板上。
互相说一说:你发现了什么规律?
学生自己选出一个圆,看一看这个圆的周长是否是直径的3倍多一些。
师:圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。为什么我们算的不一样呢?因为我们的测量有误差。我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。
补充板书:÷圆周率π固定
师:很早以前,人们就开始研究圆周率这个问题了。你知道最早发现圆周率的是谁吗?
放录音:大约20xx年前,我国的古代数学着作《周髀算经》中就有“周三径一”的说法。意思是说圆的周长是直径的3倍。
大约1500年前,我国伟大的数学家和天文学家祖冲之,就精确地计算出圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率值的计算精确到6位小数的人。他的这项伟大成果比国外数学家至少要早一千多年。生为中国人,应为之自豪。
板书:3.1415926~3.1415927之间
后来人们发现π是一个无限不循环小数。
板书:无限不循环
在计算时,只取它的近似值,一般保留两位小数,即π≈3.14。
圆的周长总是直径的π倍,已知圆的直径怎样求圆的周长呢?同桌互相说一说。
用字母怎样表示?
板书:C=πd
已知半径怎么求圆的周长呢?
板书:C=2πr
问:知道什么条件就可以计算圆的周长?
4.解决实际问题。
例1 一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(1)读题。已知什么条件?要求什么问题?
(2)指名列式。
3.14×0.95
板书:=2.983 (先写准确值)
≈2.98(米)
答:这张圆桌面的周长是2.98米。
练一练 第112页的“做一做”。学生做在本上,投影订正。
(三)巩固练习
1.计算复习准备中的骑车比赛一题。回答谁先返回原点。
C圆 3.14×100=314(米)
C正 100×4=400(米)
因此沿圆周骑车的运动员先返回原点。
不用计算也可知。因为圆的周长是直径(100)的π倍,而正方形的周长是边长(100)的4倍。因此,绕圆周骑车的人先回到原点。
2.老师用绳甩小球。算一算小球转动的圆的周长。知道什么条件就可以了?(绳长5分米)学生算一算。
(四)课堂总结
这节课我们学习了哪些知识?还有什么问题。
(五)布置作业
课本第113页第 1,2(1),3(1),4,5,6题。
课堂教学设计说明
1.主要发挥学生的主体作用。从始至终让学生动手量、算;动脑发现规律;动口说出自己的发现。充分发挥学生的主动性、积极性,培养学生独立思考问题的能力及独立获取知识的能力。
2.精心设计每个环节间的导语,用质疑的方法引入每部分内容,使老师的语言自然,流畅。通过质疑也可抓住学生的心,使学生们一步步地发现问题,解决问题。
3.注意电教手段的合理应用,这样既可画龙点睛,又可激发学生的兴趣,提高课堂效率。
小学数学六年级教案——“圆的周长”教学设计与评析
教学内容:人教版九年义务教育六年制小学数学第十一册第110一113页“圆的周长”。
教学目标:1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2.培养学生的观察、比较、分析、综合、和动手操作能力。
3.初步学会透过现象到看本质的辩证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
[评析:教学目标的拟订,从知识到能力、到思想方法、到爱国教育,立体丰满,折射出设计者教育观念的现代、育人意识的高度自觉]
教学过程:
一、创设情境,导入新课
1.播放课件。
星期天,米老鼠和唐老鸭在草地上跑步,米老鼠沿着正方形路线跑,唐老鸭沿着圆形路线跑。
2.揭示课题。
(1)要求米老鼠所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出
你的依据吗?(突出:正方形的周长与它的边长有关)
(2)要求唐老鸭所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
[评析:学生熟悉的可爱的米老鼠、唐老鸭的课件播放,既创设了融融的教学情境场,演示了周长的概念,较好地激发了认知冲突,又为后继教学埋下了伏笔。一举多得,既有承继,又有创新,难能可贵。]
3.引出圆周长的概念。
围成圆的曲线的长叫做圆的周长。
二、引导探索,展开新课
(一)测量圆的周长
如果我们用直尺直接测量这个圆的周长(教师演示),你觉得怎么样?你能不能想出一个好办法来测量它的周长呢?
1.如果学生说:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长,则师生合作演示量教具圆的周长。
然后各组分工同桌合作。请第一、二组的同学测量直径为2厘米圆片的周长,第三、四组的同学测量直径3厘米圆片的周长。并把结果记录在110页的表格中。
追问:如果要知道那个圆形草坪的周长(指唐老鸭跑的路线),也可以让它在直尺上滚着来量吗?
2.如果学生说:用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作,第一、二组的同学测量直径为4厘米圆片的周长,第三、四组的同学测量直径为5厘米圆片的周长,并将结果记录在第110页的表格中。
3.教师甩动绳系小球,形成一个圆。
提问:小球的运动形成一个一一圆。你能用刚才的方法测量出圆的周长吗?
4.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
[评析:用直尺量→滚动法量→绳绕法量→没法量,既留给学生发挥的时空,又不断制造矛盾,“逼”着学生探求新知。]
(二)探讨圆的周长与直径的关系
1.圆的周长与什么有关。
(1)启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关呢?
(2)出示三个大小不同的圆:
组织学生观察比较,得出结论:圆的周长与它的直径有关。
2.圆的周长与直径有什么关系。
(1)正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
(2)演示周长与直径的关系:用一根红线绕圆面一周剪下,拉直和直径比较,发现这段长度是直径的3倍多一些。
(3)学生自己验证:用刚才测得的第110页表中的数据计算它们的比值,依次一组计算一个。
(4)观察数据。
第一个圆片: ××算出它的周长与直径的比值是3.15,也有同学算出的是3.14、3.13。在实验操作中允许存在这样的误差。不管是3.14、3.15,都可以说,它的周长是直径的3倍多一些。
第二个圆片:它的周长是直径的3倍多一些。
第三、四个圆片:它的周长还是直径的3倍多一此。
(5)得出结论
圆的周长总是它直径的3倍多一些。板书:3倍多一些。
[评析:这一环节融猜想、讨论、实验、计算、观察、归纳和概括于一体,让学生动脑、动手、动眼、动口,多种感官参与学习过程,自主发现圆周长与直径的倍数关系,体现了设计者较为先进的教学观和师生观,以及较强的选择、组合、优化教法的能力。由“是……”→
“也是……”→“还是……”,最后概括出“总是……”,反映出教者较强的数学思想方法渗透能力和较为精湛的语言功底。]
3.认识圆周率。
(1)揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
指导学生读写π,每人在本子上写3个π,同桌比比,看谁写得好。
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长:直径=π
(2)指导阅读第111页方框中的文字,了解让中国人引以为自豪的历史。在学生汇报“看书后知道了些什么”时,相机板书: π=3,1415926……≈3.14
4.推导圆的周长计算公式。
(l)提问:已知一个圆的直径,该怎样计算它的周长?板书:c =πd
建议学生从第110页表格中任意挑一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?
[评析:让学生从表格中挑一个直径计算周长,再对照验证,这既是验证刚发现的圆周长计算公式,又是初步运用、巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
(2)提问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:c=2πr
提问:甩小球形成的圆的周长你会求吗?
[评析:此环节与上一环节有异曲同工之妙!既是巩固运用,又是前有设问,后有解答,让学生体验自我成就感。]
(3)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?
三、初步运用,巩固新知
1.完成第113页第1题的(1)(3)两小题。
2.下面的说法对吗?!
(1)圆的周长是它直径的π倍。 ( )
(2)大圆的圆周率小于小圆的圆周率。( )l
3.出示例1
(1)在学生读题后,提问:求这张圆桌面的周长是多少米?实际上就是求什么?
(2)学生尝试练习,反馈评价。
(3)提问:如果告诉你的不是这张圆桌的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
4.完成第112页中间的练一练。l
5.看书质疑。l
[评析:练习设计目的明确,层次清晰,可以有效巩固新知。例1的直径改半径,独具匠心,既练习了求周长的另一种情况,又培养了学生思维的深刻性,而费时不多。]
四、照应启思,总结新课
1.组织学生说说收获。!
同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。
[评析:“变”与“不变”的板书,看似简单明了,其实是设计者苦心经营的。这一环节的组织,使辩证思维方法的培育从高空落到实地,促成了第3条教学目标的落实到位。]
2.照应开头。
我们再来看看米老鼠、唐老鸭跑步的路线,如果他的都跑了一圈,你能判断出谁跑的路程多吗?为什么?
3.课后思考。
小学六年级数学教案——[圆的周长]教学设计
教学内容:九年义务教育六年制小学数学第十一册第110~113页“圆的周长”。
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆周长的计算公式。
教具准备:多媒体课件三套、系绳的小球。
学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
篇三:小学六年级数学教案——[圆的周长]教学设想
教学内容:义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:圆周率意义的理解和圆周长公式的推导。
教学设想:新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)
篇四:小学六年级数学教案——“圆的周长”教学设想
教学内容:义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。
圆的周长教案 篇2
教学内容:九年义务教育人教版第11册
教学目标:
1、使学生认识圆的周长,知道圆周率的意义,理解和掌握圆的. 周长计算公式;
2、发展学生空间观念,培养学生抽象思维和解决简单实际问题的能力;
3、培养学生情感,使学生受到爱国主义教育。
教学重点:推导圆周长的计算公式。
教学难点:理解圆周率的意义。
教具准备:多媒体课件、直尺、剪刀、绳子、圆形纸片等。
教学过程:
一、启发
1、创设情境:(课件出示动画故事:小白兔和兰精灵进行跑步锻炼,争论谁最先到达原来的起点。(正方形和圆形跑道,正方形边长20米,圆形直径20米、跑步的速度相同。)
2、讨论:小白兔和兰精灵到底谁最先跑回原来的出发点?
揭示课题。(板书:圆的周长)
二、探究
1、观察:看屏幕上的圆,说一说什么叫圆的周长?
2、摸一摸:拿出一个圆形纸片,指出:拿的这个周长是指哪一部分长?
3、比一比:拿出两个大小不同的圆形纸片。
哪个圆的周长长一些?
4、量一量:(分小组合作)
学生用剪刀、直尺和绳子测量出手中圆形纸片的周长。
5、信息反馈: ① 小组汇报所测量的圆的周长是多少?
板书: 周长
○ 12cm多一些
○ 31cm多一 些 ○ 47cm多一些
② 生说一说是怎样测出圆的周长的?(绳测法、滚动法)
③(课件演示)绳测法和滚动法的操作过程;
④讨论:能用这方法测量出这个圆的周长吗?
(教师演示)拿一根栓了重物的绳子在空中抡了一圈。。
如何才知道它的周长呢 ?
6、①猜一猜: 圆的周长和圆的什么有关系?
②(课件演示)三个直径不同的圆,分别滚动一周,得到三条线段的长分别是三个圆的周长。 发现了什么?说明了什么 ?(圆的周长和它的直径有关系)
7、①再猜 一猜,圆的周长和它的直径有什么样的关系?
②学生分成四人小组,测量、计算、讨论圆和直径的关系。
③小组汇报测量结果。
板书: 周长 直径
○ 12cm多一些 4cm
○ 31cm多一 些 10cm ○ 47cm多一些 15cm
结论:圆的周长是直径的3倍多一些。
④课件出示:验证学生发现的规律是否具有普遍性。
⑤小结:无论圆的大小、圆的周长总是它直径的3倍多一些。
6、介绍圆周率,结合进行爱国主义教育。
①教师引出“圆周率”,介绍用字母“∏”来表示,并介绍读法。
②出示祖冲之画像,配音介绍祖冲之及圆周率知识(∏≈3。14)
③对学生进行爱国主义思想教育。
7、讨论:如果知道了一个圆的直径或半径,怎样求圆的周长?
(圆的周长=直径×圆周率)(C=∏D或C=2∏r)
三、知
1、让学生把测量的三个圆用公式计算出三个圆的周长来。
2、让学生把老师在空中用绳子甩一圈的圆的周长计算出来。
(绳子的长度就是圆的半径)
3、抢答:①D=1分米,C= ?
②r=1厘米,C=?
③C=12。56米,D=?
4、出示例1,让学生独立计算。
5、裁定原来兰精灵和小白兔的争论。谁先到达起点?知道是为什么了吗?(课件演示跑的过程)
四、评议
1、本节课你学到了什么?有什么体会?有何感受?
2、本节课学习主要采用了什么方法?
3、本节课学习后对你生活有什么帮助?
4、在学习中你认为自己表现如何?谁表现最好?为什么?你准备在以后学习中怎样做?
圆的周长教案 篇3
教学内容:
圆的周长(小学数学九年制义务教材第十册).
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、互动
请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读通过实验到3.14.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=d
=3.141.95
=6.123
6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示,错误的出示)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(ABCDEA)和大圆两条路线散步
圆的周长教案 篇4
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学过程:
一、复习。
1、口答。
4 5 8
2、求出下面各圆的周长。
C=d c=2r
3.142 23.144
=6.28(厘米) =83.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=d C=2r
(3)根据上两个公式,你能知道
直径=周长圆周率 半径=周长(圆周率2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77m 求:d=?
解:设直径是x米。
3.773.14 3.14x=3.77
1.2(米) x=3.773.14
x1.2
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
已知:c=1.2米 R=c(2) 求:r=?
解:设半径为x米。
3.142x=1.2 1.223.14
6.28x=1.2 = 0.191
x=0.191 0.19(米)
x0.19
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
2、求下面半圆的周长,选择正确的算式。
(1)3.148
(2)3.1482
(3) 3.1482+8
3、一只挂钟分针长20cm,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的 ,也就是走了整个圆的 。而钟面一圈的周长是多少?20xx.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的 ,也就是走了整个圆的 。则:钟面一圈的周长是多少? 20xx.14=125.6(厘米)
45分钟走了多少厘米? 125.6 =94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
四、 作业。
P65-66 第3、6、7、9题
教学追记:
圆的周长计算公式并不复杂,但这个公式如何得来,公式中的固定值是如何来的,都是值得学生研究的问题。因次,教学中,我着力于培养学生的探究意识和探究能力,让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程来理解并掌握圆的周长计算方法。因为是自己操作的所得,再加上我在课中介绍了一些相关资料及讲述了一个有趣的小故事,所以学生对 的含义就理解得特别透彻,也学得有兴趣。
圆的周长教案 篇5
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
一、创设情境,引发探究
⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用“几何画板”《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示“几何画板”《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。( )
②大圆的圆周率小于小圆圆周率。( )
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么? 2、你是怎么学到的?
圆的周长教案 篇6
第一课时 圆周长计算
教学内容:
圆周长计算公式的推导、周长计算(课本第62——64页的内容、练习十五第1题)。
教学目标:
1、认识圆的周长,理解圆周率的意义。
2、掌握圆周长的计算公式,会用公式正确计算圆的周长。
3、介绍祖冲之在圆周率方面的成就,进行爱国主义教育。
教学重难点:
1、圆的周长公式推导及运用公式计算圆周长是重点。
2、通过实验找出圆的周长与直径的关系—圆周率是难点。
3、关键是让学生动手操作测周长与直径。
教学准备:
学生准备:大小不同的圆柱物体,光盘。直尺或三角板、绳子。
老师准备:小黑板
教学过程:
一、复习铺垫(5分钟)
1、小黑板出示
(1)
(2)
10厘米 6分米
2、提出问题:
同学们,老师要用铁丝分别做成上面两个图形的框架,
(1)请同学们帮助老师算一算每个图形需要用多长的铁丝?
(2)、每个图形需要用多长的铁丝,是求什么的?
(3)什么是周长?周长的单位有哪些?
(4)、要求图(1)、图(2)的周长应该知道什么条件?
二、探索新知(25分钟)
(一)认识圆的周长(3
1、出示:圆的图形 和其他实物圆。
2、提问:
(1)这是一个什么形实物?
(2)老师要用铁丝给它箍紧,需要用多长的铁丝,是求什么的?圆周长指哪儿?
3、感知圆的周长: 让学生拿出光盘或其它实物圆摸一摸,进行感知。
4、怎样才能知道一个圆的周长呢?让学生猜一猜,说一说,。
(二)提示课题
在现实生活中,有很多的圆形物体的周长测着很不方便。我们能不能也像计算长方形、正方形周长一样找到计算圆周长的计算公式呢,今天我们一起来探讨如何找到圆周长的计算公式,来计算圆的周长。
板书课题------圆周长计算
(三)圆的公式推导
1、猜一猜,想一想,动手操作(8分钟)
(1) 提问:通过前面复习,我们知道长方形的周长与它的长和宽有关,正方形的周长与它的边长有关。那么请同学们想一想:
圆的周长与它的什么条件有关?
、独立思考后,前后桌四人交换意见。
、学生汇报:圆的周长和直径(或半径)有关。
继续提问:它们之间到底有什么的关系呢?
故事激趣
我国古代有一位伟大的数学家和文学家祖冲之就发现了圆的周长与它的直径之间的关系,这个发现是在1500年前。今天我们各位同学也当一回科学家,进行一次研究,来发现圆周长与直径之间到底有什么关系。
(2)、动手实验:(四人一组,合作完成) (一组测一个)
a、取出圆形纸板,量出圆形纸板的直径。
b、用绳子绕圆形纸板一周,绕圆一周的绳子长度,就是这个圆形的周长,然后测出绳子长度。 c、填到书中表内。
d、算出周长和直径的比值。
e、 汇报,老师把表画在小黑板上,并填表。
2、观查数据,发现规律:(5分钟)
观察表中数据,说一说你有什么发现?(四人一组,共同讨论,)
小组汇报:
同一个圆,它的周长是它的直径的3倍多一些。
3、认识圆周率(2分钟)
(1)、在学生发现圆周长与它的直径关系的基础上,老师明确:
刚才每一组同学测的圆大小都不同,但发现:任意一个圆的周长与它的直径的比是一个固定的数。即一个圆的周长是它的直径的3倍多一点。我们把这个比值,即这个固定的数(不变的数)给它起个名字叫圆周率。用字母π表示。 板书:圆周长=π 或 圆周长:它的直径=π 它的直径
(2)、让学生读一读( Pài )写一写。
(3)了解π的值。
A、π是一个无限不循环小数,π=3.1415926535..........
B、在实际应用中一般只取它的近似值,即π≈3.14.
4、圆周长公式推导:(5分钟)
老师:如果已知圆的直径,如何计算圆的周长。
圆周长= π×直径
如果周长用C表示:字母公式C=πd
知道半径,怎样求周长C=2πr
( 四)应用公式(2分钟)
教学例1:
(1)出示例题:圆形花坛的直径是20米,它的周长是多少米?
(2)学生读题并尝试列式计算。
(3)学生板演:3.14×20=62.8(米)
说明:、解题时可以不写计算公式
、π取两位小数3.14,计算中不必使用 ≈ ,直接用 = 号。
三、巩固练习(8分钟)
1、 完成课本64页做一做。
2、完成练习十五第1题。
3、补充作业。判断题:
(1)圆的周长刚好是直径的3.14倍。
(2)大圆的圆周率大,小圆的圆周率就小。
(3)、π是两位小数。
(4)、圆的周长等于它的半径的2π倍。
(5)、求周长,直径是唯一条件。
四、课堂小结(2分钟)
本节课我们认识了圆的周长,并且通过实验知道,圆有大小,但每一个圆周长与它的直径的比的比
值都相等,并且是一个固定的数,这个数叫圆周率,用π表示。从而找到了计算圆周长的公式,周长=直径 × π或半径×2×π。
五、布置作业:课堂作业
六、板书设计圆周长计算
圆周长=π(圆周率) 周长是直径的3倍多一点 (即 周长是直径的π倍 ) 它的直径, 圆周长= π×直径
因为d=2r 圆周长=π×半径 ×2
π是一个无限不循环小数,π=3.1415926535 C=πd C=2πr
注:(1)在实际计算中,π取近似值保留两位小数约等于3.14 。
(2)π在计算的应用中,结果不用“≈”号,而用“=”号。
3.14×20=62.8(米)
答:圆形花坛的周长是68.2米
七、课后记
《圆的周长》是在学生学习了正方形周长的基础上进行教学的。由复习老知识引入课题,目的是激发学生的探究积极性,然后我让学生自己推导出圆的周长公式,让学生以小组为单位进行操作:用“化曲为直”的绕线法测量圆的周长,并做好相应记录,填好表,为下一步探究奠定基础,接下来让学生猜一猜、想一想圆的周长与直径有什么关系,进而找到圆的周长与直径的关系,推出圆周率,得出圆的周长公式。最后让学生把得出的圆的周长公式应用到练习中。
本节课中,我觉得比较成功的是:
首先,在创设情境时,我用旧知引新知导入新课,以学生的兴趣为出发点,激发学生的探索欲望,为后面的学习做好铺垫。其次,学生经过自主探究、合作、展示等教学活动,使学生深切地体会到“化曲为直”的数学思想方法,与此同时,我想学生提出质疑测量、学生通过小组合作的形式验证猜想,在理解了圆的周长与直径的关系及圆周率的基础上,推导出圆的周长的计算公式,再回到课前情境中,使学生在掌握新知识的基础上,解决实际问题,培养学生的应用意识。 在本节的教学中,我发现情境导入吸引了学生的注意,并对新知识产生了浓厚的兴趣,由于前面“正方形周长及圆的认识”知识的成功铺垫,因此本节课学生通过动手操作、自主探究、合作交流‘展示等活动,理解了“化曲为直”的数学思想方法。在推导公式过程中,因为亲自经历了小组内探讨圆的周长与直径的关系的过程,所以学生能较为容易地推导出圆的周长计算公式。
本节课中也存在一些不足之处:比如:在对学生的表达进行评价是艺术性略显不足,应多鼓励,使学生获得成功的体验;另外,我对课堂的掌控和把握能力还需提高,虽然对教材进行了较为深入的分析,但还没有做到不彻底,小组合作要求不到位。
在今后的教学工作中,我将弥补以上不足之处,提高个人的理论修养,使自己的教学趋于完美。
第三篇:圆的周长教案
圆的周长教案 篇1
篇一:六年级圆的周长数学教案
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、激情导入
1、动物王国正在举行动物运动会可热闹了,想不想去看一看?
2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?
二、探究新知
(一) 复习正方形的周长,猜想圆的周长可能和什么有关系。
1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)
2、(生答正方形的周长)追问:你是怎么算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)
3、圆的周长能算吗?如果知道了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一起研究圆的周长。(板书课题:圆的周长)
4、猜想:你觉得圆的周长可能和什么有关系?
(二) 测量验证
1、教师提问:你能不能想出一个好办法来测量它的周长呢?
① 生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。
② 用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。
2、①学生动手测量,验证猜想。 学生分组实验,并记下它们的周长、直径,填入书中的表格里。
②观察数据,对比发现。
提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
3、比较数据,揭示关系
正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。
(三) 介绍圆周率
1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。
2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。
3、小结:早在15前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,今天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。
圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母 “∏”表示。这个比值是固定的,而我们现在得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你知道了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)
(四) 推导公式
1、到现在,你会计算圆的周长吗?怎样算?
2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。
3、知道半径,能求圆的周长吗?周长是它半径的多少倍?
三、运用公式解决问题
1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)
2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
3、钟面直径40厘米,钟面的周长是多少厘米?
4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?
5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
四、课堂小结
通过这节课的学习你想和大家说点什么?
这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,希望你们能坚持不懈的走下去。(作者:山东省临清市唐园镇中心小学 张延平)
篇二:苏教版数学六年级上册教案 《圆的周长》教案(一)
教学目标
1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆周率。推导出圆的周长公式,并会运用公式进行简单的计算。
2.初步渗透转化思想,教给学生一些学习方法。培养学生的动手动脑能力。
3.对学生进行爱国主义教育,培养学生民族自豪感。
教学重点和难点
学生通过自己动手找出圆的周长与直径的倍数关系。
教学过程设计
(一)复习导入
出示图(投影)
两名运动员分别沿着边长为100米的正方形和直径为100米的圆的路线骑车比赛。问:
1.沿着正方形路线跑实际就是沿着正方形的什么跑?正方形的周长指的是什么?
2.正方形的周长怎么求?用字母怎样表示?
板书:C=4a
3.正方形的周长与谁有关?有什么关系?
生:正方形的周长与边长有关。周长是边长的4倍。
4.沿着圆形的路线跑实际上是沿着圆的什么跑?
质疑:如果正方形的边长是100米,圆的直径是100米,两名运动员同时、同速从一点出发,谁先回到原出发的一点呢?
生:同时到。或跑圆形的先回来……
这只是一种猜测,到底什么是圆的周长,怎样求圆的周长?这节课我们就一起来研究这一新的知识。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)
(二)教学新课
1.认识圆的周长。
(1)学生拿出学具中最大的圆用手摸一摸圆的周长。指一名到前面摸一摸。注意起点、终点。
(2)同桌互相说一说:什么是圆的周长?
生:围成圆的曲线的长叫做圆的周长。
2.化曲为直,创设情景,引发求知欲。
(1)我们想知道你课桌的周长怎么办?
生:用直尺量出课桌的长和宽。
(2)圆的周长用直尺测量方便吗?为什么?
生:不方便,因为直尺是直的,而圆的周长是曲线围成的。
(3)用什么办法化曲为直测量出圆的周长呢?学生讨论。谁来说一说?
①用围的方法。指名演示。(板书:围)
问:要注意什么?
②用滚的方法。指名演示。(板书:滚)
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。
师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是所有圆的周长都可以用这两种方法解决吗?
(4)谁能用围的方法量一量黑板上圆的周长?
两名学生量。说一说自己的感觉。
(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。
问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明围、滚的办法不是什么样的圆都试用。因此我们需要探讨出一种计算圆的周长的方法。
3.找关系,推导公式,探求新知(重点和难点)。
(1)正方形的周长与边长有关。周长是边长的4倍。圆的周长与谁有关呢?
出示两个大小不同的圆。问:①哪个圆的直径长,哪个圆的直径短?拉开周长,你发现了什么?②圆的周长与什么有关?(与直径有关。)
板书:圆的周长 直径
(2)是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现规律,能发现什么规律。
①拿出你们的学具圆,汇报一下,直径分别是几厘米?(1厘米、3厘米、5厘米、10厘米。)
②同学们动手利用手中学具用围或滚的方法量一量圆的周长,并算一算,找出周长与直径的关系。同桌合作测量,看哪一组量得准,算得快。结果填在表格中。
生:直径不同,周长也不同,但周长总是直径的三倍多一些。
③电脑或实物验证。
问:是所有的圆的周长都是直径的3倍多一些吗?
电脑出示2个大小不等的圆,让学生边看边数一数。
师:刚才是老师给你的圆,现在谁愿意自己在电脑上任选一个圆,大小由你决定。
指名填到黑板上。
互相说一说:你发现了什么规律?
学生自己选出一个圆,看一看这个圆的周长是否是直径的3倍多一些。
师:圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。为什么我们算的不一样呢?因为我们的测量有误差。我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。
补充板书:÷圆周率π固定
师:很早以前,人们就开始研究圆周率这个问题了。你知道最早发现圆周率的是谁吗?
放录音:大约20xx年前,我国的古代数学着作《周髀算经》中就有“周三径一”的说法。意思是说圆的周长是直径的3倍。
大约1500年前,我国伟大的数学家和天文学家祖冲之,就精确地计算出圆周率应在3.1415926~3.1415927之间,成为世界上第一个把圆周率值的计算精确到6位小数的人。他的这项伟大成果比国外数学家至少要早一千多年。生为中国人,应为之自豪。
板书:3.1415926~3.1415927之间
后来人们发现π是一个无限不循环小数。
板书:无限不循环
在计算时,只取它的近似值,一般保留两位小数,即π≈3.14。
圆的周长总是直径的π倍,已知圆的直径怎样求圆的周长呢?同桌互相说一说。
用字母怎样表示?
板书:C=πd
已知半径怎么求圆的周长呢?
板书:C=2πr
问:知道什么条件就可以计算圆的周长?
4.解决实际问题。
例1 一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(1)读题。已知什么条件?要求什么问题?
(2)指名列式。
3.14×0.95
板书:=2.983 (先写准确值)
≈2.98(米)
答:这张圆桌面的周长是2.98米。
练一练 第112页的“做一做”。学生做在本上,投影订正。
(三)巩固练习
1.计算复习准备中的骑车比赛一题。回答谁先返回原点。
C圆 3.14×100=314(米)
C正 100×4=400(米)
因此沿圆周骑车的运动员先返回原点。
不用计算也可知。因为圆的周长是直径(100)的π倍,而正方形的周长是边长(100)的4倍。因此,绕圆周骑车的人先回到原点。
2.老师用绳甩小球。算一算小球转动的圆的周长。知道什么条件就可以了?(绳长5分米)学生算一算。
(四)课堂总结
这节课我们学习了哪些知识?还有什么问题。
(五)布置作业
课本第113页第 1,2(1),3(1),4,5,6题。
课堂教学设计说明
1.主要发挥学生的主体作用。从始至终让学生动手量、算;动脑发现规律;动口说出自己的发现。充分发挥学生的主动性、积极性,培养学生独立思考问题的能力及独立获取知识的能力。
2.精心设计每个环节间的导语,用质疑的方法引入每部分内容,使老师的语言自然,流畅。通过质疑也可抓住学生的心,使学生们一步步地发现问题,解决问题。
3.注意电教手段的合理应用,这样既可画龙点睛,又可激发学生的兴趣,提高课堂效率。
小学数学六年级教案——“圆的周长”教学设计与评析
教学内容:人教版九年义务教育六年制小学数学第十一册第110一113页“圆的周长”。
教学目标:1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确地计算圆的周长。
2.培养学生的观察、比较、分析、综合、和动手操作能力。
3.初步学会透过现象到看本质的辩证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
[评析:教学目标的拟订,从知识到能力、到思想方法、到爱国教育,立体丰满,折射出设计者教育观念的现代、育人意识的高度自觉]
教学过程:
一、创设情境,导入新课
1.播放课件。
星期天,米老鼠和唐老鸭在草地上跑步,米老鼠沿着正方形路线跑,唐老鸭沿着圆形路线跑。
2.揭示课题。
(1)要求米老鼠所跑的路线,实际上就是求这个正方形的什么?
要知道这个正方形的周长,只要量出它的什么就可以了?能说出
你的依据吗?(突出:正方形的周长与它的边长有关)
(2)要求唐老鸭所跑的路程,实际上就是求圆的什么呢?板书课题:圆的周长。
[评析:学生熟悉的可爱的米老鼠、唐老鸭的课件播放,既创设了融融的教学情境场,演示了周长的概念,较好地激发了认知冲突,又为后继教学埋下了伏笔。一举多得,既有承继,又有创新,难能可贵。]
3.引出圆周长的概念。
围成圆的曲线的长叫做圆的周长。
二、引导探索,展开新课
(一)测量圆的周长
如果我们用直尺直接测量这个圆的周长(教师演示),你觉得怎么样?你能不能想出一个好办法来测量它的周长呢?
1.如果学生说:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长,则师生合作演示量教具圆的周长。
然后各组分工同桌合作。请第一、二组的同学测量直径为2厘米圆片的周长,第三、四组的同学测量直径3厘米圆片的周长。并把结果记录在110页的表格中。
追问:如果要知道那个圆形草坪的周长(指唐老鸭跑的路线),也可以让它在直尺上滚着来量吗?
2.如果学生说:用绳子在圆上绕一周,再测出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作,第一、二组的同学测量直径为4厘米圆片的周长,第三、四组的同学测量直径为5厘米圆片的周长,并将结果记录在第110页的表格中。
3.教师甩动绳系小球,形成一个圆。
提问:小球的运动形成一个一一圆。你能用刚才的方法测量出圆的周长吗?
4.小结:看来,用滚动、绳绕的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
[评析:用直尺量→滚动法量→绳绕法量→没法量,既留给学生发挥的时空,又不断制造矛盾,“逼”着学生探求新知。]
(二)探讨圆的周长与直径的关系
1.圆的周长与什么有关。
(1)启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关呢?
(2)出示三个大小不同的圆:
组织学生观察比较,得出结论:圆的周长与它的直径有关。
2.圆的周长与直径有什么关系。
(1)正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?
(2)演示周长与直径的关系:用一根红线绕圆面一周剪下,拉直和直径比较,发现这段长度是直径的3倍多一些。
(3)学生自己验证:用刚才测得的第110页表中的数据计算它们的比值,依次一组计算一个。
(4)观察数据。
第一个圆片: ××算出它的周长与直径的比值是3.15,也有同学算出的是3.14、3.13。在实验操作中允许存在这样的误差。不管是3.14、3.15,都可以说,它的周长是直径的3倍多一些。
第二个圆片:它的周长是直径的3倍多一些。
第三、四个圆片:它的周长还是直径的3倍多一此。
(5)得出结论
圆的周长总是它直径的3倍多一些。板书:3倍多一些。
[评析:这一环节融猜想、讨论、实验、计算、观察、归纳和概括于一体,让学生动脑、动手、动眼、动口,多种感官参与学习过程,自主发现圆周长与直径的倍数关系,体现了设计者较为先进的教学观和师生观,以及较强的选择、组合、优化教法的能力。由“是……”→
“也是……”→“还是……”,最后概括出“总是……”,反映出教者较强的数学思想方法渗透能力和较为精湛的语言功底。]
3.认识圆周率。
(1)揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
指导学生读写π,每人在本子上写3个π,同桌比比,看谁写得好。
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长:直径=π
(2)指导阅读第111页方框中的文字,了解让中国人引以为自豪的历史。在学生汇报“看书后知道了些什么”时,相机板书: π=3,1415926……≈3.14
4.推导圆的周长计算公式。
(l)提问:已知一个圆的直径,该怎样计算它的周长?板书:c =πd
建议学生从第110页表格中任意挑一个圆片的直径,计算出它的周长,然后跟测量的结果比比看,是不是差不多?
[评析:让学生从表格中挑一个直径计算周长,再对照验证,这既是验证刚发现的圆周长计算公式,又是初步运用、巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
(2)提问:告诉你一个圆的半径,会计算它的周长吗?怎样计算?板书:c=2πr
提问:甩小球形成的圆的周长你会求吗?
[评析:此环节与上一环节有异曲同工之妙!既是巩固运用,又是前有设问,后有解答,让学生体验自我成就感。]
(3)小结:要求圆的周长,一般需要知道它的直径或半径。知道圆的直径,怎样来计算周长?知道圆的半径,怎样来计算周长?
三、初步运用,巩固新知
1.完成第113页第1题的(1)(3)两小题。
2.下面的说法对吗?!
(1)圆的周长是它直径的π倍。 ( )
(2)大圆的圆周率小于小圆的圆周率。( )l
3.出示例1
(1)在学生读题后,提问:求这张圆桌面的周长是多少米?实际上就是求什么?
(2)学生尝试练习,反馈评价。
(3)提问:如果告诉你的不是这张圆桌的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
4.完成第112页中间的练一练。l
5.看书质疑。l
[评析:练习设计目的明确,层次清晰,可以有效巩固新知。例1的直径改半径,独具匠心,既练习了求周长的另一种情况,又培养了学生思维的深刻性,而费时不多。]
四、照应启思,总结新课
1.组织学生说说收获。!
同学们从四个圆片的周长、直径的变化中(板书:变),看出了圆周率始终不变(板书:不变)。如果我们长期坚持这样从变化中看出不变,你就会变得越来越聪。
[评析:“变”与“不变”的板书,看似简单明了,其实是设计者苦心经营的。这一环节的组织,使辩证思维方法的培育从高空落到实地,促成了第3条教学目标的落实到位。]
2.照应开头。
我们再来看看米老鼠、唐老鸭跑步的路线,如果他的都跑了一圈,你能判断出谁跑的路程多吗?为什么?
3.课后思考。
小学六年级数学教案——[圆的周长]教学设计
教学内容:九年义务教育六年制小学数学第十一册第110~113页“圆的周长”。
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会透过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:正确计算圆的周长。
教学难点:理解圆周率的意义,推导圆周长的计算公式。
教具准备:多媒体课件三套、系绳的小球。
学具准备:塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
篇三:小学六年级数学教案——[圆的周长]教学设想
教学内容:义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:圆周率意义的理解和圆周长公式的推导。
教学设想:新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
教学具准备:多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。
教学过程:
一、创设情境,提出问题
1、创设情境。
这节课,老师要和同学一起探讨一个有趣的数学问题。
媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。
2、迁移类推。
引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。
(1)要求唐老鸭所跑的路程实际就是求什么?
(2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)
(3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)
3、提出问题。
看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。
梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?
[设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]
二、自主参与,探究新知。
1、实际感知圆的周长。
让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。
2、明确圆周长的意义。
引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)
(1)圆的周长是一条什么线?
(2)这条曲线的长就是什么的长?
(3)什么叫做圆的周长?
学生讨论互补,概括出“围成圆的曲线的长叫做圆的周长”(显示字幕)
篇四:小学六年级数学教案——“圆的周长”教学设想
教学内容:义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了“参与”、“探究”、“搜集、处理、获取、分析、解决”、“交流与合作”等一系列关键词。这些在本节课都有不同程度的体现。其中,“参与”是一切的前提和基础,而只有当“参与”成了学生主动的行为时,“参与”才是有价值的、有意义的。因此要怎样调动学生参与的积极性,“吸引”他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。“圆的周长是一条曲线,该如何测量?”的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的'方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生“兴趣点”上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。
圆的周长教案 篇2
教材分析
(可以从以下几个方面进行阐述,不必面面俱到)
l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。
教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。
在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。
学情分析
(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)
教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。
l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的知识。
l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。
在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。
教学目标
(教学目标的确定应注意按照新课程的三维目标体系进行分析)
1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。
2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。
3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
教学重点和难点
教学重点:正确计算圆的周长
教学难点:理解圆周率的意义,推倒圆周长的计算公式。
教学流程示意
(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)
一、创设情境,认识周长
二、小组合作,探究求圆周长的方法
三、运用知识,解决问题
四、课堂总结
五、布置作业
六、教学反思
教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)
圆的周长教案 篇3
教学目标:
1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。
2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。
3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。
教学重点:
探索已知圆的周长,求这个圆的直径或半径的方法
教学难点:
运用圆的周长公式解决实际问题
教学过程:
一、复习引入
1.什么是圆的周长?圆的周长计算公式是什么?
2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?
指名回答,明确计算方法。
3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。
二、自主先学
出示例6和导学单
1.题中的已知条件和所求问题是什么?。
2.如何准确地测算出这个花坛的直径?
3.还有别的方法吗?
三、小组讨论
四、交流展示
方法一:列方程解答。 解:设花坛的直径是x米。
3. 14x=251.2
x=251. 23. 14
x=80
答:花坛的直径是80米。
方法二:算术方法解答。 251. 23. 14 =80(米)
答:花坛的直径是80米。
五、质疑拓展
问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?
小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的关系计算。
问:已知圆的周长,如何求圆的半径或直径?
学生回答,教师板书
①列方程解答。②d=C r=C 2
六、检测反馈
1.完成练一练。
(1)学生独立完成。
(2)集体交流。
提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。
2.完成练习十上第6题
各自填表,说说半径、直径和周长的关系
3.完成练习十四第8题。
(1)借助圆柱形教具演示,帮助学生理解什么是 树干横截面
(2)学生独立思考并计算。
(3)集体交流。
4.完成练习十四第9题。
(1)理解拱门的高度的含义。
(2)学生独立计算。
(3)集体订正。
5.完成练习十四第10题。
(1)学生独立思考。
(2)集体交流,明确:先求出花圃的周长,再求出种的棵数。
6.作业:练习十四第8、10题。
七、课堂小结
通过这节课的学习,你有什么收获?
圆的周长教案 篇4
教学目的:
1.让学生知道什么是圆的周长.
2.理解圆周率的意义.
3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.
教学重点:
推导圆的周长计算公式.
教学难点:
理解圆周率的意义.
教具学具:
1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.
2.电脑软件及演示教具.
教学过程:
一、复习:
上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?
二、导入:
这节课我们继续研究圆的周长(板书课题).
1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?
2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?
问:什么是圆的周长?
板书:围成圆的曲线的长是圆的周长.
3.你能测量出这个圆的周长吗?(能)
4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?
5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?
回答:不能.
想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.
三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?
四、学生动手测量、教师巡视指导.
五、统计测量结果.
观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?
六、电脑演示
(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.
七、看书后回答问题:
1.是谁把圆周率的值精确计算到6位小数?
2.什么叫圆周率?
3.知道了圆周率,还需知道什么条件就可以计算圆的周长?
4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?
现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)
八、出示例1:
一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?
(得数保留两位小数)
请同学们想一想:车轮滚动一周的距离实际指的是什么?
解:d=1.95 单位:米
c=πd
=3.14×1.95
=6.123
≈6.12(米)
答:车轮滚动一周约前进6.12米.
九、课堂练习:
1.投影:计算下面图形的周长.
2.判断下面各题(正确的出示“√”,错误的出示“×”)
(1)圆周率就是圆的周长除以它的直径所得的商. ( )
(2)圆的直径越大,圆周率越大. ( )
(3)圆的半径是3厘米,周长是9.42厘米. ( )
3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)
如果速度相同,两人同时出发,谁先回到出发地点?为什么?
小明的路线长:20×3.14+20×3.14
=62.8+62.8
=125.6(米)
爷爷的路线长:3.14×(20+20)
=3.14×40
=125.6(米)
两条路线一样长,两人应同时回到出发点.
4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.
结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.
小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.
圆的周长教案 篇5
【教学内容】
教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。
【教学目标】
1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。
2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。
【教学重、难点】
掌握并理解圆的周长计算公式及其推导过程。
【教具、学具准备】
圆规、直尺、课件、圆纸片、线。
【教学过程】
一、导入新课
出示情境图:谁的铁环滚一圈的距离长一些?为什么?
教师:铁环滚动一周的距离我们就叫做铁环的周长。
教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。
板书课题:圆的周长。
二、感知圆的周长与直径的关系
1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?
学生指出并回答。(略)
2.观察。
课件演示右图:
问题:这两个圆周长有什么关系?你是怎么知道的?
小结:直径相等,圆的周长就相等。
3.课件演示右图:
问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。
4.小结。
问题:通过刚才的观察,你有什么发现?
学生:圆的周长和直径有关系。
三、探究圆的周长与直径的倍数关系
圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。
1.小组讨论,制定探究步骤。
出示探究建议:
(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。
2.说明活动要求。
每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。
圆的直径圆的周长周长除以直径的商(保留两位小数)
3.小组合作,进行探究。
4.汇报交流。
(1)交流测量的方法。
提问:谁来介绍一下,你们组是怎样测量圆的周长的?
学生汇报测量的方法。(绳绕法、滚动法……)
教师:在这些方法中,最欣赏哪个组的方法?
小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)
(2)交流计算方法和结论。
提问:观察这些计算结果,你有什么发现?你还有哪些了解?
学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。
5.介绍圆周率。
圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,日本的两位科学家把π值精确到20xx亿位。
6.总结圆周长的计算方法。
问题:你怎样理解周长/直径=π?你还能知道什么?
结论:c=πd,d=c/π,c =2πr,r=c/2π。
说明:为了计算方便,我们把π近似的取为3.14。
7.教学例2。
让学生独立列式计算,提示用估算检查计算结果。
[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
四、巩固练习
(一)判断。
1.π=3.14。
2.计算圆的周长必须知道圆的直径。()
3.只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1.较大的圆的圆周率()较小的圆的圆周率。
a.大于b.小于c.等于
2.半圆的周长()圆周长。
a.大于b.小于c.等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。
五、课堂小结
通过这堂课的学习,你有什么收获?你还有什么问题?
六、课堂作业
1.课堂活动第1、2题。
将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。
2.练习五第1~5题。
在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。
七、课后作业
1.求下面各圆的周长。
(1)d=2米(2)d=1.5厘米(3)d=4分米
2.求下面各圆的周长。
(1)r=6分米(2)r=1.5厘米(3)r=3米
[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]
圆的周长教案 篇6
教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。
教学目标:
1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。
2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。
3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。
教学设计思想:
复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。
教学过程:
一、创设情境,揭示课题。
二、回顾整理,讨论交流。
1、怎样求圆的周长?求圆的面积有几种情况?
2、圆的周长和面积公式是怎样推导出来的?
3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)
4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)
5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?
三、发现生活中的数学问题
教师结合图片演示,让学生提出有关圆的周长和面积的问题。
图片内容:农村的喷灌、碾子、拴在木桩上的小羊。
四、走进美丽的图形世界
教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。
五、开心词典
以开心词典的形式,让学生做六道选择题。
六、走进生活,解决问题
1、小猴子骑独轮车走钢丝。求车轮要转多少周。
2、用绳子绕树干10周,求横截面的直径。
3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?
4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?
七、思考生活中的数学问题
1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?
2、阅读关于400米标准跑道的小资料。
课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答
圆的周长教案 篇7
【教学内容】
《义务教育课程标准实验教材 数学》六年级上册第62~64页。
【教学目标】
1.通过小组合作探究,实际测量计算理解圆周率的意义。
2.通过对比分析掌握圆周长的计算公式。
3.能用圆的周长的计算公式解决一些简单的数学问题。
4.通过对圆周率的计算,渗透爱国主义的思想。
【教学重、难点】
重点:推导圆的周长的计算公式,准确计算圆的周长。
难点:理解圆周率的意义。
【教学过程】
一、情景引入
出示一块钟表
问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?
学生猜想。
教师演示小秒针的运动过程,证实学生的猜想是否正确。
问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?
生:先计算出走一圈的路程有多长,在计算出走60圈的长度。
师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)
(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)
二、动手量一量
学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。
物品名称
周长
直径
1号圆
2号圆
3号圆
4号圆
教师评价学生小组合作的情况。
(设计目的:强调学生的小组合作意识)
师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。
学生展示小组的成果。
(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)
三、对比分析
师:观察一下我们得到的几组数据,你发现什么规律了吗?
学生自由谈。
学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。
师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。
课件展示圆的周长的测量方法。
(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)
课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。
(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)
小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。
你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?
学生自由谈。
我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。
(设计目的:通过学生讲故事渗透爱国主义思想)
小结2:你能通过分析表格得到圆的周长的计算公式了吗?
学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)
圆的周长(用字母C表示)计算公式:C=πd或C=2πr
四、动手做一做
下面我们来看看怎样应用圆的周长计算公式来解决问题。
1.计算圆的周长
实物投影展示学生的解题过程
(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)
2.一个圆形喷水池的半径是5m,它的周长是多少米?
(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)
3.小组交流错误原因。(可让其他学生避免同样的错误)
(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)
4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。
(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)
五.你能说说在这一节课中你有什么收获吗?
可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。
六、课外合作:
小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。
(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)
圆的周长教案 篇8
一,教学目标
1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。
2,培养学生的观察,比较,概括和动手操作能力。
3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
二,教学重点
掌握并理解圆的周长,公式推导过程。
三,教学难点
理解圆周率的意义。
四,教学过程
一,创设情境,提出问题
1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。
2,你们知道这圈花边的边长是什么 (生:圆的周长。)
3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法
二,师生共同提出假设
1,请学生回忆正方形周长和边长的关系。(边长×4)
2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢
生:半径,直径……
3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么
学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。
4,师:你估计圆的周长是其直径的几倍
生猜想:3倍左右。
5,师:你有办法验证吗 生讨论
教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。
三,合作交流,发现规律
1,学生思考后可能出现的以下办法:
⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。
⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。
师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢
⑶ 学生在小组内动手操作,测量进行验证。
直径(cm) 周长(cm) 周长是直径的几倍
2 6。2 3倍多一点
3 9。1 3倍多一点
4 12。9 3倍多一点
2,
a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)
b,结合圆周率进行爱国注意教育。
c,师生共同推导计算圆的周长公式。
教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。
四,实践应用,拓展新知
1,学生尝试求圆的周长
d=2cm r=3。5cm d=10cm
2,圆形花坛的直径是20cm,它的周长是多少m
3,请同学们画一个周长是15cm的圆。
教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。
五,,体验成功
1,通过这节课的学习,你学会了什么
2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm
板书设计:
圆的周长
围成圆的曲线的长叫做圆的周长。
c=πd c=2πr
圆的周长教案 篇9
教学目标:
用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。
教学过程:
一、探究解决问题的方法。
⑴出示情境图。
⑵介绍解决方法。
1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。
2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。
⑶沟通两种方法间的联系。
师生一起解方程:x=251.2÷3.14,x=80。
观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。
⑷联想。
想:算出圆的直径有什么价值。
可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。
二、多种练习,内化知识。
⑴独立完成试一试和练一练。
⑵解答练习十八第6题。
独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。
⑶解答练习十八第8题。
学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。
三、作业,练习十八第7题。
圆的周长教案 篇10
学情分析:
学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。
教学目标:
1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作能力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学过程:
备注:
活动一:创设情境,引起猜想:认识圆的周长
(一)激发兴趣
小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1.回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体
中找出一个圆形来,互相指一指这些圆的周长。
(三)讨论正方形周长与其边长的关系
1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2.怎样才能知道这个正方形的周长?说说你是怎么想的?
3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总
是边长的几倍?
(四)讨论圆周长的测量方法
1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2.反馈:(基本情况)
(1)滚动--把实物圆沿直尺滚动一周;
(2)缠绕--用绸带缠绕实物圆一周并打开;
(3)折叠--把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3.小结各种测量方法:(板书)转化
曲直
4.创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5.明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
(五)合理猜想,强化主体:
1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。
2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3.正方形的周长总是边长的4倍,再看这幅图,
猜猜看,圆的周长应该是直径的倍?
(正方形的边长和圆的直径相等,直接观察可发现,圆周长
小于直径的四倍,因为圆形套在正方形里;而且由于两点间
线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4.小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?
活动二:动手操作,探索圆的周长与直径的关系。
第四篇:圆的周长教案
关于圆的周长教案模板汇编五篇
圆的周长教案 篇1
【教学目标】:
1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。
2、能运用圆的周长的计算公式解决一些简单的数学问题。
3、初步体会转换思想,学到一些解决实际问题的数学方法。
【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。
【教学难点】:理解圆周率的意义
【教学难点】:教师:课件(U盘)、表格、卷尺。
学生:线或卷尺、计算器。
【教学过程】:
(1)教学准备:
1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,
8就是2的4倍,要求8是2的几倍,用8÷2。”填空。
6是3的( )倍。 20是5的( )倍。
22是7的( )倍。
2、把倍数关系句改写成等式。
①6是3的2倍 ( )
②20是5的4倍。 ( )
③22是7的22/7 倍。( )
④C是d的a倍。( )
3、数学是一门关系学
正方形的周长与边长的关系
C=4a
正方形的周长 是 边长的4倍
(2)新授过程。
自学课本第62页,思考
1、什么是圆的周长?
答:围成圆的曲线的长是圆的周长。
2、直观认识圆的周长。演示动画。
3、你认为 圆的周长与正方形的周长最大的不同在哪里?
4、课本里介绍了几种度量圆的周长的方法?
围绳法 滚动法
5、动画演示滚动法
6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长
的大小与什么有关系?
7、猜想、判断。周长与直径比哪个长?周长是直径几倍?
8、动手操作验证猜想
其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。
π是一个无限不循环小数。
π=3.141592653……
在实际应用中常常只取它保留两位小数的近似值,π≈3.14。
9、投影展示π的前900位,体会π的小数数位的庞大。
10、圆周率前6位谐音记忆
π=3.14159…… 山 巅一寺一壶酒 巅 diān
11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd
c=2πr。
12、对比 : c=4 a c=πd
(三)知识应用。求下面圆的周长
(四)课堂作业。《课本》P65 练习十四 1题、2题
圆的周长教案 篇2
教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长 直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约15前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)
既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用分米作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.142=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径圆周率)
如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?
(板书:C=d)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2r)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画,错误画。
(1)一个圆的周长总是它的直径的倍。( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
圆的周长教案 篇3
【教学内容】
义务教育课程标准北师大版试验教材六年级上册第一单元第1112页圆的周长。
【教学目标】
1、认识圆的周长,能用滚动、线绕等方法测量圆的周长。
2、在测量活动中探索发现圆的周长与直径的关系,理解圆周率的意义用圆周长的计算方法。
3、能正确地计算圆的周长,能运用圆的周长解决一些简单的实际问题。
【教学重、难点】
1、探索发现圆的周长与直径的关系;
2、运用圆周长的知识解决一些简单的实际问题。
【教具、学具准备】
1、每小组一根小绳、一个米尺、三个大小不同的圆片、计算器。
2、课件1:阿凡提与国王比赛A、B
课件2:圆的周长与直径的商的关系
课件3:祖冲之有关资料
【教学设计】
【教学过程 】
一、创设情境
师:同学们喜欢童话故事吗?今天,老师带来了一个阿凡提的故事。 国王多次受到阿凡提的捉弄,非常恼火。有一天,他又想出了一个新招,想为难阿凡提。国王从全国精选出了一头身强力壮的小花驴要和阿凡提的小黑驴赛跑,并且规定小花驴沿着圆形路线跑,小黑驴沿着正方形路线跑。(课件出示小花驴和小黑驴赛跑)
50米
师:同学们看,比赛开始了 紧张的比赛结束了。今天的比赛谁获胜了?
生:国王的小花驴获得了胜利
师:可是,对于这场比赛小黑驴觉得很委屈,阿凡提也大喊比赛不公平。同学们你们觉得这样的比赛公平吗?
师:说说你是怎么想的?
生:他们的小毛驴跑的路程不是一样长。
师:那到底他们的路程是不是一样长呢?你们有什么好办法来判断一下呢?
生:量一量就知道了,
师:谁能说说正方形的周长和什么有关系,有怎样的关系?
生:正方形的周长和边长有关系,周长是边长的4倍,
师:也就是说只要测出正方形的一条边长就可以 知道正方形的周长,是吗?那小花驴围着圆形路线跑一圈的长度又是圆的什么呢 ?
师:有的同学反映可真快,对!这就是圆的周长,这也是我们这节课要研究的内容。(板书课题)谁能说一说什么叫圆的周长?同桌可以交流一下。
得出:围成圆的曲线的长叫圆的周长。
二 自主合作,探究新知
(1)发现测量圆的周长的不同方法
师:下面请同学们把准备的圆拿出来,那圆的周长指的是哪一部分的长,同桌互相比画一下。
师:好,想一想圆的周长怎样测量?(给学生独立思考的时间)
师:把你的好方法在小组内交流一下。
(上台交流测量的方法)
生:我们的方法是用线绕圆一周,然后量出线的长度就是圆的周长,
生:我们小组觉得直接用米尺绕圆一周就可以读出圆的周长。
生:我们把圆沿着尺子滚动一周,这一周的距离就是圆的周长,
生:我们小组还有不同的方法,我们是用线量出圆周长的一半在乘以2,就可以求出圆的周长。
师板:线绕、滚动、拉直 化曲为直
(2)探究发现圆周率和圆的计算公式
师:我们同学真是太棒了,在这么短的时间内找到这么多的好方法。那我们能不能用这些方法测量出圆形跑道的周长是多少?
生:不行,圆太大了,测量不出来!
师:哦,太大了不容易测量。那大家看,老师画一个小圆,你能不能帮老师测量出来它的`周长?
生:有些圆的周长没办法用绕线和滚动的方法测量出来
师: 那咱们能找到一种更简便、更科学的办法来解决这个问题吗?
师:我们知道正方形的周长和边长有关系,周长是边长的4倍,那么圆的周长和什么有关系呢?
生:圆的周长和圆的直径有关系,直径越长圆越大,所以周长也就越大,
师:有道理!那大家来猜一猜,周长和直径有怎样的关系?
生:周长是直径的2倍, 生:他们一样长, 生:我觉得这个圆的周长是直径的3倍,(4倍)(3.5倍)
师:大家猜得可真起劲呀!那到底圆的周长和直径有什么关系呢?怎么才能知道?
生:动手量一量,算一算,
师:说的真好,这可是解决问题的好办法动手做来验证一下。同学们想试试吗?每组拿出大小不同的三个圆,你们可以用自己喜欢的方法去测量。听好要求:1、小组同学作好分工,选好测量员、记录员、汇报员。2、记录员要及时地把测量员测量的数据记录在书上的表格里。3、可以用科学计算器帮忙算一算周长和直径的商。
3、可以用科学计算器帮忙算一算周长和直径的商。
师:好,现在我们来交流一下你们的实验结果。
生:实物展台交流。
师:大家仔细观察分析,看能发现什么?
(厘米) 圆的直径
(厘米) 周长与直径的商
(保留两位小数)
生:我发现了这三个圆的大小虽然不一样,但圆的周长和直径的商都是三点几。
生:所有圆的周长都是直径的3倍多一些,
师:看来大家的发现都一样,那我们再来看看电脑小博士是不是也发现了这样的规律?(课件直观展示三倍多一点)
生:圆不论大小,它的周长都是直径的三倍多一些。
师:说得真好。圆不论大小,它的周长都是直径的三倍多一些。这是个固定不变的数,!你们的这个发现和许多大数学家的发现不谋而合,
师:人们通常把圆的周长和直径的这个比值叫做圆周率,用字母表示。(板书:圆的周长直径=圆周率)
师:关于圆周率,大家都知道什么?你说,
生:我知道我国古代有个数学家较祖冲之好象和圆周率有关系,
师:老师也收集了一些有关的资料,大家想看吗?
看屏幕,这就是祖冲之,(课件介绍祖冲之 )
师:我们通过圆的周长除以直径得到了也就是圆周率(板书:Cd=)你能通过圆的直径求它的周长吗?用字母表示出来。通过半径能求圆的周长吗?
生回答、师板书:Cd= C= C=d
d=2r C=2 C2=r
圆的周长教案 篇4
【教学目标】
1、让学生知道什么是圆的周长。
2、理解并掌握圆周率的意义和近似值。
3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。
4、培养和发展学生的空间观念,培养学生抽象概括能力和解决简单的实际问题能力。
5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
6、培养学生的观察、比较、分析、综合及动手操作能力。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备图片。
【教学过程】
一、引课
(课件出示特克斯八卦城图片)同学们,你们知道这是哪吗?
对,这就是我们伊犁美丽的特克斯县的八卦城。它因八卦布局而闻名,是世界上最大、最完整的八卦城,同学们有机会一定要去看一看。
今年夏天,老师有辛来到了这里,照片上的就是八卦城中心广场的太极坛,老师绕太极坛的第一外环走了一圈,要想知道老师走这一圈是多少米?你们知道是要求什么吗?
对,圆的周长,那么究竟什么是圆的周长,怎样求圆的周长?这节课我们就来研究这个问题。(板书课题)
二、认识周长
1、请大家看,老师手里有一个圆,你知道圆的周长是指哪一部分吗?谁能给大家摸一摸(指名学生摸一摸)
师:摸的时候我们要注意确定一个点,从哪里开始到哪里结束。
2、那你们说说,什么是圆的周长?(生:圆一周的长度是圆的周长)看他多勇敢,谁还能说一说
3、那你们想圆是由什么线围成的呢?(曲线)
师:那我们可以说围成圆一周的曲线的长,就是圆的周长。
4、那谁有测量圆周长的方法?(绕线发,滚动法)
5、小组合作
请同学们拿出准备好的学具,现在请大家自己选择方法来测量这些圆的周长,好吗?
要求:
1)不管你用什么样的办法,只要你能得到圆的周长就可以,请一律用厘米做单位。
2)每个小组还有一个小表格,请同学们将测量好的结果填写在表格中的第一栏里,只需要完成第一栏就可以,不用写单位。
3)请同学们小组分工,合作完成(3分30秒)
6、我想问问大家,你们是怎样得到圆的周长的?
谁愿意到前面来给大家讲一讲,拿着你手里的圆
生1、用卷尺测量(直接用带刻度的卷尺,绕圆一周进行测量)
生2、用绳子测量(通过测量绳子的长度,来得到圆的周长)
生3、直尺滚动(在圆上做一个标记,再在直尺上滚动一周,可以得到圆的周长)
7、小结:那刚才我们同学不论是用尺子去量,还是把圆放在尺子上滚动,你最后得到的都是什么长度?(周长)这是一条什么呢?(直线)最后得到的都是一条直线。但是我们一开始我们研究了圆的周长实际上是一条什么的长?(曲线)说明我们可以把一条曲线化成一条直的线段来测量圆的周长(板书:化曲为直)在数学里,我们把这种思想称为化曲为直。
8、那是不是所有的圆,都能用我们刚才的方法来测量周长,想一想。
(生;非常大的和非常小的都不可以)
9、老师手中有一个绳,绳的一端有一个小球,当我挥动这个绳的时候,你想这个小球的运动轨迹会是一个什么图形?(圆)
其实,我们大家都做过这个实验是不是?看好了!(转动小球)
10、那我想问大家,刚才在空中旋转的这个圆,能通过刚才我们的方法来测量它的周长吗?(不能)
三、探究周长与直径的关系
1、那看来我们刚才找到的这些方法都有一定的局限。看来,我们也需要像研究长方形、正方形的周长一样,来找到一种做为普遍的一种公式,能够直接计算圆的周长
2、那现在请大家想一个问题,圆的周长到底和什么有关系?(半径、直径)
有说半径,有说直径,能说说你的理由吗?(指名说一说)
同学们都觉得和半径或直径有关系。
3、课件:请同学们认真的看大屏
这是一个圆,闪动的是圆的直径。仔细看(展开)这条线段是谁?(周长)
对,是这个直径是1分米的圆的周长。
再看(展开直径是0.8、0.6分米圆的周长)
4、通过刚才这3幅图,你发现什么了?(直径越长,他的周长就越长)
那看来确实直径可以决定圆的周长,是这样吗?
5、那现在请同学们继续我们刚才的测量,刚才我们只得到了圆的周长,对吗?现在就需要你再测量出手中这个圆的直径,那么你想找周长和直径之间的什么关系呢?(倍数)
6、为什么找倍数关系?(因为正方形的周长是边长的4倍)
你们同意吗?那咱们现在就按照同学所说的来继续刚才的活动,好吗?当你用周长除以直径时,一定要把结果除不尽的保留两位小数。
(这个小组非常好,有人测量,有人记录,有人计算,分工明确)
填完之后,互相说一说你发现了什么。
7、展示一个小组的数据
1)其他组也计算出来了是吧,我们不再往黑板上写了。
2)有没有算出来和黑板上不一样的?
3)是我们算错了吗?正方形的周长是边长的四倍,可以得到一个整数的结果。(结果有误差)
四、圆周率
1、那你们讨论出周长和直径的关系了吗?(3倍多一些)
2、那是不是所有的圆的周长都是圆的直径的3倍多呢?(看课件)
这是我们刚才得到的3个直径不同的圆的周长,那我们看一看他们之间是不是也有刚才我们同学所说的这种关系
3、怎么样?看来我们同学们得到的结论是正确的。确实,每个圆的周长都是它直径的3倍多一些。(板书)
4、那这3倍多一些说明什么?(圆的周长和直径之间确实有倍数关系)
5、我们说这3倍多一些就是固定不变的数,我们把它叫做圆周率,用字母 来表示
6、老师这里有一个关于圆周率的资料,请大家仔细的看,认真的听。
通过刚才的资料你有什么收获?( 取3.14、无限不循环小数)
7、师:刘徽:也是研究出了圆周率的关系
祖冲之:这是祖冲之,你们知道吗,1967年国际天文学家联合会把月球上的一座环形山命名为“祖冲之环形山”,将小行星1888命名为“祖冲之星”你们知道为什么吗?
8、板书:圆周率用希腊字母 来表示,一般保留两位小数(3.14)
那现在谁知道怎么计算圆的周长?能得出什么样的公式?
字母公式:C=d
知道半径怎么求周长?C=2r
小结:这两个公式都可以计算出圆的周长,那现在咱们要做一些有关的练习,你们愿意做吗?
圆的周长教案 篇5
教学目标:
1、通过教学使学生学会根据圆的周长求圆的直径、半径。
2、培养学生逻辑推理能力。
3、初步掌握变换和转化的方法。
教学重点:
求圆的直径和半径。
教学难点:
灵活运用公式求圆的直径和半径。
教学时间:
一课时
教学过程:
一、复习。
1、口答。
4π 2π 5π 10π 8π
2、求出下面各圆的周长。
《圆的周长(2)》教学设计《圆的周长(2)》教学设计《圆的周长(2)》教学设计 C=πd c=2πr
《圆的周长(2)》教学设计 3.14×2 2×3.14×4
=6.28(厘米) =8×3.14
=25.12(厘米)
二、新课。
1、提出研究的问题。
(1)你知道表示什么吗?
(2)下面公式的每个字母各表示什么?这两个公式又表示什么?
C=πd C=2πr
(3)根据上两个公式,你能知道:
直径=周长÷圆周率 半径=周长÷(圆周率×2)
2、学习练习十四第2题。
(1)小红量得一个古代建筑中的大红圆柱的周长是3.768米,这个圆柱的直径是多少米?(得数保留一位小数)
已知:c=3.77 求:d=?
(2)做一做。用一根1.2米长的铁条弯成一个圆形铁环,它的半径是多少?(得数保留两位小数)
三、巩固练习。
1、饭店的大厅挂着一只大钟,这座钟的分针的尖端转动一周所走的路程是125.6厘米,它的分针长多少厘米?
《圆的周长(2)》教学设计2、求下面半圆的周长,选择正确的算式。
⑴ 3.14×8
⑵ 3.14×8×2
⑶ 3.14×8÷2+8
3、一只挂钟分针长20c,经过30分后,这根分针的尖端所走的路程是多少厘米?经过45分钟呢?
(1)想:钟面一圈是60分钟,走了30分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。而钟面一圈的周长是多少?20×2×3.14=125.6(厘米)
(2)想:钟面一圈是60分钟,走了45分,就是走了整个钟面的《圆的周长(2)》教学设计,也就是走了整个圆的《圆的周长(2)》教学设计。则:钟面一圈的周长是多少? 20×2×3.14=125.6(厘米)
45分钟走了多少厘米? 125.6×《圆的周长(2)》教学设计=94.2(厘米)
4、P66第10题思考题。下图的周长是多少厘米?你是怎样计算的?
作业。
P65-66 第3、6、7、9题
第五篇:圆的周长教案
圆的周长教案 篇1
教学目标
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长 直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约15前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)
既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用分米作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.142=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径圆周率)
如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?
(板书:C=d)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2r)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画,错误画。
(1)一个圆的周长总是它的直径的倍。( )
(2)圆的周长是6.28厘米,它的半径是2厘米。 ( )
(3)圆周长的一半与半个圆的周长相等。( )
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[ ]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长 [ ]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
课堂教学设计说明
本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。
圆的周长教案 篇2
教学内容:
义教六年制小学数学第十一册第110-112页例1。
教学目标:
1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。
2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。
3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。
教学重难点:
圆周率意义的理解和圆周长公式的推导。
教学设想:
新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。
接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]
圆的周长教案 篇3
【教学内容】
教科书第24-25页例1、例2,课堂活动第1、2题,练习五第1~5题。
【教学目标】
1.掌握圆周率的近似值,理解和掌握圆周长公式,并能正确计算圆的周长和解答简单的实际问题。
2.让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,对学生进行辨证唯物主义教育和爱国主义教育。
【教学重、难点】
掌握并理解圆的周长计算公式及其推导过程。
【教具、学具准备】
圆规、直尺、课件、圆纸片、线。
【教学过程】
一、导入新课
出示情境图:谁的铁环滚一圈的距离长一些?为什么?
教师:铁环滚动一周的距离我们就叫做铁环的周长。
教师:围成圆的曲线的长叫做圆的周长。今天我们就一起来研究圆的周长。
板书课题:圆的周长。
二、感知圆的周长与直径的关系
1.老师出示一个圆(实物)。谁来指一指这个圆的周长?课件出示一个圆。谁来指一指这个圆的周长?
学生指出并回答。(略)
2.观察。
课件演示右图:
问题:这两个圆周长有什么关系?你是怎么知道的?
小结:直径相等,圆的周长就相等。
3.课件演示右图:
问题:这两个圆的周长哪一个长一些?为什么?学生回答后,课件演示由曲变直,对学生的推断进行检验。
4.小结。
问题:通过刚才的观察,你有什么发现?
学生:圆的周长和直径有关系。
三、探究圆的周长与直径的倍数关系
圆的周长和直径有怎样的关系呢?我们一起来作一个实验,测量学具中圆形的周长和直径,然后再用周长除以直径得出它们的商。
1.小组讨论,制定探究步骤。
出示探究建议:
(1)测量圆的周长和直径;(2)记录数据;(3)进行计算;(4)得出结论。
2.说明活动要求。
每个组的同学先测量出学具中圆形的周长和直径,然后再用周长除以直径,并把这些数据和计算的结果填在表里。
圆的直径圆的周长周长除以直径的商(保留两位小数)
3.小组合作,进行探究。
4.汇报交流。
(1)交流测量的方法。
提问:谁来介绍一下,你们组是怎样测量圆的周长的?
学生汇报测量的方法。(绳绕法、滚动法……)
教师:在这些方法中,最欣赏哪个组的方法?
小结:不同的材料,可以用不同的方法进行测量。无论是哪一种方法,都是在想办法把圆这个曲线图形转化成直线来进行测量的。(课件出示绳绕法、滚动法……的动画测量过程)
(2)交流计算方法和结论。
提问:观察这些计算结果,你有什么发现?你还有哪些了解?
学生汇报:圆的周长是它的直径的3倍多一些。这个3倍多一些的数叫圆周率,用字母π表示。
5.介绍圆周率。
圆周长和直径的比值叫做圆周率,对于圆周率我国古代的数学家就对此有了研究了,他们把圆内接正六边形的周长近似的看作圆的周长,因为正六边形的周长是直径的3倍,所以近似的看成圆的周长是直径的3倍,(出示课件,展示圆内接正六边形周长是圆直径的3倍)可是大家可以发现圆内接正六边形的周长与圆的周长的误差太大了。因此把它的边数加倍,得到正十二边形,再加倍到正二十四边形。我国古代伟大的数学家刘徽用圆的内接正96边形,算出圆的周长是直径的3.14倍,而祖冲之用圆的内接正16384边形,算出圆的周长与直径的倍数精确到小数点后第七位:3.1415926与3.1415927之间,是世界上把圆周率精确到小数点后第七位的第一人,他在数学上的伟大贡献得到了世界的公认。同学们,你们发现了什么呢?(分得的边数越多,精确的数位越多)到了现代,人们用计算机对圆周率进行计算,日本的两位科学家把π值精确到20xx亿位。
6.总结圆周长的计算方法。
问题:你怎样理解周长/直径=π?你还能知道什么?
结论:c=πd,d=c/π,c =2πr,r=c/2π。
说明:为了计算方便,我们把π近似的取为3.14。
7.教学例2。
让学生独立列式计算,提示用估算检查计算结果。
[评析:有前面数学活动的基础,总结出圆周长的计算公式已经是水到渠成,整个过程充分发挥学生的主体作用。让学生学习例2这既是验证刚发现的圆周长计算公式,又是初步运用,巩固刚发现的公式,更是让学生经历科学发现的完整过程。]
四、巩固练习
(一)判断。
1.π=3.14。
2.计算圆的周长必须知道圆的直径。()
3.只要知道圆的半径或直径,就可以求圆的周长。()
(二)选择。
1.较大的圆的圆周率()较小的圆的圆周率。
a.大于b.小于c.等于
2.半圆的周长()圆周长。
a.大于b.小于c.等于
(三)实践操作。
请同学们以小组为单位,画一个周长是12.56厘米的圆。先讨论如何画,再操作。
五、课堂小结
通过这堂课的学习,你有什么收获?你还有什么问题?
六、课堂作业
1.课堂活动第1、2题。
将课堂活动第1题的直径扩展到9cm为止,当学生算完后,除了观察直径、周长的变化外,还要能让学生将直径与周长对应的值记一记。第2题的图形周长在于引导学生去探索这个图形的周长指哪些线,怎么算,最后概括出半圆周长的计算公式。
2.练习五第1~5题。
在学生理解半径、直径、周长之间相互关系的基础上,运用公式进行计算。教学时,要求学生认真审题,分清每题的条件和问题,合理地运用公式,同时注意每题的单位名称。其中,练习五第3题,可以用教具进行演示,说明计算分针尖端走过的路程,就是求半径是15厘米的圆的周长。
七、课后作业
1.求下面各圆的周长。
(1)d=2米(2)d=1.5厘米(3)d=4分米
2.求下面各圆的周长。
(1)r=6分米(2)r=1.5厘米(3)r=3米
[评析:创设生活情境,密切与生活之间的关系。再通过观察发现圆周长与直径有关,究竟是什么关系呢。接着就引导学生做实验,探索出圆周长是直径的3倍多。让学生经历猜想、实验、验证、概括的数学学习过程,不仅对于掌握数学知识有用,而且有利于培养学生探索科学知识的意识和能力。]
圆的周长教案 篇4
教材分析
(可以从以下几个方面进行阐述,不必面面俱到)
l 课标中对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
l 本节核心内容的功能和价值(为什么学本节内容),不仅要思考其他内容对本节内容学习的帮助,本节内容的学习对学科体系的建立、其他学科内容学习的帮助;还应该思考通过本节内容的学习,对学生学科能力甚至综合素质的帮助,以及思维方式的变化影响等。
教材从生活情境入手,通过让学生思考自行车绕圆形花坛骑一圈大约有多少米,引出圆的周长的概念。接着让学生思考:如何求一个圆的周长,引导学生用不同的方法进行测量。在此基础上,让学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。
在本节内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程理解并掌握圆的周长计算方法。
在本教学设计中,对教材内容呈现形式上做了略微的改动。本设计从周长引入本课教学,这样可以加深圆的周长和其他以学图形周长在计算的联系和区别。用直的线围成的图形的周长求周长是几条直的线段长之和,而圆这个曲线围成的图形的计算方法是化曲为直。
学情分析
(可以从以下几个方面进行阐述,但不需要格式化,不必面面俱到)
教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。
l 学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线,即从学生现有的认知基础,经过哪几个环节,最终形成本节课要达到的'知识。
l 学生认知障碍点:学生形成本节课知识时最主要的障碍点,可能是知识基础不足、旧的概念或者能力方法不够、思维方式变化等。
在三年级上册学习了周长的一般概念以及长方形、正方形周长计算的基础上进一步学习圆的周长计算。
教学目标
(教学目标的确定应注意按照新课程的三维目标体系进行分析)
1、让学生知道圆的周长和圆周率的含义,掌握圆周率的近似值。理解掌握圆周长的计算公式,并能应用公式解决简单的实际问题。
2、通过对圆周长的测量和计算公式的探讨,培养学生观察、分析、比较、综合和主动研究、探索解决问题的方法的能力。
3、通过探索对学生进行辩证唯物主义的教育,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。
教学重点和难点
教学重点:正确计算圆的周长
教学难点:理解圆周率的意义,推倒圆周长的计算公式。
教学流程示意
(按课时设计教学流程,教学流程应能清晰准确的表述本节课的教学环节,以及教学环节的核心活动内容。因此既要避免只有简单的环节,而没有环节实施的具体内容;还要避免把环节细化,一般来说,一节课的主要环节最好控制在4~6个之间,这样比较有利于教学环节的实施。)
一、创设情境,认识周长
二、小组合作,探究求圆周长的方法
三、运用知识,解决问题
四、课堂总结
五、布置作业
六、教学反思
教学过程(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要环节的实施过程很清楚地再现。)
圆的周长教案 篇5
教学目标:
⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。
⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。
⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。
教学重点、难点
教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。
教学过程设计
一、创设情境,引发探究
⒈“几何画板”《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。
⒉揭示课题
⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?
⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?
板书课题:圆的周长
二、人人参与,探究新知
(一)教具演示,直观感知,认识圆周长。
教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?
(二)理解圆周率的意义
活动一:测量圆的周长
⒈教师提问:你能不能想出一个好办法来测量它的周长呢?
①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。
然后各组分工同桌合作,量出圆片的周长。
②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。
⒉用“几何画板”《小球的轨迹》演示形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?
⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?
活动二:探究圆周长与直径的关系,认识圆周率。
⒈圆的周长与什么有关。
⑴启发思考
正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?
⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?
得出结论:圆的周长与它的直径有关。
⒉圆的周长与直径有什么关系。
⑴学生动手测量,验证猜想。
学生分组实验,并记下它们的周长、直径,填入书中的表格里。
⑵观察数据,对比发现。
提问:观察一下,你发现了什么呢?
(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)
⑶出示“几何画板”《周长与直径的关系》演示。
⑷比较数据,揭示关系。
正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?
学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。
提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的圆周长与直径都是3倍多一些呢?教师演示“几何画板”最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。
⒊认识圆周率
⑴揭示圆周率的概念。
这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率
现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π
⑵介绍π的读写法
⑶指导阅读,了解中国人引以为自豪的历史。
提问:你知道了什么?
(三)推导圆的周长计算公式。
⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd
请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?
⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。
提问:“几何画板”上的小球轨迹形成的圆你会求周长吗?
学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?
三、应用新知,解决问题
1、和自己的伙伴一起解答例1和做一做
2、说出这两题用哪个公式比较好?
四、实践应用,拓展创新。
⒈基础性练习:
(1)求下列各圆的周长(几何画板)
r=3厘米 d=4厘米
(2)、我们现在有办法求唐老鸭跑的路程吗?
⒉、判断
①圆的周长是直径的π倍。( )
②大圆的圆周率小于小圆圆周率。( )
3、提高练习
在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?
五、总结评价,体验成功
1、你学到了什么? 2、你是怎么学到的?
圆的周长教案 篇6
教学目标:
1.经历圆周率的探索过程,理解并掌握圆周率的意义和近似值,初步理解并掌握圆的周长计算公式,能正确计算圆的周长。
2.培养学生的观察、比较、分析和动手操作的能力,发展学生的空间观念,培养学生抽象概括的能力和解决简单的实际问题的能力。
3.通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
教学重点:
理解并掌握圆的周长的计算公式。
教学难点:
理解圆的周长与直径之间的关系。
教学准备:
圆规、剪刀、绳子、尺子。
教学过程:
一、复习旧知,引入新知
1.教师在黑板上画圆。
(1)提问:你对圆有哪些了解?
(2)指名回答,同学之间相互补充。
(3)你还想了解什么?
2.通过学生的回答,引出:这节课我们就起来研究圆的周长。(板书:圆的周长)
二、合作交流,探究新知
1.认识周长的含义。
(1)师:你能指出黑板上这个圆的周长吗?
(2)从实物中指出圆的周长。
(3)用语言表述圆的周长。
学生回答,教师总结:圆的周长就是指围成圆的曲线的长度。
2.教学例4。
(1)出示例4,了解轮胎规格。明确:这里的22英寸、24英寸、26英寸是指
轮胎的直径。
(2)启发思考:如果把它们各滚动一圈,哪种车轮行驶的路程比较长?
(3)比较这三个车轮的直径和周长,你又有什么发现?
(4)小结:直径越大,圆就越大,圆的周长也就越长。圆的周长和直径到底有什么关系呢?接下来我们继续研究。
3.教学例5。
(1)讨论实验方案。要研究直径和周长间有什么关系,我们可以怎样做?
(2)学生回答后,小结:我们可以画几个圆,量一量它们的直径和周长,算一算周长除以直径的商。
(3)明确要求
①画三个大小不同的圆。
②用尺子量出直径。
③用线围出圆的周长并用尺子挞出长度。
④边操作边填好表格。
周长/cm 直径/cm 周长除以直径的商
(保留两位小数)
(4)学生分组按要求操作,要求分工明确。
(5)整理学生的测量结果,汇总。
(6)观察表格,说说有什么发现。
学生回答后,小结:一个圆的周长总是直径的3倍多一些。
4.认识圆周率。
(1)介绍圆周率,并板书: 3.14
(2)阅读教材第102页的你知道吗内容。
5.推导得出圆的周长计算公式及其字母公式。
板书: 或
三、巩固练习,加深理解
1.完成试一试。
(l)根据刚刚学过的圆的周长的计算方法,学生独立计算车轮的周长。
(2)指名说说计算方法。
2.完成练一练。
(l)学生独立完成计算。
(2)汇报交流。
3.完成练习十四第1题。
(1)学生看图,说说题目中的已知条件。
(2)学生独立完成计算。
(3)交流计算方法。
4.作业:练习十四第2、3、4题。
四、课堂小结
师:这节课我们研究了圆的周长,谁能说说是用什么方法进行研究的?你有
哪些收获?
板书设计:
圆的周长
周长/cm 直径/cm 周长除以直径的商
(保留两位小数)
圆的周长教案 篇7
教学设想:
利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。
教学内容:
小学数学义务教育教材十一册第137~138页“圆的周长”
教学目标:
1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2. 培养学生的观察、比较、分析、综合及动手操作能力;
3.通过学习圆周率的历史发展,对学生进行爱国主义教育。
教学重点:
推导总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学准备:
电脑课件,圆形实物以及直尺、绸带,测量结果记录表。
教学过程:
一、创设情境,引起猜想
(一)教师播放课件 激发学生兴趣
黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周
1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?
2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?
师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)
3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。
4.反馈:你是用什么方法测出来的?
生1:“滚动”——把实物圆沿直尺滚动一周;
生2:“缠绕”——用绸带缠绕实物圆一周并打开;
5.小结各种测量方法:(板书)化曲为直
6.创设冲突,体会测量的局限性
教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方
(三)合理猜想,强化主体
1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?
生:我猜圆的周长跟直径有关。
2.师课件演示:直径越大,周长越长;直径越小,周长越小。
3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?
(生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )
4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?
二、实际动手,发现规律
(一)分组合作
1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。
2.反馈数据
生1:我们小组算出圆的周长大约是直径的3.4倍。
生2:我们小组算出圆的周长大约是直径的3.2倍。
生3:我们小组算出圆的周长大约是直径的4倍。
师:课件演示:圆的周长总是直径的三倍多一些。
(二)介绍祖冲之
这个倍数通常被人们叫做圆周率,用希腊字母π表示。
板书 :圆周率=圆的周长÷直径
早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?
这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4.理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
(三)总结圆周长的计算公式
1. 如果知道圆的直径,你能计算圆的周长吗
板书:圆的周长 = 直径× 圆周率
C = πd
2. 如果知道圆的半径,又该怎样计算圆的周长呢?
板书: C = 2πr
3.应用
(1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。
生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。
(2)课题外的圆的直径是20厘米,用哪个公式计算?
生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米
(3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?
三、巩固练习,形成能力
1.判断
(1)圆的周长是直径的π倍。 ( )
(2)大圆的圆周率大于小圆的圆周率。( )
(3)π=3.14 ( )
2.出示例1,学生自己计算。
3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?
四、课内小结,扎实掌握
通过今天的学习,你有什么收获?
五、课外引申,拓展思维
一个茶杯口的直径你有什么方法知道?
圆的周长教案 篇8
【本课内容在教材中的地位和作用】
学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。
【教学目标】
1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。
2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
【教学重点】
理解和掌握圆的周长的计算公式。
【教学难点】
对圆周率的认识。
【教学准备】
1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。
2、教师准备课件、带绳小球,圆规,尺子,保温杯。
【教学过程】
(一)复习旧知、创设情境、引出新知
1、复习:圆心、半径、直径、直径与半径的关系(略去)
2、课件出示问题情境:龟兔赛跑
师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)
师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?
提问引导:
(1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)
(2).正方形的周长怎么求?用字母怎样表示?
(3).正方形的周长与谁有关?有什么关系?
生:正方形的周长与边长有关。周长是边长的4倍。
(4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)
3引出课题:
那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)
[设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]
(二)教学新课
1.认识圆的周长。
(1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。
(2)同桌互相说一说:什么是圆的周长?
生:围成圆的曲线的长叫做圆的周长。
(3)电脑出示圆的周长概念 ,读一遍。
[设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]
2.化曲为直,引发求知欲。
(1)我们想知道你课桌的周长怎么办?
生:用直尺量出课桌的长和宽。
(2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?
生:不方便,因为直尺是直的,而圆的周长是曲线围成的。
(3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?
①用围的方法。指名演示。(板书:围)
问:要注意什么?
生:先拉直后,只能量围的一周的长度。
②用滚的方法。指名演示。(板书:滚)
问:要注意什么?
生:在圆上先作了记号,沿直尺滚动一周。
师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?
(4)谁能用围的方法量一量黑板上圆的周长?
两名学生量。说一说自己的感觉。
(5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。
问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)
[设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]
3寻找关系,创设情景,测量圆的周长
(1)出示探究:a:正方形的周长和谁有关?有什么关系?
(板书:c=4a)
b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)
c、根据学生回答,教师板书:圆的周长 直径
(2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。
(3)小组合作,测量数据。
①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)
②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。
(4)比较验证,揭示规律:
①汇报交流:通过测量和计算,你发现什么规律?
生:直径不同,周长也不同,但周长总是直径的三倍多一些。
②问:是不是所有圆的周长都是直径的3倍多一些呢?
电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。
[设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]
4.介绍圆周率,推导公式,探求新知(重点和难点)。
(1)引导得出圆周率概念:
师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:
补充板书:圆的周长÷直径=圆周率π(固定)
教师讲解:π=3.141592653 ‥‥(无限不循环小数)
π≈3.14
(2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。
师:现在,我们根据这个规律能否探究出圆的周长公式呢?
(3)公式推导:
师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:
板书:C÷d=π
师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。
板书:C=πd
师:已知半径怎么求圆的周长呢?
板书:C=2πr
问:知道什么条件就可以计算圆的周长?(强调:d、r)
师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。
5、应用公式解决实际问题。
(1)解决龟兔赛跑问题:
问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?
? 学生尝试解答
? 指名板演,
? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?
? 教师课件演示规范步骤。
(2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?
[学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]
(三)课堂小结
这堂课你有什么收获?(出示填空)
1、基础练习:(略)
2、知识延伸:(略)
3、课后思考:(略)
[巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]
(五)作业:
1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?
2、钟面分针长10厘米,求针尖一天走过多少厘米?
3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?
(六)板书设计(略)