不等式单元教学设计(推荐5篇)

时间:2020-11-03 00:41:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式单元教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式单元教学设计》。

第一篇:不等式单元教学设计

不等式单元教学设计范文

在教学工作者实际的教学活动中,时常需要编写教学设计,教学设计是一个系统化规划教学系统的过程。怎样写教学设计才更能起到其作用呢?下面是小编整理的不等式单元教学设计范文,希望对大家有所帮助。

〖教学目标〗

在本学段,学生将经历从实际问题中建立不等关系,进而抽象出不等式的过程,体会不等式和方程一样,都是刻画现实世界中同类量之间关系的重要数学模型,同时进一步发展学生的符号感。

(一)知识目标

1、能够根据具体问题中的大小关系了解不等式的意义。

2、理解什么是不等式成立,掌握不等式是否成立的判定方法。

3、能依题意准确迅速地列出相应的不等式。体会现实生活中存在着大量的不等关系,学习不等式的有关知识是生活和工作的需要。

(二)能力目 标

1、培养学生运用类比方法研究相关内容的能力。

2、训练学生运用所学知识解决实际问题的能力。

(三)情感目标

1、通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识。

2、通过 不等式的学习,渗透具有不等量关系的数学美。

〖教学重点〗

能依题意准确迅速地列出相应的不等式。

〖教学难点〗

理解符号“≥”“ ≤”的含义,理解什么是不等式成立。

〖教学过程〗

一、课前布置

1、浏览课本P2~21,了解本章结构。

自学:阅读课本P2~P4,试着做一做本节练习,提出在自学中发现的问题。

2、查找“不等号的由来”

备注: 不等号的由来。

①现实世界中存在着大量的不等 关系,如何用符号表示呢? 为了寻求一套表示“大于”或“小于”的符号,数学家们绞尽脑汁。1631年,英国数学家哈里奥特首先创用符号“>”表示“大于”,“<”表示“小于”,这就是现在通用的大于号和小于号。与哈里奥特同时代的数学家们也创造了一些表示大 小关系的符号,但都因书写起来十分繁琐而被淘汰。

②后来,人们在表达不等关系时,常把等式作为不等式的特殊情况来处理。在许多情况下,要用到一个数(或量)大于或等于另 一个数(或量),此时就把“>”和“=”有机地结合起来得到符号“≥”,读做“大于或等于”,有时也称为“不小于”。同样,把符号“≤”读做“小于或等于”,有时也称为“不大于”。

那么如何理解符号“≥”“≤”的含义呢?用“≥”表示“>”或 “=”,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。同样“≤”也有类似的情况。

③因此有人把a>b,b现代数学中又用符号“≮”表示“不小于”,用“≯”表示“不大于”。有了这些符号,在表示不等关系时,就非常得心应手了。

二、师生互动

和学生一起进行知识梳理

(一)由师生一起交流“不等号的由来”

①,引出学习目标——认识不等式。

1、引起动机:

教师配合课本“观察与思考”“一起探究”等 内容提问:用数学式子要如何表示小卡车赶超大卡车?

2、学生进行讨论并回 答。

3、教师举例说明:

数学符号“>、<、≥、≤、≠”称为不等号,而含有这些符号的式子就称为不等式。

4。结合自己的旧经验,让学生认识“≤”所代表的意思。

教师说明:

在小学时我们学过“小于”的符号,也就是说如果“a小于b”,我们可以记为“a<b”。而a≤b”则读做“a小于或等于b”,也就表示“a比b小,而且a有可能等于b”。

5、仿照上面说明由学生进行“≥”的介绍。

6、教师举例提问:

如果我们要比较两数的大小关系时,可能会有几种情形?

(当我们比较两数的大小关系时,下面三种情形只有一种会成立,即 a<b,a=b或a>b)

7、老师提问:如果我们只知道“a不大于b”,那该如何用不等号来表 示呢?

(a不大于b表示a小于b且a有可能等于b,所以我们可以记录成a≤b)

8、仿照此题,引导学生了解“a不小于b”及“a不等于b”所代表的意义。

教师归纳说明:不等式的意义

不等式表示现实世界中同类量的不等关系。在有理数大小的比较中,我们常用不等号连接两个或两个以上的有理数,如—3>—5、不等式含有不等 号,常见的不等号有五种,其读法及意义如下:

(1)“>”读作“大于”,表示其左边的量比右边的量大。

(2)“<”读作“小于”,表示其左边的量比右边的量小。

(3)“≥”读作“大于等于”,即“不小于”,表示其左边的量大于或等于右边。

(4)“≤”读作“小于等于”,即“不大于”,表示其左边的量小于或等于右边。

(5)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大,哪个小。

(二)用不等式表示数量关系

关键是明确问题中常用的表示不等关系词语的意义,并注意隐含在具体的情境中的不等关系。

补充例1。下面列出的不等式中,正确的是()

(A)a不是负数,可表示成a>0m

(B)x不大于3,可表示成x<3

(C)m与4的差是负数,可表示成m—4<0

(D)x与2的'和是非负数,可表示成x+2>0

解析:用不等式表示下列数量关系,关键是能用代数式准确地表示出有关的数量,并掌握"不大于"、“不超过”、“是非负数”等词语的正确含义及表示符号。

因为 a不是负数,可表示成a≥0;x不大于3,应表示成x≤3;x与2的和是非负数应表示成x+2≥0,所以 只有(C)正确。故本题应选(C)。

(三)不等式成立的意义

对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立;当未知数取某些值时,不等式的左、右两边 不符合不等号所表示的大小关系,我们说不等式不成立。强调用“≥”表示“>”或“=”,即两者必居其一,不要求同时满足。例如 ≥0,其中只有“>”成立,“=”就不成立。

三、补充练习

作业:课本P4习题

5分钟练习

1、“x的2倍与3的和是非负数”列成不等式为()

A、2x+3≥0 B。2x+3>0 C。2x+3≤0 D。2x+3<02、几个人分若干个苹果,若每人3个还余5个,若去掉1人,则每人4个还有剩余。设有x个人,可列不等式为___________。

〖分层作业〗

基础知识

1、判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式。

①x+y

②3x>7

③5=2x+3

④x2≥0

⑤2x-3y=1

⑥522、用适当符号表示下列关系。

(1)a的7 倍与15的和比b的3倍大;

(2)a是非正数;

3、在-1,0,1,3,7,100中哪些能使不等式x+1<2成立?

综合运用

4、通过测量一棵树的树围,(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约3 cm。这棵树至少生长多少年其树围才能超过2.4 m?请你列出关系式。

5、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域。已知 导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出。

第二篇:不等式教学设计

9.1 不等式

教材分析:本课由实际问题中的不等关系引出不等式的概念;类比方程的解,明确不等式解和解集的概念,以及不等式解集的两种表示方法。

教学目标:了解不等式概念,理解不等式的解和解集。教学重难点:不等式及解集概念的理解。教学过程: 一:引出新知。

现实世界中存在大量的数量关系,包括相等关系和不等关系。用等式(包括方程),我们可以研究相等关系,而研究不等关系需要用本章的不等式,如引言中选择购物商场问题.二:探索新知。

问题1 一辆匀速行驶的汽车在11:20距离A地50 km,要在12:00之前驶过A地.你能用式子表示出车速应满足的条件吗?

1、汽车在12:00之前驶过A地的意思是什么? 从时间上看,汽车要在12:00之前驶过A地,则 以这个速度行驶50 km所用的时间不到。

从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶的路程要超过50 km。

2、如何用式子表示以上不等关系? 设:车速为x km/h. 从时间上看: 从路程上看:

(1)对于不等式 而言,车速可以是80 km/h吗?78 km/h呢?75 km/h呢?72 km/h呢?

(2)类比方程的解,什么叫不等式的解?

使不等式成立的未知数的值.(3)不等式还有其他解吗?如果有,这些解应满足什么条件?

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.(4)除了用不等式表示取值范围,还有其他表示方法吗? 数轴

三、运用新知。例1 请用不等式表示:

(1)是负数;

(2)与5的和小于-7;

(3)的一半大于3.例2 直接说出不等式的解集,并在数轴上表

示出来.四、归纳总结(1)什么叫不等式?

(2)什么叫不等式的解?不等式的解和方程的解的区别?(3)什么叫不等式的解集?不等式的解和不等式的解集的区别?

五、布置作业

教科书习题9.1 第1、2、3题。

第三篇:均值不等式教学设计

3.2均值不等式

教学目标

(一)知识与技能:明确均值不等式及其使用条件,能用均值不等式解决简单的最值问题.(二)过程与方法:通过对问题主动探究,实现定理的发现,体验知识与规律的形成过程.(三)情感态度与价值观:通过问题的解决以及自身的探索研究领略获取新知的喜悦.教学重点:均值不等式的推导与证明,均值不等式的应用.教学难点:均值不等式的应用 教学过程

创设情境如图,AB是圆的直径,D是CAB上与A、B不重合的一点,AD=a,DB=b,过点D作垂直于AB的弦CD,连AC,BC,AaODbB则CD=__,半径OC=____E 讨论 :(1)CD OC(2)文字叙述(几何意义):(3)试用含a、b的表达式来表示上述关系 注意:(1)当 时,(2)a、b的取值范围

探求新知:均值不等式的内容及证明

均值定理:

证明:(比较作差法)

变形应用:(1)

(2)

讨论释疑:

牛刀小试:已知x0,则x1x 例

1、已知ab0,求证:baab2并推导出式中等号成立的条件

2、求函数f(x)x22x3x(x0)的最值,以及此时x的值

精炼巩固:

t2 1.设t0,则函数f(t)4t1的最小值为此时t的值 2.已知正数a,b满足ab1,则ab有最值为

点拨提高:

总结本节课的你的收获。

课堂小测:.已知正数a,b满足ab1,则1a1b有最值为。2.设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4

课堂小测:.已知正数a,b满足ab1,则1a1b有最值为。2.设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4

课堂小测:

.已知正数a,b满足ab1,则1a1b有最值为。2.设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4

课堂小测:

.已知正数a,b满足ab1,则1a1b有最值为。2.设x3,则函数f(x)(x3)2x3的最小值为此时x的值3.已知a、bR,求证:(a11a)(bb)4

第四篇:基本不等式教学设计

基本不等式教学设计

10141510244 数学与应用数学 钟林

课题:人教A版必修5第3章4节,基本不等式

【教学目标】

1.通过两个探究实例,引导学生从几何图形中获得两个基本不等式,了解基本不等式的几何背景,体会数形结合的思想。

2.进一步提炼、完善基本不等式,并从代数角度给出不等式的证明,组织学生分析证明方法,加深对基本不等式的认识,提高逻辑推理论证能力。3.结合课本的探究图形,引导学生进一步探究基本不等式的几何解释,强化数形结合的思想。

4.借助例1尝试用基本不等式解决简单的最值问题,通过例2及其变式引导学生

ab领会运用基本不等式ab的三个限制条件(一正二定三相等)在解决最

2值中的作用,提升解决问题的能力,体会方法与策略。

【重点难点】

重点:应用数形结合的思想理解基本不等式,并从不同角度探索不等式abab的证明过程。

2难点:在几何背景下抽象出基本不等式,并理解基本不等式。

【教学设计】

(一)问题导入

欣赏2002年国际数学家大会会徽,会徽是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能发现它是什么图形构成的吗?请根据会徽探索一些常见相等或不等关系。

探究一:在这张“弦图”中能找出一些相等关系和不等关系吗? 在正方形ABCD中有4个全等的直角三角形.设直角三角形两条直角边长为,a,b。

22ab那么正方形的边长为。

于是,4个直角三角形的面积之和S12ab。正方形的面积S2a2b2。由图可知S2S1,即a2b22ab。

当直角三角形变为等腰直角三角形,即时,正方形EFGH缩为一个点,这时 a2b22ab

所以a2b22ab。

探究二:如下图所示的梯形中,EF是梯形ABCD的中位线,梯形ABGH相似于梯 形GHDC。

梯形ABCD的上底是a,下底是b。让同学们自主研究GH和EF的大小关系。

ab因为EF是中位线,所以EF,2由相似,可以得出GHab,同样因为相似,有

AGABa,GDGHb又因为ab,所以AGGD,即AGAE,ab。2显然,当AB逐渐趋近CD的时候,GH也逐渐向EF靠近,当AB=CD的时候,即ABCD是矩形的时候,GH与EF重合。

ab即,当且仅当ab时,ab。

2ab所以,ab,当且仅当ab时,等号成立。

2所以GHEF,即ab

(二)概念深入

根据上述两个几何背景,初步形成不等式结论:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立)2请同学们运用代数法证明: 作法一(作差法): 若a,bR,则aba2b22ab(ab)20ab2ab22

当且仅当a=b时,等号成立。且发现这里且a和b可以是全体实数、单项式、多项式。

作法二(分析法):

要证明abab,2只需证明ab2ab,即证ab-2ab0,即为a-b20,该式显然成立,所以,当ab时取等号。

于是有这样的结论:

称ab为a,b的几何平均数;称基本不等式abab为a,b的算术平均数,2ab又可叙述为: 2两个正数的几何平均数不大于它们的算术平均数

作法三(几何法):

如图,AB是圆O的直径,点C是AB上一点,AC=a,BC=b.过点C作 垂直于AB的弦DE,连接AD,BD。从而有CDab,ODab。2ab。2ab当且仅当C点与圆心O点重合时,即a=b时,ab

2故再次证明:

aba0,b0,ab,当且仅当a=b时,等号成立。

2ab也说明了ab的几何意义:半径不小于半弦。

2由于直角三角形COD中,直角边CD<斜边OD,即ab

(三)例题讲解

例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?

(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)

对于x,yR,(1)若xyp(定值),则当且仅当xy时,xy有最小值2p;

s2(2)若xys(定值),则当且仅当xy时,xy有最大值。

4(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神。)

1例2.求yx(x0)的值域。

x1变式1.若x2,求x的最小值.

x21在运用基本不等式解题的基础上,利用几何画板展示yx(x0)的函数

x图象,使学生再次感受数形结合的数学思想。

ab并通过例2及其变式引导学生领会运用基本不等式ab的三个限制

2条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略。

(四)归纳小结&课后作业 基本不等式:

若a,bR,则a2b22ab。(当且仅当a=b时,等号成立)

ab。(当且仅当a=b时,等号成立)2(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法。

作业:A组第4题,B组第1题,第2题

若a,bR,则ab

第五篇:基本不等式教学设计

《基本不等式》教学设计

3.4.1基本不等式

开江中学 魏江兰

目标分析

依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:

1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重、难点分析

重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式abab的证明过程及应用。2难点:

1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);

2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析

本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

《基本不等式》教学设计

教学准备

多媒体课件、板书

教学过程

教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。具体过程安排如下:

一、创设情景,提出问题;

设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境: 上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?

本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式a2b22ab。在此基础上,引导学生认识基本不等式。

二、抽象归纳:

一般地,对于任意实数a,b,有a2b22ab,当且仅当a=b时,等号成立。[问] 你能给出它的证明吗?

证明:因为a2b22ab(ab)20,即a2b22ab.(当ab时取等号)

特别地,当a>0,b>0时,在不等式a2b22ab中,以a、b分别代替a、b,得到什么?

设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.《基本不等式》教学设计

答案: abab(a,b0)。2你能用不等式的性质直接推导这个不等式吗? 证明:(分析法):由于a,bR,于是要证明 ab2ab,只要证明 ab2即证

2ab,ab2ab0,即(ab)20,所以abab,(当ab时取等号)

【归纳总结】

如果a,b都是正数,那么abab,当且仅当a=b时,等号成立。2ab称为a,b的算术平均数,ab称2我们称此不等式为基本不等式。其中为a,b的几何平均数。

文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。

探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究abab(a,b0)2的几何解释,通过数形结合,赋予不等式不等式abab(a,b0)2几何直观。进一步领悟不等式中等号成立的条件。

如图:AB是圆的直径,点C是AB上一点,CD⊥AB,AC=a,CB=b,CD

Dab

abab2abOCAB几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

《基本不等式》教学设计

4.应用举例,巩固提高

我们可以用两个重要不等式来解决什么样的问题呢?

例1(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?

(通过例1的讲解,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化)对于(1)若(2)若,(定值),则当且仅当(定值),则当且仅当

时,时,有最小值有最大值

; .

(鼓励学生自己探索推导,不但可使他们加深基本不等式的理解,还锻炼了他们的思维,培养了勇于探索的精神.)

1例 2:当x0时,求yx的最小值?x1变式1:当x0时,yx有最值吗?

x1变式2:当x1时,yx有最值吗?

x通过例2及其变式引导学生领会运用基本不等式的三个限制条件(一正二定三相等)在解决最值问题中的作用,提升解决问题的能力,体会方法与策略.

练一练(自主练习):课本练习5.归纳小结,反思提高

《基本不等式》教学设计

基本不等式:若若,则,则

(当且仅当(当且仅当

时,等号成立)时,等号成立)

(1)基本不等式的几何解释(数形结合思想);(2)运用基本不等式解决简单最值问题的基本方法(一正二定三相等). 6.布置作业,课后延拓

(1)基本作业:课本P100习题组1、2、3题

(2)拓展作业:请同学们课外到阅览室或网上查找基本不等式的其他几何解释,整理并相互交流.

下载不等式单元教学设计(推荐5篇)word格式文档
下载不等式单元教学设计(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    基本不等式教学设计

    基本不等式 一、教学设计理念: 注重学生自主、合作、探究学习,用新课程理念打造新的教学模式. 二、教学设计思路: 1.教学目标确定 这节课的目标定位分为三个层面: 第一层面:知识......

    不等式性质教学设计

    2010-2011学年度第二学期关集中心校七年级数学组导学案专用纸 主备人:胡伟 审核人: 使用人: 第11周 讨论时间: 不等式的基本性质(1)教学设计 学习目标 1、理解、掌握不等式的基本......

    不等式的性质 教学设计

    9.1.2不等式的性质 教学设计 十六中 尚进军 【教学重点与难点】 教学重点:掌握不等式的三条基本性质,尤其是不等式的基本性质3 教学难点:正确应用不等式的三条基本性质进行不等......

    一元一次不等式教学设计

    一元一次不等式教学设计 歇马镇中心学校 吴秀珍 教学目标:掌握一元一次不等式的解法,能熟练的解一元一次不等。 教学重点:掌握解一元一次不等式的步骤。 教学难点:必须切实......

    一元一次不等式教学设计

    一元一次不等式导学提纲 主备课人:辛高鹏 审核:初二数学组 时间:2011.4 教学目标: 掌握一元一次不等式的解法,能熟练的解一元一次不等式 教学重点:是掌握解一元一次不等式的步......

    13、1《不等式》教学设计

    《不等式》教学设计 教学目标: 知识与技能:理解不等式的定义,能够用不等式表示数量之间的不等关系。 过程与方法:经历从具体问题情境中建立不等式模型的过程,发展学生的符号感。......

    不等式教学设计示例(定稿)

    3.1.2 等式的性质 一、素质教育目标(一)知识起学点 1.理解:等式的意义,并能举出有关等式的例子. 2.掌握:关于等式变形的两条性质,并能语言叙述. 3.应用:会用等式的两条性质将等式变形,并......

    9.1 不等式 教学设计 教案

    教学准备 1. 教学目标 一、知识与能力: 了解不等式概念; 理解不等式的解集; 能用数轴表示不等式的解集; 二、过程与方法: 经历由具体实例建立不等模型的过程,经历探究不等式解与......