四年级《三角形内角和》教学设计(共5则)

时间:2022-07-01 08:27:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《四年级《三角形内角和》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《四年级《三角形内角和》教学设计》。

第一篇:四年级《三角形内角和》教学设计

四年级《三角形内角和》教学设计6篇

在教学工作者实际的教学活动中,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么你有了解过教学设计吗?下面是小编帮大家整理的四年级《三角形内角和》教学设计,仅供参考,欢迎大家阅读。

四年级《三角形内角和》教学设计1

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1、猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2、操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1、用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2、汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3、课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

四年级《三角形内角和》教学设计2

课题

三角形的内角和

手 记

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点

重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程

资源

体验目标

“学”与“教”

创设问题情境

课件出示:两个三角板

遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?

生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建

模型

每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

课件

学生自己剪的一个任意三角形

大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

学生动手操作验证

师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?

学生汇报:

生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?

生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的.内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

师:有没有人质疑,用什么方法验证?

生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

解释

运用拓展

课件

正方形纸

让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1.∠1=40°,∠2=48°,求∠3有多少度?

2.算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?

⑵∠1=28°,∠2=62°,∠3=?

⑶∠1=80°,∠2=56°,∠3=?

师:你是怎样算的?这三个三角形各是什么三角形?

提问:在一个三角形中最多有几个钝角?

在一个三角形中最多有几个直角?

3.游戏:将准备的正方形纸对折成一个三角形?

师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

说明:三角形大小变了,内角和不变。

4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

说明:三角形形状变了,内角和不变。

5.根据所学知识,你能想办法求出下面图形的内角和吗?

板书

设计

三角形内角和

①号 钝角三角形 内角和180°

②号 锐角三角形 内角和180°

三角形内角和是180°

③号 直角三角形 内角和180°

④号 直角三角形 内角和180°

⑤号 钝角三角形 内角和180°

⑥号 锐角三角形 内角和180°

学具教具准备

课件三角形纸片量角器正方形纸

四年级《三角形内角和》教学设计3

知识与技能

1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

情感态度与价值观

3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:

1、探索和发现三角形三个内角和的度数和等于180o。

2、已知三角形的两个角的度数,会求出第三个角的度数。

教学难点:

已知三角形的两个角的度数,会求出第三个角的度数。

方法与过程

教法:主动探究法、实验操作法。

学法:小组合作交流法

教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

教学课时:1课时

教学过程

一、预习检查

说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度? 组内交流订正。

二、情景导入呈现目标

故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

三、探究新知

自主学习

1、活动一、比一比2、活动二、量一量

(1)什么是内角?

(2)如何得到一个三角形的内角和?

(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,三个角在一条直线上。从而得到三角形三个内角和等于()度。

四、当堂训练(小黑板出示内容)

1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

3、三角形具有()性。

4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

6、交流学案第三题。先独立做,最后组内交流。

五、点拨升华

任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

六、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

七、拓展提高

妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少? 先独立做,最后组内交流。

板书设计:

三角形的内角和

测量三个角的度数求和:结论:

教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

四年级《三角形内角和》教学设计4

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

四年级《三角形内角和》教学设计5

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是()度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

四年级《三角形内角和》教学设计6

教学内容:

义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.教学目标:

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:

多媒体课件、学具。

教学过程:

一、激趣引入

(一)认识三角形内角

1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

2.请看屏幕(课件演示三条线段围成三角形的过程)。

三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

(二)设疑,激发学生探究新知的心理

1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

学生安要求画三角形.2.问:有谁画出来啦?

(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

二、动手操作,探究新知

(一)研究特殊三角形的内角和

1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

这个三角形各角的度数。它们的和是多少?

学生回答:是180°。

追问:你是怎样知道的?

生:90°+45°+45°=180°。

把三角形三个内角的度数合起来就叫三角形的内角和。

板题:三角形内角和

2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

90°+60°+30°=180°。

3.从刚才两个三角形内角和的计算中,你发现什么?

这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示

组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.量一量,完成表格.三角形的名称

内角和的度数

锐角三角形

直角三角形

(2)小组汇报结果。

请各小组汇报探究结果。

(三)继续探究

没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

1.用拼合的方法验证。

小组内完成,活动的要求同上.拼一拼,完成表格.三角形的名称

是否可以拼成平角

锐角三角形

直角三角形

对角三角形

2.汇报验证结果。

先验证锐角三角形,我们得出什么结论?

(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

直角三角形的内角和也是180°。

钝角三角形的内角和还是180°)。

3.课件演示验证结果。

请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

三、解决疑问。

现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

四、应用三角形的内角和解决问题。

1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.85页做一做:

在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

4.89页16题.思考题

板书设计:

三角形内角和

180°180°180°

三角形内角和180°

第二篇:四年级《三角形内角和》教学设计

四年级《三角形内角和》教学设计

四年级《三角形内角和》教学设计1

课题

三角形的内角和

教学目标

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

重点难点

重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。

难点:探索、验证三角形内角和是180°的过程。

过程

资源

体验目标

“学”与“教”

创设问题情境

课件出示:两个三角板

遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。

这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?

生: 45°、90°、45°。

生: 30°、90°、60°。

师:仔细观察,算一算这两个三角形的内角和是多少度?

生:90°+45°+45°=180°。

生:90°+60°+30°=180°。

师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?

生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。

师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。

构建

模型

每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)

课件

学生自己剪的一个任意三角形

大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。

让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。

这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?

学生动手操作验证

师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?

学生汇报:

生1:③号三角形是直角三角形,内角和是180°。

生2:②号三角形是锐角三角形,内角和是180°。

生3:⑤号三角形是钝角三角形,内角和是180°。

生4:④号三角形是直角三角形,内角和是180°。

生5:①号三角形是钝角三角形,内角和是180°。

生6:⑥号三角形是锐角三角形,内角和是180°。

师:除了量的方法外,还有其他方法验证三角形内角和吗?

生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。

生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。

这些方法都验证了:三角形的内角和是180°。

师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?

师:有没有人质疑,用什么方法验证?

生用自己剪的任意三角形再次验证三角形内角和是否180°。

生:得出内角和还是180°。

师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。

师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?

生:三角形的内角和是180°。

师:看来我们的猜想是正确的。

师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。

解释

运用拓展

课件

正方形纸

让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。

1.∠1=40°,∠2=48°,求∠3有多少度?

2.算出下面三角形∠3的度数。

⑴∠1=42°,∠2=38°,∠3=?

⑵∠1=28°,∠2=62°,∠3=?

⑶∠1=80°,∠2=56°,∠3=?

师:你是怎样算的?这三个三角形各是什么三角形?

提问:在一个三角形中最多有几个钝角?

在一个三角形中最多有几个直角?

3.游戏:将准备的正方形纸对折成一个三角形?

师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?

说明:三角形大小变了,内角和不变。

4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?

说明:三角形形状变了,内角和不变。

5.根据所学知识,你能想办法求出下面图形的内角和吗?

板书

设计

三角形内角和

①号 钝角三角形 内角和180°

②号 锐角三角形 内角和180°

三角形内角和是180°

③号 直角三角形 内角和180°

④号 直角三角形 内角和180°

⑤号 钝角三角形 内角和180°

⑥号 锐角三角形 内角和180°

学具教具准备

课件三角形纸片量角器正方形纸

四年级《三角形内角和》教学设计2

知识与技能

1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

情感态度与价值观

3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:

1、探索和发现三角形三个内角和的度数和等于180o。

2、已知三角形的两个角的度数,会求出第三个角的度数。

教学难点:

已知三角形的两个角的度数,会求出第三个角的度数。

方法与过程

教法:主动探究法、实验操作法。

学法:小组合作交流法

教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

教学课时:1课时

教学过程

一、预习检查

说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度?组内交流订正。

二、情景导入呈现目标

故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

三、探究新知

自主学习

1、活动一、比一比2、活动二、量一量

(1)什么是内角?

(2)如何得到一个三角形的内角和?

(3)小组活动,每组同学分别画出大小,形状不同的若干个三角形。分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于度。

四、当堂训练(小黑板出示内容)

1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

3、三角形具有()性。

4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

6、交流学案第三题。先独立做,最后组内交流。

五、点拨升华

任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

六、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

七、拓展提高

妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少?先独立做,最后组内交流。

板书设计:

三角形的内角和

测量三个角的度数求和:结论:

教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

四年级《三角形内角和》教学设计3

设计思路

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。

最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教材分析

三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。

因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的.空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备

多媒体课件、学具。

教学过程

一、激趣引入

(一)认识三角形内角

师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?

生1:三角形是由三条线段围成的图形。

生2:三角形有三个角,……

师:请看屏幕(课件演示三条线段围成三角形的过程)。

师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)

(二)设疑,激发学生探究新知的心理

师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)

生:能。

师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

师:有谁画出来啦?

生1:不能画。

生2:只能画两个直角。

生3:只能画长方形。

师(课件演示):是不是画成这个样子了?哦,只能画两个直角。

师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?

生:想。

师:那就让我们一起来研究吧!

(揭示矛盾,巧妙引入新知的探究)

二、动手操作,探究新知

(一)研究特殊三角形的内角和

师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)

生:90°、60°、30°。(课件演示:由三角板抽象出三角形)

师:也就是这个三角形各角的度数。它们的和怎样?

生:是180°。

师:你是怎样知道的?

生:90°+60°+30°=180°。

师:对,把三角形三个内角的度数合起来就叫三角形的内角和。

师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

生:90°+45°+45°=180°。

师:从刚才两个三角形内角和的计算中,你发现什么?

生1:这两个三角形的内角和都是180°。

生2:这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1、猜一猜。

师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

生1:180°。

生2:不一定。

……

2、操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?

生:可以先量出每个内角的度数,再加起来。

师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!

师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)

(2)小组汇报结果。

师:请各小组汇报探究结果。

生1:180°。

生2:175°。

生3:182°。

(三)继续探究

师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

生1:有。

生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

师:怎样才能把三个内角放在一起呢?

生:把它们剪下来放在一起。

1、用拼合的方法验证。

师:很好,请用不同的三角形来验证。

师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。

2、汇报验证结果。

师:先验证锐角三角形,我们得出什么结论?

生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

生2:直角三角形的内角和也是180°。

生3:钝角三角形的内角和还是180°。

3、课件演示验证结果。

师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

师:我们可以得出一个怎样的结论?

生:三角形的内角和是180°。

(教师板书:三角形的内角和是180°学生齐读一遍。)

师:为什么用测量计算的方法不能得到统一的结果呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差。

四年级《三角形内角和》教学设计4

教学内容:

义务教育课程表准教科书数学(人教版)四年级下册85页.例题5.

教学目标:

1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备:

多媒体课件、学具。

教学过程:

一、激趣引入

(一)认识三角形内角

1.我们已经认识了三角形,什么是三角形?谁能说三角形按角分类,可以分成哪几类?(学生回答问题.)

2.请看屏幕(课件演示三条线段围成三角形的过程)。

三条线段围成三角形后,在三角形内形成了三个角,(课件分别出现三个角的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。

(二)设疑,激发学生探究新知的心理

1.请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

学生安要求画三角形.

2.问:有谁画出来啦?

(课件演示):是不是画成这个样子了?只能画两个直角。问题出现在哪儿呢?这一定有什么奥秘?那就让我们一起来研究吧!

二、动手操作,探究新知

(一)研究特殊三角形的内角和

1.请看屏幕。(播放课件)熟悉这副三角板吗?(课件闪动其中的一块三角板)

学生回答:90°、45°、45°。(课件演示:由三角板抽象出三角形)

这个三角形各角的度数。它们的和是多少?

学生回答:是180°。

追问:你是怎样知道的?

生:90°+45°+45°=180°。

把三角形三个内角的度数合起来就叫三角形的内角和。

板题:三角形内角和

2.(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?

90°+60°+30°=180°。

3.从刚才两个三角形内角和的计算中,你发现什么?

这两个三角形的内角和都是180°。这两个三角形都是直角三角形,并且是特殊的三角形。

(二)研究一般三角形内角和

1.猜一猜。

猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。

2.操作、验证一般三角形内角和是180°。

(1)小组合作、进行探究。

1.所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?那就请四人小组共同研究吧!

2.每个小组都有不同类型的三角形。每种类型的三角形都需要验证,小组活动的要求如下:课件显示

组长负责填写表格,组员每人负责量一个三角形的每个内角,并记录下来,最后算出这个三角形的内角和,把结果告诉组长.

量一量,完成表格.

三角形的名称

内角和的度数

锐角三角形

直角三角形

(2)小组汇报结果。

请各小组汇报探究结果。

(三)继续探究

没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?

引导学生用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。

1.用拼合的方法验证。

小组内完成,活动的要求同上.

拼一拼,完成表格.

三角形的名称

是否可以拼成平角

锐角三角形

直角三角形

对角三角形

2.汇报验证结果。

先验证锐角三角形,我们得出什么结论?

(锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。

直角三角形的内角和也是180°。

钝角三角形的内角和还是180°)。

3.课件演示验证结果。

请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)

我们可以得出一个怎样的结论?

(三角形的内角和是180°。)

(教师板书:三角形的内角和是180°学生齐读一遍。)

为什么用测量计算的方法不能得到统一的结果呢?

(量的不准。有的量角器有误差。)

三、解决疑问。

现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)

(因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

在一个三角形中,有没有可能有两个钝角呢?

(不可能。)

追问:为什么?

(因为两个锐角和已经超过了180°。)

问:那有没有可能有两个锐角呢?

(有,在一个三角形中最少有两个内角是锐角。)

四、应用三角形的内角和解决问题。

1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

2.85页做一做:

在一个三角形中,∠1=140度,∠3=35度,求∠2的度数.

3.88页第9.10题(数学信息较为隐藏和生活中的实际问题)

4.89页16题.思考题

板书设计:

三角形内角和

180°180°180°

三角形内角和180°

四年级《三角形内角和》教学设计5

【设计理念】

新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。

【教材内容】

新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

【学情分析】

1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。

2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。

【教学目标】

1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。

3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学难点】

验证“三角形的内角和是180°”。

【教(学)具准备】

多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

【教学步骤】

一、复习旧知引出课题

1、你已经知道有关三角形的哪些知识?

2、出示课题:三角形的内角和

【设计意图:也自然导入新课。】

二、提出问题引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:

(1)三角形的内角指的是哪些角?

(2)三角形的内角和是什么意思?

(3)三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎么猜的?

【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

三、操作验证形成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设:①量算法②剪拼法③折拼法等

(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才通过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

6、形成结论:任意三角形的内角和是180°。

【设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】

四、应用结论解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

今天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:用今天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测:三角形的内角和是180°?

验证:量拼

结论:任意三角形的内角和是180°

四年级《三角形内角和》教学设计6

教学目标:

1、通过测量,撕拼,折叠等方法。探索和发现三角形三个内角和的度数等于180°。

2、引导学生动手实验,经历知识的生长过程培养学生的探索意识和动手能力,初步感受数学研究方法。

3、能运用三角形内角和知识解决一些简单的问题。

教学重点:

探索和发现“三角形内角和是180°”。

教学难点:

验证“三角形内角和是180°,以及对这一知识的灵活运用。”

教具准备:

三角形,多媒体课中。

教学过程设计:

一、创设情境:故事引入,森林王国里住着平面图形和立体图形两大家族,一天平面图形的三角形家庭传出一片吵闹声,大三角形与小三角形在争论:听大三角形说:“我的内角和比你大”,小三角形不服气,可又不知如何反驳,同学们,你们知道到底谁的内角和大吗?

二、探究新知:

(一)、量一量:四人一小组,分别测量本组准备的三角形的内角,并求出和。

你们发现三角形的内角和是多少?汇报,提出疑问,三角形的内角和是不是刚好等于180°

(二)、拼一拼

引导学生独立完成,撕下二个角与第三个角拼在在一起,发现了什么?

引导学生得出:三角形内角和等于180°

(三)折一折

引导学生同桌互相帮助完成,发现三个角形的三个内角折在一起是平角。

回答大小三角形的争论:大三角形与小三角形的内角形谁大?并说出理由。

三、巩固拓展

1、填一填

①直角形三角形的两个锐角和是度。

②直角三角形的一个锐角是45°,另一个锐角是()度。

③钝角三角形的两上内角分别是20°,60°;则第三个角是()

2、火眼金晴

①钝角三角形的两个钝角和大于90°()。

②直角三角形的两个锐角之和正好等于90°()。

③淘气画了一个三个角分别是50°,70°,50°的三角形()

④两个锐角是60°的三角形是等边三角形()

⑤长方形的内角和等于360°()。

3、猜一猜:四边形的内角和是多少度?

五边形的内角和是多少度?

四、小结,今天学习了什么?你有什么收获?

四年级《三角形内角和》教学设计7

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

四年级《三角形内角和》教学设计8

【教材分析】:

新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

【教学目标】

知识与技能

1.理解和掌握三角形的内角和是180度。

2.运用三角形的内角和的知识解决实际问题。

过程与方法

经历三角形的内角和的探究过程,体验“发现——验证——应用”的学习模式。

情感态度与价值观

在学习活动中,渗透探究知识的方法,提高学生学习的能力,培养学生的创新精神和实践能力。

【教学重点】

重点:理解和掌握三角形的内角和是180度。

突破方法:引导学生用测量或剪拼的方法探究三角形的内角和。合理猜想,测量验证。

【教学难点】

用三角形的内角和解决实际问题。

突破方法:推理分析计算。运用推理,正确计算。

教法:质疑

【教学方法】

引导,演示讲解。

学法:实践操作,小组合作。

【教学准备】:

多媒体课件,锐角,直角,钝角三角形的硬纸片,剪刀。

【教学时间】

一课时

【教学过程】

一.创设情境,引入新课

师:同学们,我们这俩天学习了三角形的分类,通过对角的分类,我们能够分成几类三角形?

生:三类,分别为锐角三角形,直角三角形,钝角三角形。

师:嗯,真好,那么对边的分类呢?

生:俩类,分别为等腰三角形,等边三角形。

师:老师想让同学们帮老师画一个三角形,能做到吗?

生:能。

师:请听要求,画一个有一个角是直角的三角形,开始。(学生动手操作)

师:再来一个可以吗?请听要求,画一个有俩个角是直角的三角形,开始。

生:不能画,因为当俩个角是90度的时候,俩个顶点在一条线上,不能组成封闭图形。

师:回答的真好,那么为什么会出现这种情况呢?是因为三角形中的角而引起的,那么同学们想不想知道其中的秘密呢?

生:想。

师:好,那么我们今天就一起来学习“三角形的内角和”(出示板书)

(设计意图:通过学生的动手操作,发现问题所在,这样更能调动学生的学习兴趣,为了更好的学习这节课做铺垫.)

二.探究新知

师:昨天呢,老师让同学们一人做一个自己喜欢的三角形,请同学们拿出来,看一看你们做的是什么样子的三角形。

生1:锐角三角形。

生2:直角三角形。

生3:钝角三角形。

师:嗯,我们在上个星期学习了三角形的各部分名称,谁能帮我告诉下同学们,角在哪里呢?

生:里面的三个角,可以用角1,角2,角3来表示。

师:嗯,这三个角我们也可以说成是三角形的内角,好了,今天我们既然学习三角形的内角和,也就是求成这三个角的度数和,你们猜一猜三角形内角和的度数是多少呢?

生:三角形的内角和是180度。

师:那么我们能不能一起用一些好的办法来验证一下呢?

生1:我们可以用量角器分别量出这三个内角的度数,然后再加在一起就可以求出三角形内角的和了。

师:还有其他的办法吗?

生2:我们可以用剪子剪下三个角,然后把它们拼在一起,看看这三个角拼在一起之后能够呈现出什么样子的角。

生3:我可以用折的方法,把三个角的度数折在一起。

师:同学们说的真好,既然有这么多的方法,到底哪个方法好呢?我们一起来研究一下,我把全班分成俩个小组,一队用量的方法,一队用拼的方法,看看哪个小组做的又对又快,开始。

(设计意图:通过学生的动手操作,合作交流,真正的把课堂还给学生,让学生成为学习的主体,教师适时引导,突出学生的学习的能力与价值。)

三.总结任意三角形的内角和是180度并做适当练习。

四.板书设计

三角形的内角和

量一量锐角三角形:75度+48度+58度=181度

直角三角形:90度+45度+45度=180度

钝角三角形:120度+38度+22度=180度

拼一拼图形呈现

折一折图形呈现

第三篇:三角形内角和教学设计

三角形内角和教学设计

一、教学目标:

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境 揭示课题。

师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。

师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °

师:(出示一个很小的三角形)它呢? 生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

第四篇:《三角形内角和》教学设计

《三角形的内角和是180°》教学设计

教学思路:

由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。

学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。

这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。

教学目标:

1、知识技能目标:

(1)理解和掌握三角形的内角和是180°;

(2)运用三角形的内角和知识解决实际问题和拓展性问题;

2、能力技能目标:

(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。

(2)知道三角形两个角的度数,能求出第三个角的度数。

(3)发展学生动手操作、观察比较和抽象概括的能力。

3、情感与态度目标:

让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点

重点:理解掌握三角形的内角和是180°。

难点:运用三角形的内角和知识解决实际问题。教具、学具准备:

教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。

教学过程:

一、创设情境 生成问题

(一)课件出示三角形争吵图

在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?

(二)猜想什么是三角形的内角和

师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?

课件演示三角形的内角(内角和)

二、探索交流 解决问题

(一)探究猜想内角和的度数

师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?

生:用量角器进行度量。

师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。

生回答。(回答可能不一样。)

师:同学们通过刚才的汇报你有什么想说的吗?

生:我发现内角和的度数不一样。

师:是啊,什么原因呢?

生:可能是量的时候出现了差错。

师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?

板书课题:三角形的内角和

(二)讨论验证方法

以小组为单位来想一想我们可以怎么样来验证?

小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)

(三)动手验证

生活动,师巡视

(四)汇报

师:哪个小组来汇报你们的验证方法和验证结论?

组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。

师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?

组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。

组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。

哪个小组的同学最想上来展示一下你们的研究成果?

师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?

(动画演示剪拼验证过程)

边演示边解说。

见证奇迹的时刻到了,你发现了什么?

师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。

课件演示独特折法

同学们还有不同的验证方法吗?

组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。

组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。

出示:普通折法

师:还有不同折法吗?

组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。

师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?

组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。

师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?

课件演示长方形推理法。

师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。

看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。

小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。

三、巩固应用 内化提高

同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!

1、根据已知角的度数求出未知角的度数

(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)

2、求等边三角形各内角的度数

3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)

4、放风筝:

同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?

一个等腰三角形的风筝一个底角是70度,求顶角的度数?

5、挑战极限:

同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?

根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?

四、回顾整理反思提升

同学们通过这节的学习你有哪些收获?

第五篇:三角形内角和教学设计

冀教版教材小学数学四年级下册

《三角形内角和》4+4N教学模式讲析课

——承德县上谷学区中心校

一、创设情境

创设情境的目的:是以情境问题的解决为需求,激发学生在情境中发现问题、分析问题、解决问题的兴趣和自信。

引入的方式有很多,如:新奇、有趣、讲故事、猜谜语、场景动画、玩游戏、猜想等等。情境中含有丰富的数学信息,凸显所要学习的数学问题。

局工作要点中指出:情境是学习的火把,情境主要是问题情境。情境创设的核心意义是激发学生的问题意识,促进探究进行。这节课采用 “猜角”游戏导入新课,从而使学生产生浓厚的求知欲,迫切想知道老师“猜角”的法宝秘诀是什么?使学生兴趣盎然地投入到探究、思考的活动之中。

附:《案例》实况: 本节课情境的创设:

同学们,你们喜欢玩游戏吗?下面让我们一起做一个游戏,游戏的名字叫“猜角”,只要你们任意说出一个三角形中两个角的度数,老师会马上猜出第三个角是多少度,相信吗?那我们就来试试吧,(提前教师量好四个三角形中的两个角,并标好度数,分发给学生。然后进行猜角游戏),这么快老师就猜出第三个角的度数,想知道老师猜角的秘诀吗?当你们学了这节数学课,你们也会和老师一样猜得又对又快。(快书:三角形的内角和)

二、展示目标

展示目标的目的:让学生从整体上知道本节课的学习任务和要求。好处:(1)使学生上课就明白学习目标,使学生学习有方向。同时激发学生的学习动机,调动学生学习的积极性,促进学生在以后的各环节里主动地围绕目标,探索追求。(2)由于学习目标往往是一节课的主干知识及其要求的体现,因此长期坚持提出目标,可以培养学生的概括能力。

怎样制定学习目标呢?(1)要认真研究教材和新课程标准,准确制定学习目标,目标定位务求准确;(2)要本着本班学生的学情;(3)层次要清楚不要太长;(4)要加强学生的注意,可默记,也可以让学生读,切忌一带而过;(5)教师要引导学生追求目标。

这节课我的学习目标就定位于:(1)知道三角形内角和是多少度;(2)已知三角形两个角的度数会求第三个角的度数。有了学习目标学生就可以明确学习任务,从而为完成学习任务而努力听课。展示目标只展示学生的学习目标。

本节课展示的目标:

师:同学们,当你看到题目,你想知道些什么? 生1:什么是三角形的内角? 生2:三角形的内角和多少度?

师:通过这节课的学习,我们就是要知道(1)、三角形的内角和是多少度?(2)、用它来解决一些数学问题。(板书)三角形内角和是多少度?

已知三角形两个角的度数,求第三个角的度数。

三、自主探究

为什么要进行自主探究?新课程标准认为自主探究就是让学生自主学习、合作学习、探究学习,探究材料是激发引起学生探究经历的载体,同时也体现“先学后教,以学定教”的理念。(1)教师要找准学生的认知起点,明确学生探究的关键。教师要为学生的探究活动提供恰如其分的支持和引导,教师是课堂学生探究的组织者、引导者、合作者,使学生享受到“跳一跳,摘桃子”的乐趣。(2)探究学习的时间要充足,空间要充分。因为学生需要时间搜集信息,需要时间去检验,需要时间去思考,需要时间去纠错,需要时间去讨论,要使这种学习资源被学生群体所共享,促进每一个学生的充分发展,就需要创设多维互动的探究空

间。(3)教师要热情参与,适当引导。教师的参与可以有效地了解学生探究的实况,会看到更真实生动的探究过程,会听到更多学生的原始想法,会发现学生更多的创新火花,也会更准确地把握学生中普遍存在的问题,找准学生出错的真正原因。这里的“适当”有两层含义:(1)引导的时机要适当(2)引导的程度要适当。

本节课的自主探究过程:

师:为了方便,我们将三角形的每个内角编上序号,1、2、3、我们把它叫角

1、角

2、角∠3,∠

1、∠

2、∠3的度数和就是这个三角形的内角和(板书 ∠1+ ∠2+ ∠3)。

师:研究三角形的内角和,就要对每类三角形进行研究,老师分下工(1-2组探究锐角三角形,3-4组探究钝角三角形,5-6组探究直角三角形)。

下面就让我们测量以上三角形三个内角的度数。师:为了让大家会学习,学得好,请看自学提示。

1、先测量三角形的三个内角的度数。

2、估计一下三角形三个内角的和是多少?

3、计算出三个内角的和是多少度。小组长负责分工,做到分工合理。师:谁愿意读一读自学提示 生:读

师:开始吧,如果遇到小组解决不了的问题,别忘了老师就在身边

为什么要设计自学提示?设计自学提示的目的:就是让学生知道自学什么?怎样自学,用多长时间,应达到什么要求?时间可以不规定,但教师要做到心中有数。

当学生自学时,教师做什么?教师要加强督察,及时表扬速度快、效果好的学生、激发他们更加认真地学习,特别注重巡视中差生,甚至可以给后进生说些悄悄话,帮助其端正自学态度使他们变得认真起来,要做到面向全体,不能只顾辅导一个学生,而放弃督促大多数学生,及时了解学生存在哪些疑难问题,而后做到心中有数。此时教师不能在黑板上抄测试题或做些其他与教学无关的事,因为这样做会分散学生的注意力。如:教师漫无目的的走动,不时时机地提示等等。

本节课的自学提示我是这样设计的:(1)先测量三角形三个内角的度数:(2)估计一下三角形三个内角的和是多少度?(3)计算出三角形三个内角的和是多少度,通过量一量、估一估、算一算(看到有什么发现)不但教给学生的学习方法,同时也注重学生知识的生成过程。

四、合作交流

合作交流的目的:不是为合作而合作、合作交流应该实际,高效。必须从具体的学习内容需要出发,从本班实际出发,预设具有一定挑战性、开放性、探究性的问题作为合作交流的问题。

怎样进行合作交流?(1)在合作交流之前让学生有足够的时间围绕自学提示独立思考、形成自己的想法、观点;(2)按照自学提示的要求小组成员把各自独特的想法在小组内交流,首先,徒弟先于师傅交流,然后在小组内汇报;(3)教师要注意引导、规范学生都参与活动之中,防止出现有的干、有的闲的现象。同时引导学生学会倾听别人的意见并做好评论或补充,教给学生交流的方法,该怎样表述自己的观点,如:“我的想法是这样的”,“我得出的结论是….”,“我有一个问题还不明白,想听一听大家的意见”,“我的看法就这些”等等,当组内的同学经过合作交流,达成共识后,每组选一名代表准备向全班汇报交流。

基于本节内容,这节课小组合作学习更突显些,合作交流显得少些。(小组成员合作测量 教师巡视)

五、师生互动(全班交流)

什么是师生互动呢?就是师生之间、师生与文本之间的多种互动过程,在活动中激发学

生的学习兴趣,引导学生积极从事自主探究、合作探究和创新活动,围绕本课的重、难点知识展开交流,把在小组中取得的成果、达成的共识和全班同学交流、让学生经历知识的形成、发生、发展过程以及应用过程。

作为教师要为合作交流营造宽松民主的学习氛围、鼓励学生大胆说出各组的想法,对说不完整的先由本组同学补充,也可以其他小组同学来补充。对于不同见解,说错了,不要紧,但要知道错在什么地方,可以修改再说,直到说完整为止。要引导学生学会倾听,在活动前可进行适时提示学生。别人说的和自己想的一样吗?如不同,不同在哪里?自己还有什么补充吗?他的意见你同意吗?能用自己的话复述吗?同时也可以经常用“谁愿意解释一下他的发言”,“谁对他的发言有补充”等问题,引导学生倾听,感受倾听的重要:在师生互动中教师同样要引导学生学会交流方法、规范学生表述,“我们小组的意见是…”“我们小组测量结果的是…..”“我们小组是这样做的…..”“我们小组得出的结论是…..”。等等;教师注意此过程的评价,教师可以通过鼓励的眼神,欣赏的微笑,赞美的语言,抚慰的手势满足学生心理的需要,在评价中更要注意特色生的评价,让他们感受成功的喜悦。给成功的学生,予以奖励(如:发一颗星),给优胜组发一面红旗等等。

本节课我就是围绕知识点引导学生展开交流,通过测量、估算、实际计算、剪拼、折叠等方法验证三角形内角和是180度,进而让学生知道已知三角形两个角的度数,就可以计算第三个角的度数。

本节课师生互动过程:

师:

1、发现各组已经完成了测量,计算出了结果,哪个小组愿意派代表汇报你们小组的结果?(要求:按自学提示的顺序说,先汇报测量各内角的度数,然后估算内角和,最后实际计算内角的度数);

2、各小组代表汇报;

3、从统计表中你发现了什么?(用一句话概括一下)(生:三角形的内角和是180°)师:你还能用其他方法验证吗?

4、同学们想一想,我们学过什么样的角是180°。(生:平角)

那么我们能不能将这个三角形拼成一个平角呢?请试一试(学生剪拼活动)

5、哪个小组勇敢地到前面把你的剪拼图展示给大家(生贴:说拼图过程)

6、你还有其他方法验证这个结论吗?

7、请同学们总结三角形内角和是180°

8、请同学们议一议、想一想

(1)一个直角三角形中,两个锐角的和是多少度?(2)一个三角形中至少有几个锐角,为什么?

9、同学们,现在知道老师猜角的秘诀了吧?(三角形的内角和是180度。)

10、利用这个结论,如果已知三角形的任意两个角,就能求出第三个角的度数。(1、注意书写格式,2、加单位)

六、质疑答疑

为什么要进行质疑答疑?“学贵生疑”,质疑是一个非常好的学习方法,也是一种激发思维的有效策略。大家都知道,中国家长对放学回来的孩子说的第一句话是:“今天你学了哪些知识?”而外国的家长却这样问: “今天你向老师提出哪些问题”?

肖局长在第九次教育管理工作会也明确指出:“关于课堂教学,我特别强调一个环节,就是质疑答疑,可在下乡听课时却看不到这个环节,老师讲会了,学生也练完了,就认为万事大吉了。其实不是,教育的真正目的是要让人不断地提出问题,思考问题,“学贵生疑”,小疑则小进、大疑则大进,学生有了疑惑,才能活跃思维,有了疑惑才能增长知识,才能创新。没有疑问,学生对文本的理解不可能深入,没有问题学生的文本的体验不可能深刻。

怎么进行质疑答疑呢?首先让学生提问题,学生如果实在没有疑问教师也要设疑,不管

是学生的质疑还是教师的设疑,所有的问题都应让学生先解答,学生实在解答不了的,不全的,教师在解答、补充。

这节课我是这样设疑的?学到这里,哪些地方还不明白?如果有,请提出来,让我们共同帮你解决。

师设疑:一个三角形最多有几个直角?最多有几个钝角?为什么?

七、专项训练

专项训练的目的:就是对新授的知识进行巩固。

选题:题型与例题相类似,题目不一定多,但一定要紧扣知识点,这节课的专项训练是“已知三角形两个角的度数,计算第三个角的度数。如:已知:三角形的两个角分别是50°、60°,求另一个角是多少度?

八、综合训练

为什么要进行综合训练?综合训练是对新旧知识点的综合,是对学生综合运用知识的一种检验。

选题要做到(1)题型典型,适度、适量,(2)由浅入深,有梯度。本节课的综合练习为P79 1、2题。

九、课堂小结:

什么是课堂小结?课堂小结就是对所学的知识进行及时的梳理,回顾,并能及时地知道学生对所学知识掌握多少,理解多少。

怎样进行小结呢?鼓励学生结合本节课的学习,让学生自己总结,改变传统的教师总结的做法,小结不仅要对所学知识进行总结,还应有思想和方法的总结,对自己的参与情况、活动情况进行总结,使得课堂小结真正让学生有所学、有所感悟、有所触动。

这节课的小结我是这样设计的,通过这节课的学习,你知道了什么?学会了什么?有什么发现?有什么体会?你最满意的地方是什么?

十、拓展延伸

拓展延伸就是把课堂学到的数学知识应用到实际生活中去,学以致用,数学来源生活,又服务于生活。

根据本本节课内容,我设计的拓展延伸题是,“张大爷带着读四年级的孙子去溜弯,二人来到一根高大的电线杆前,爷爷对孙子说:“你有办法知道这根拉线和电杆之间的夹角是多少度吗?”孙子不加思索的说:“我怎样会知道,电杆那样高,我怎么会上去?”听了孙子的话张大爷什么也没有说,叹了口气,同学们,你能用今天学的数学知识帮助张大爷解答这个问题吗?

十一、达标检测

达标检测是对学生本节课知识掌握的检查,通过教师的授课,检验一下学生学习效果。

三角形内角和检测题

班级:____姓名:___

一、判断下列各组数据,能成为三角形的在括号里画√,不能的画×。1、110°,30°,40°。()2、30°,50°,100°。()3、55°,50°,75°。()4、50°,40°,100°。()

二、填空。

1、三角形的内角和是_________度。

2、直角三角形中两个锐角和是_________度。

3、一个三角形最多有_________个直角,最多有_________个钝角。

4、一个三角形至少有_________锐角。

三、算出下面每个三角形的未知角的度数。

下载四年级《三角形内角和》教学设计(共5则)word格式文档
下载四年级《三角形内角和》教学设计(共5则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    三角形内角和教学设计[★]

    《三角形的内角和》教学设计 沈芸 教学内容 义务教育课程标准实验教科书(苏教版)四年级数学(下)第28-29页 教学目标 认知目标 1. 让学生运用量、拼、摆等方法,主动探索并掌......

    三角形内角和教学设计

    《三角形的内角和》教学设计 新华实验小学安利 教材内容:人教版四年级下册数学第85页例6 教学目标: 1、通过“量一量”“算一算”“拼一拼”“折一折”的方法,让学生推理归纳三......

    《三角形内角和》教学设计

    《三角形内角和》教学设计 【教材内容】 北京市义务教育程改革实验教材(北京版)第九册数学 【教材分析】 《三角形内角和》是北京市义务教育程改革实验教材(北京版)第九册第三单......

    《三角形内角和》 教学设计

    《三角形内角和》 教学设计 【教学内容】四年级下册教科书第24页“探索与发现:三角形内角和。” 【学习目标】 1.让学生亲自动手,通过量、剪、拼等直观操作活动,探索、发现并证......

    三角形内角和教学设计

    三角形内角和教学设计 一、教材分析: 教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和性质。 教材创设了一个有趣的问题情境,以此激发学......

    三角形内角和教学设计

    三角形内角和教学设计 知识目标: 掌握三角形内角和是180度这一规律,并能实际应用。 能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学......

    三角形内角和教学设计

    《三角形的内角和》教学设计 教学内容: 冀教版四年级下册《三角形的内角和》 教学目的: 1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形......

    《三角形内角和》教学设计

    《三角形内角和》教学设计 一、导入 同学们喜欢游戏吗?(生答)现在我们就一起来玩儿个游戏好不好?(生答)请看游戏规则,谁来读一读?(课件出示游戏规则)谁想先来玩一玩?(课件出示游戏)(生玩游......