第一篇:成数教学设计
成数
教学目标
1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。教学重点和难点
理解成数和折扣的含义;理解成数与分数、百分数的含义。教学过程设计(一)复习准备
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几? 3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。板书:百分数应用题(二)学习新课
1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?
2、成数的含义。
师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。(1)口答:
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。(2)七成二成五
五成相当于百分之多少?
3、售价加两成是什么意思?求售价应先算出什么? 还可以怎样算?学生交流解题思路。
4.出示例2。
例2曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?
(1)学生读题,理解题中的数学信息。(2)减产一成五是什么意思?
(3)学生独立解答,指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。板书: 37.4×(1-15%)=37.4×0.85 =31.79(吨)
答:今年产棉花31.79万千克。3.练习。
小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?
6.课堂小结。
第二篇:成数教学设计
篇一:成数教学设计
成数
教学目标
1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
教学重点和难点
理解成数和折扣的含义;理解成数与分数、百分数的含义。
教学过程设计(一)复习准备
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
3.小华家承包了一块菜田,前年收白菜41.6吨,去年比前年多收了25%。去年收白菜多少吨?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。板书:百分数应用题
(二)学习新课
1.电脑出示例题:商场里每台电视机的进价是1800元,售价加两成,每台电视机的售价定为多少元?
2、成数的含义。
师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。(1)口答:
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。(2)七成 二成五 五成相当于百分之多少?
3、售价加两成是什么意思?求售价应先算出什么?
还可以怎样算?学生交流解题思路。4.出示例2。
例2曹庄乡去年产棉花37.4万千克。今年遭受虫灾,减产一成五,今年大约产棉花多少万千克?
(1)学生读题,理解题中的数学信息。(2)减产一成五是什么意思?
(3)学生独立解答,指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。板书:
37.4×(1-15%)=37.4×0.85 =31.79(吨)答:今年产棉花31.79万千克。3.练习。
小丽家承包了一块地,前年收小麦8000千克,去年比前年增产一成半。去年收小麦多少千克?
6.课堂小结。篇二: 成数教案
成数教案
一、教学分析
(一)品悟教材
这是百分数的应用知识中,与生活实际联系紧密的部分,尤其是在农业方面,对于现在的孩子来说,还是比较陌生的。教材以电视机销售、棉花产量为例题,来讲述成数的含义。
(二)读懂学生
学生对成数的意义很陌生,但是老师讲解之后,学生会很快接受。
(三)环境支持
多媒体出示例题,节约时间。
二、教学目的:使学生理解成数的意义,知道它在实际生产生活中的简单应用,会进行一些简单计算。
三、教学过程
(一)、导入
教师;前面我们学习了百分数的一些应用,像 计算发芽率,出勤率,成活率,还有计算储蓄的利息等。今天我们来学习“成数”,板书课题;成数
成数常常用来说明农业的收成,比如说今年的小麦比去上增产二成,苹果比去上减产一成,这“二成”和“一成”是用来说明收 成情况的。
说明并板书;“一成”就是十分之一,改写成百分数就是10%;“二成”就是十分之二,改写成百分数就是20%。
小麦比去年增产二成,也就是小麦比去年增产十分之二,即百分之二十。下面让学生回答:
“苹果比去年减产一成,表示什么意思?”(表示苹果比去年减产十分之一,即百分之十。)“油菜去年比前年增产三成,表示什么意思?”(表示油菜去年比前年增产十分之三,即百分之三十。)
(二)、新课 1.教学例1。
出示例1,让学生读题。提问:
“加二成,表示什么意思?”(增加了二成,表示增加了20%。)“怎样计算?根据什么?”学生口述。
教师板书算式:1800×20%=360(元),1800+360=2160(元)或者1800×(1十20%)2.教学例2。
师:自己试着独立完成。
三、课堂练习 1.试一试
先让学生自己做,做完后让学生说一说:
“是怎样做的?根据是什么?”“还有别的做法吗?” 2.做练习二的第1、2、5题。
指定学生每人口答一小题,其它学生核对。3.做练一练的第1题。
让学生独立做,做完后一起订正。订正时可以提问:“减产三成是什么意思?”
四、作业
练一练的第3题。
利息教学设计
一、教学分析
(一)品悟教材
(二)读懂学生
(三)环境支持
二、教学目标
1、知识与技能:了解本金、利息、利率的含义,并能计算定期存款的利息。
2、过程和方法:能利用百分数的有关知识解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
3、情感、态度、价值观:初步学习合理理财,培养独立自主的能力。
三、教学重点:
1、本金、利息、利率的含义;
2、计算定期存款的利息。
四、教学过程:
(一)、激趣导入
1、同学们,你们喜欢过年吗?为什么?
是啊,过年的时候除了有好吃的、好喝的,长辈还会给大家发压岁钱呢。过年时,收到长辈压岁钱的同学给老师招招手。
2、你是怎么安排这些钱的?(学生自由发表意见,从回答中引出储蓄)
3、你认为把钱存到银行有什么好处?(学生谈储蓄的好处,涉及利息)
把钱存到银行安全、保险,不但能支援国家建设,到期还能得到利息,何乐而不为呢?
4、什么是利息?(学生可联系生活实际谈谈对利息的理解)利息就是指取款时银行多支付的钱。
(二)、交流调查情况 看来储蓄的好处可真不少,课前同学们也调查了有关储蓄的知识,谁愿意把调查的结果和同学们交流一下?(学生自由交流课前调查的有关储蓄的知识)
(三)、探讨新知
前不久,老师也在银行存了一笔钱,(投影出示存款单)这是存款时填写的存款单,你从这张存款单上得到了哪些信息?(生谈获得的信息,师相机引导认识存款单上的户名、帐号、本金、时间、存款类型。并适时指出以下几点:
1、如果原来没有帐号就要新开户,新开户时要凭身份证等有效证件填写存款单上有关内容;
2、什么是本金?存入银行的钱叫做本金;
3、整存整取是什么意思?那么活期呢?零存整取呢?)
我们从这张存单上获得了不是知识。那么请问两年到期后老师回取得多少利息呢?银行是按什么标准支付利息的呢?
国家按照一定的利率支付利息,什么是利率?
(利率是指利息占本金的百分率,也就是利率=,利息是按照国家规定执行的。)出示2008年利率表
从上面的利率表中你得到那些信息?(学生自由谈)
师小结:利率与我们存款的类型、存款时间的长短有关,根据国家经济发展变化,存款利率还会做以调整。
既然利率表示利息占本金的百分率,那么利息到底怎么计算呢?
(利息=本金×利率,因为利率表中都为年利率,也就是这段时间中一年的利率,所以 在求利息时还要乘以时间,即:利息=本金×利率×时间)
那么请你帮老师算一算,整存整取两年后老师能得到多少利息。2000×4.68%×2(计算时怎么计算就方便了?)
四、学生实践 同学肯定也按奈不住激动的心情想把自己的钱也存入银行。那好吧,现在你的面前就有一张空白的存款单,请你先填写存款单吧。在选择存款类型的时候你是怎么想的?(生说说选择存款类型的依据)
好吧,存款单填好了,请你根据自己的本金和时间,并查阅利率表,算一算到期你能得到多少利息
但实际到期后得到手的利息比这个计算结果要少一些,为什么呢?因为国家规定个人在银行存款得到的利息要按5%纳税,也就是利息税,我们实际得到的是税后利息。
第三篇:《成数》教学设计
《成数》教学设计
过程与方法
结合具体事例,经历认识“成数”、解答有关“成数”实际问题的过程。
知识与技能
了解“成数”的含义,会解答有关“成数”的实际问题。
教学过程
一、问题情境
1.教师谈话
上节课,我们研究解决了商场商品打折的问题,今天我们继续研究商品价格问题。
2.复习引入
双丰农场去年水稻播种面积是504公顷,今年计划比去年增加15%。今年计划播种水稻多少公顷?
二、自学与研讨
1、出示课本情境图。
观察这幅图,图中的售货员和经理正在讨论电视机的售价问题。他们在说什么?你了解到哪些数学信息? 2.加二成大家不太熟悉,猜一猜可能是什么意思。学生说出教师表扬,说不出,教师介绍。
师:“几成”是人们生活中的数学语言,“一成”表示10%,二成表示20%,三成表示30%。题中加二成就是按进价提高20%后作为零售价。
3、现在,大家明白了加“二成”的含义,就帮助售货员算一算电视机现在的售价吧。
学生自主计算,教师个别指导。
4.交流学生的计算思路和方法,重点说一说是怎样想的。重点讨论1800×(1+20%)的方法。
学生说,教师板书。
5、成数在生活中应用非常广泛,请同学们看课本第70页下面的问题。认真读题,说一说从题中了解到哪些信息。谁知道“减产一成五”是什么意思? 现在,请同学们帮助老大爷算一算今年大约产棉花多少万千克。
学生自主计算,教师个别指导。然后交流。
6、总结整理
同学们,今天解决了生活中关于成数问题。成数问题的解题思路和方法与前面学习的百分数问题是一样的,所不同的是题中的百分数用成数表示。分析刚才解决的两个问题,谁能说一说有什么不同的地方?(1)小组讨论(2)全班交流(3)小结
解决成数和百分数问题,关键是要理解题意,确定谁是单位“1”的量,看单位“1”的量是已知的,还是未知的。然后,找出所求问题和已知数量、百分数之间的关系,再选择是直接列算式还是用方程解答。
三、尝试练习
1、出示71页试一试,认真读题,说一说从题中了解到哪些信息。“降价二成五”表示什么意思,然后自主计算。全班进行交流。
2、全班进行交流。重点说一说找到的等量关系是什么,是怎样解答的。
四、课堂练习
1.练一练第1题,让学生独立完成,交流时,说一说是怎样想的。
2、练一练第2题,读题,使学生明白“减少三成就是8月份比7月份少销售30﹪。鼓励学生列方程解答。
3.练—练第3题,教师进行简单提示,让学生自己解答,然后全班交流。
五、总结
这节课你有什么收获?
第四篇:《成数》教学设计
成数 一课时
教学内容:成数(课本第9页例2)教学目标: 知识与技能
明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。
过程与方法
通过成数的计算,进一步掌握解决百分数问题的方法。情感态度与价值观
感受数学知识与生活的紧密联系,激发学习兴趣。教学重点:理解“成数”的意义。
教学难点:会解决生活中关于成数的实际问题。教学过程:
一、预习。
1、什么是“成数”? 试举例说明。
2、九成表示什么意思?八成五、六成三各表示什么意思?
二、检查。
1、组织学生同桌之间互查,并讨论、交流自己预习时遇到的问题以及看法。
2、指名回答问题,并适时点拨学生遇到的思维障碍,引导学生寻疑、质疑,然后去释疑。
三、课堂讲评、展示。
1、理解成数的含义。
成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”。
(1)那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?
(学生讨论并回答,教师随机板书)成数
分数
百分数 二成 十分之二
20% 鼓励学生举手回答,并给予适当表扬。(2)试说说以下成数表示什么? ①出口汽车总量比去年增加三成。②北京出游人数比去年增加两成。引导学生讨论并回答。
2、教学例2。
(1)出示例题,让学生读题,分析题意。
(2)学生尝试独立分析问题,解决问题,教师巡堂了解情况,指导个别学习有困难的学生。
(3)理解“节电二成五”就是比去年节省了百分之二十五的意思。从而根据求一个数的百分之几是多少的解法列出算式和解答。
350×(1-25%)=262.5(万千瓦时)或者引导学生列出: 350-350×25%=262.5(万千瓦时)
四、课堂评议。
这节课,你有什么收获?同桌之间互相说一说。
五、课堂练习、测试。
1、完成课本第九页的做一做,师巡视辅导学困生,然后指名板书解答过程,共同订正、讲评。
2、出示习题,学生独立尝试解答。
1、王大爷的这块地去年产玉米4050千克,预计今年的收成比去年增加一成,预计今年可产玉米多少千克?
2、某水泥厂8月份销售水泥875吨,比7月份减少三成,7月份水泥销售量是多少吨?
五、布置作业。
1、练习二的第4、5题。
2、预习课本第十页“利率”的内容。
第五篇:成数教学设计
《成数》教学设计
教学内容:
成数(课本第9页例2)教学目标:
1、明确成数的含义。能熟练的把成数写成分数、百分数。正确解答有关成数的实际问题。
2、通过成数的计算,进一步掌握解决百分数问题的方法。
3、感受数学知识与生活的紧密联系,激发学习兴趣。教学重点: 成数的理解
教学难点: 会解决生活中关于成数的实际问题。教学过程:
一、复习
1、填空
①四折是十分之(),改写成百分数是()。②六折是十分之(),改写成百分数是()。③七五折是十分之(),改写成百分数是()。
2、商店里花了56元钱买了一条牛仔裤,因为那儿的牛仔裤正在打七折销售,这条牛仔裤原价多少元?
二、创设情境,导入新课
同学们:上节课我们了解到商场降价销售时,经常用打折的形式进行销售,那么在农业收成,经常用“成数”来表示。(课件出示)例如,报纸上写道:“今年我省油菜籽比去年增产二成”
谁来说说你对二成怎么理解?
同学们有留意到类似的新闻报道吗?(学生汇报相关报导)
三、新课探究
1、理解成数的含义。
成数:表示一个数是另一个数的十分之几或百分之几十,通称“几成”(1)刚才大家都说了很多成数的发展变化情况,那么这些“成数”是什么意思呢?比如说,增产“二成”,你怎么理解?(学生讨论并回答,教师随机板书)
成数 分数 百分数 二成 十分之二 20%(2)试说说以下成数表示什么?
①口汽车总量比去年增加三成。②北京出游人数比去年增加三成五。
引导学生讨论并回答。3)练习:将下列成数改写成百分数。
二成=()%; 四成五=()%; 七成二=()%。
2、解决实际问题。(1)课件出示教材第9页
例2:某工厂去年用电350万千瓦时,今年比去年节电二成五,今年用电多少万千瓦时?
①学生读题,独立解答问题。(读题,提取并理解信息,画图,借助图片理解题意后再用两种方法列算式)②交流说说解题思路。
思路一:今年比去年节电二成五,也就是今年比去年少25%,今年用电是去年的(1-25%),即350×(1-25%)。
思路二:去年用电数减去今年节约的度数,即350-350×25%。教师小结:可以根据自己的理解和计算能力,选择合适的方法进行计算。
(解决完这一题后,让学生根据本题信息想一想:还可以求什么?你能提出什么问题?)
四、巩固练习
(一)、三成=()%; 五成六=()%; 八成三=()%;
(二)、第9页做一做;
(三)解决问题 1.书店的图书凭优惠卡可打八折,小明用优惠卡买了一套书,省了9.6元。这套书原价多少钱?
(1)请学生读题思考:9.6元表示的实际含义是什么,和八折有什么关系?引导明确:9.6元就是打折后比原价减少的钱数,它相当于原价的(1-80%)。(2)尝试练习,集体校对。
2.某县前年秋粮产量为2.8万吨,去年比前年增产三成。去年秋粮产量是多少万吨?
3.某汽车出口公司二月份出口汽车1.3万辆,比上月增长3成。一月份出口汽车多少万辆?
五、课堂总结
今天这节课我们学了什么?我们应如何解决这一类问题?